Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 93 papers

Targeted massively parallel sequencing of angiosarcomas reveals frequent activation of the mitogen activated protein kinase pathway.

  • Rajmohan Murali‎ et al.
  • Oncotarget‎
  • 2015‎

Angiosarcomas are rare malignant mesenchymal tumors of endothelial differentiation. The clinical behavior is usually aggressive and the prognosis for patients with advanced disease is poor with no effective therapies. The genetic bases of these tumors have been partially revealed in recent studies reporting genetic alterations such as amplifications of MYC (primarily in radiation-associated angiosarcomas), inactivating mutations in PTPRB and R707Q hotspot mutations of PLCG1. Here, we performed a comprehensive genomic analysis of 34 angiosarcomas using a clinically-approved, hybridization-based targeted next-generation sequencing assay for 341 well-established oncogenes and tumor suppressor genes. Over half of the angiosarcomas (n = 18, 53%) harbored genetic alterations affecting the MAPK pathway, involving mutations in KRAS, HRAS, NRAS, BRAF, MAPK1 and NF1, or amplifications in MAPK1/CRKL, CRAF or BRAF. The most frequently detected genetic aberrations were mutations in TP53 in 12 tumors(35%) and losses of CDKN2A in9 tumors (26%). MYC amplifications were generally mutually exclusive of TP53 alterations and CDKN2A loss and were identified in 8 tumors (24%), most of which (n = 7, 88%) arose post-irradiation. Previously reported mutations in PTPRB (n = 10, 29%) and one (3%) PLCG1 R707Q mutation were also identified. Our results demonstrate that angiosarcomas are a genetically heterogeneous group of tumors, harboring a wide range of genetic alterations. The high frequency of genetic events affecting the MAPK pathway suggests that targeted therapies inhibiting MAPK signaling may be promising therapeutic avenues in patients with advanced angiosarcomas.


Integrative clinical genomics of advanced prostate cancer.

  • Dan Robinson‎ et al.
  • Cell‎
  • 2015‎

Toward development of a precision medicine framework for metastatic, castration-resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole-exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53, and PTEN were frequent (40%-60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, β-catenin, and ZBTB16/PLZF. Moreover, aberrations of BRCA2, BRCA1, and ATM were observed at substantially higher frequencies (19.3% overall) compared to those in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration, including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides clinically actionable information that could impact treatment decisions for these affected individuals.


Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing.

  • Srinivas R Viswanathan‎ et al.
  • Cell‎
  • 2018‎

Nearly all prostate cancer deaths are from metastatic castration-resistant prostate cancer (mCRPC), but there have been few whole-genome sequencing (WGS) studies of this disease state. We performed linked-read WGS on 23 mCRPC biopsy specimens and analyzed cell-free DNA sequencing data from 86 patients with mCRPC. In addition to frequent rearrangements affecting known prostate cancer genes, we observed complex rearrangements of the AR locus in most cases. Unexpectedly, these rearrangements include highly recurrent tandem duplications involving an upstream enhancer of AR in 70%-87% of cases compared with <2% of primary prostate cancers. A subset of cases displayed AR or MYC enhancer duplication in the context of a genome-wide tandem duplicator phenotype associated with CDK12 inactivation. Our findings highlight the complex genomic structure of mCRPC, nominate alterations that may inform prostate cancer treatment, and suggest that additional recurrent events in the non-coding mCRPC genome remain to be discovered.


Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer.

  • Daniel Nava Rodrigues‎ et al.
  • The Journal of clinical investigation‎
  • 2018‎

Understanding the integrated immunogenomic landscape of advanced prostate cancer (APC) could impact stratified treatment selection.


Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors.

  • Diana Miao‎ et al.
  • Nature genetics‎
  • 2018‎

Tumor mutational burden correlates with response to immune checkpoint blockade in multiple solid tumors, although in microsatellite-stable tumors this association is of uncertain clinical utility. Here we uniformly analyzed whole-exome sequencing (WES) of 249 tumors and matched normal tissue from patients with clinically annotated outcomes to immune checkpoint therapy, including radiographic response, across multiple cancer types to examine additional tumor genomic features that contribute to selective response. Our analyses identified genomic correlates of response beyond mutational burden, including somatic events in individual driver genes, certain global mutational signatures, and specific HLA-restricted neoantigens. However, these features were often interrelated, highlighting the complexity of identifying genetic driver events that generate an immunoresponsive tumor environment. This study lays a path forward in analyzing large clinical cohorts in an integrated and multifaceted manner to enhance the ability to discover clinically meaningful predictive features of response to immune checkpoint blockade.


TERT promoter mutations are frequent in cutaneous basal cell carcinoma and squamous cell carcinoma.

  • Klaus G Griewank‎ et al.
  • PloS one‎
  • 2013‎

Activating mutations in the TERT promoter were recently identified in up to 71% of cutaneous melanoma. Subsequent studies found TERT promoter mutations in a wide array of other major human cancers. TERT promoter mutations lead to increased expression of telomerase, which maintains telomere length and genomic stability, thereby allowing cancer cells to continuously divide, avoiding senescence or apoptosis. TERT promoter mutations in cutaneous melanoma often show UV-signatures. Non-melanoma skin cancer, including basal cell carcinoma and squamous cell carcinoma, are very frequent malignancies in individuals of European descent. We investigated the presence of TERT promoter mutations in 32 basal cell carcinomas and 34 cutaneous squamous cell carcinomas using conventional Sanger sequencing. TERT promoter mutations were identified in 18 (56%) basal cell carcinomas and in 17 (50%) cutaneous squamous cell carcinomas. The recurrent mutations identified in our cohort were identical to those previously described in cutaneous melanoma, and showed a UV-signature (C>T or CC>TT) in line with a causative role for UV exposure in these common cutaneous malignancies. Our study shows that TERT promoter mutations with UV-signatures are frequent in non-melanoma skin cancer, being present in around 50% of basal and squamous cell carcinomas and suggests that increased expression of telomerase plays an important role in the pathogenesis of these tumors.


Oncogenic Signaling Pathways in The Cancer Genome Atlas.

  • Francisco Sanchez-Vega‎ et al.
  • Cell‎
  • 2018‎

Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFβ signaling, p53 and β-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.


Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors.

  • Viktor A Adalsteinsson‎ et al.
  • Nature communications‎
  • 2017‎

Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing.


Mutational patterns in chemotherapy resistant muscle-invasive bladder cancer.

  • David Liu‎ et al.
  • Nature communications‎
  • 2017‎

Despite continued widespread use, the genomic effects of cisplatin-based chemotherapy and implications for subsequent treatment are incompletely characterized. Here, we analyze whole exome sequencing of matched pre- and post-neoadjuvant cisplatin-based chemotherapy primary bladder tumor samples from 30 muscle-invasive bladder cancer patients. We observe no overall increase in tumor mutational burden post-chemotherapy, though a significant proportion of subclonal mutations are unique to the matched pre- or post-treatment tumor, suggesting chemotherapy-induced and/or spatial heterogeneity. We subsequently identify and validate a novel mutational signature in post-treatment tumors consistent with known characteristics of cisplatin damage and repair. We find that post-treatment tumor heterogeneity predicts worse overall survival, and further observe alterations in cell-cycle and immune checkpoint regulation genes in post-treatment tumors. These results provide insight into the clinical and genomic dynamics of tumor evolution with cisplatin-based chemotherapy, suggest mechanisms of clinical resistance, and inform development of clinically relevant biomarkers and trials of combination therapies.


The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma.

  • Yuji Mishima‎ et al.
  • Cell reports‎
  • 2017‎

The development of sensitive and non-invasive "liquid biopsies" presents new opportunities for longitudinal monitoring of tumor dissemination and clonal evolution. The number of circulating tumor cells (CTCs) is prognostic in multiple myeloma (MM), but there is little information on their genetic features. Here, we have analyzed the genomic landscape of CTCs from 29 MM patients, including eight cases with matched/paired bone marrow (BM) tumor cells. Our results show that 100% of clonal mutations in patient BM were detected in CTCs and that 99% of clonal mutations in CTCs were present in BM MM. These include typical driver mutations in MM such as in KRAS, NRAS, or BRAF. These data suggest that BM and CTC samples have similar clonal structures, as discordances between the two were restricted to subclonal mutations. Accordingly, our results pave the way for potentially less invasive mutation screening of MM patients through characterization of CTCs.


Somatic cancer variant curation and harmonization through consensus minimum variant level data.

  • Deborah I Ritter‎ et al.
  • Genome medicine‎
  • 2016‎

To truly achieve personalized medicine in oncology, it is critical to catalog and curate cancer sequence variants for their clinical relevance. The Somatic Working Group (WG) of the Clinical Genome Resource (ClinGen), in cooperation with ClinVar and multiple cancer variant curation stakeholders, has developed a consensus set of minimal variant level data (MVLD). MVLD is a framework of standardized data elements to curate cancer variants for clinical utility. With implementation of MVLD standards, and in a working partnership with ClinVar, we aim to streamline the somatic variant curation efforts in the community and reduce redundancy and time burden for the interpretation of cancer variants in clinical practice.


Scaling computational genomics to millions of individuals with GPUs.

  • Amaro Taylor-Weiner‎ et al.
  • Genome biology‎
  • 2019‎

Current genomics methods are designed to handle tens to thousands of samples but will need to scale to millions to match the pace of data and hypothesis generation in biomedical science. Here, we show that high efficiency at low cost can be achieved by leveraging general-purpose libraries for computing using graphics processing units (GPUs), such as PyTorch and TensorFlow. We demonstrate > 200-fold decreases in runtime and ~ 5-10-fold reductions in cost relative to CPUs. We anticipate that the accessibility of these libraries will lead to a widespread adoption of GPUs in computational genomics.


Systematic auditing is essential to debiasing machine learning in biology.

  • Fatma-Elzahraa Eid‎ et al.
  • Communications biology‎
  • 2021‎

Biases in data used to train machine learning (ML) models can inflate their prediction performance and confound our understanding of how and what they learn. Although biases are common in biological data, systematic auditing of ML models to identify and eliminate these biases is not a common practice when applying ML in the life sciences. Here we devise a systematic, principled, and general approach to audit ML models in the life sciences. We use this auditing framework to examine biases in three ML applications of therapeutic interest and identify unrecognized biases that hinder the ML process and result in substantially reduced model performance on new datasets. Ultimately, we show that ML models tend to learn primarily from data biases when there is insufficient signal in the data to learn from. We provide detailed protocols, guidelines, and examples of code to enable tailoring of the auditing framework to other biomedical applications.


Ipilimumab plus nivolumab in avelumab-refractory Merkel cell carcinoma: a multicenter study of the prospective skin cancer registry ADOREG.

  • Valerie Glutsch‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2022‎

Merkel cell carcinoma is a rare, highly aggressive skin cancer with neuroendocrine differentiation. Immune checkpoint inhibition has significantly improved treatment outcomes in metastatic disease with response rates to programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) inhibition of up to 62%. However, primary and secondary resistance to PD-1/PD-L1 inhibition remains a so far unsolved clinical challenge since effective and safe treatment options for these patients are lacking.Fourteen patients with advanced (non-resectable stage III or stage IV, Union international contre le cancer 2017) Merkel cell carcinoma with primary resistance to the PD-L1 inhibitor avelumab receiving subsequent therapy (second or later line) with ipilimumab plus nivolumab (IPI/NIVO) were identified in the prospective multicenter skin cancer registry ADOREG. Five of these 14 patients were reported previously and were included in this analysis with additional follow-up. Overall response rate, progression-free survival (PFS), overall survival (OS) and adverse events were analyzed.All 14 patients received avelumab as first-line treatment. Thereof, 12 patients had shown primary resistance with progressive disease in the first tumor assessment, while two patients had initially experienced a short-lived stabilization (stable disease). Six patients had at least one systemic treatment in between avelumab and IPI/NIVO. In total, 7 patients responded to IPI/NIVO (overall response rate 50%), and response was ongoing in 4 responders at last follow-up. After a median follow-up of 18.85 months, median PFS was 5.07 months (95% CI 2.43-not available (NA)), and median OS was not reached. PFS rates at 12 months and 24 months were 42.9% and 26.8 %, respectively. The OS rate at 36 months was 64.3%. Only 3 (21%) patients did not receive all 4 cycles of IPI/NIVO due to immune-related adverse events.In this multicenter evaluation, we observed high response rates, a durable benefit and promising OS rates after treatment with later-line combined IPI/NIVO. In conclusion, our patient cohort supports our prior findings with an encouraging activity of second-line or later-line IPI/NIVO in patients with anti-PD-L1-refractory Merkel cell carcinoma.


A patient-driven clinicogenomic partnership for metastatic prostate cancer.

  • Jett Crowdis‎ et al.
  • Cell genomics‎
  • 2022‎

Molecular profiling studies have enabled discoveries for metastatic prostate cancer (MPC) but have predominantly occurred in academic medical institutions and involved non-representative patient populations. We established the Metastatic Prostate Cancer Project (MPCproject, mpcproject.org), a patient-partnered initiative to involve patients with MPC living anywhere in the US and Canada in molecular research. Here, we present results from our partnership with the first 706 MPCproject participants. While 41% of patient partners live in rural, physician-shortage, or medically underserved areas, the MPCproject has not yet achieved racial diversity, a disparity that demands new initiatives detailed herein. Among molecular data from 333 patient partners (572 samples), exome sequencing of 63 tumor and 19 cell-free DNA (cfDNA) samples recapitulated known findings in MPC, while inexpensive ultra-low-coverage sequencing of 318 cfDNA samples revealed clinically relevant AR amplifications. This study illustrates the power of a growing, longitudinal partnership with patients to generate a more representative understanding of MPC.


Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma.

  • Kevin Bi‎ et al.
  • Cancer cell‎
  • 2021‎

Immune checkpoint blockade (ICB) results in durable disease control in a subset of patients with advanced renal cell carcinoma (RCC), but mechanisms driving resistance are poorly understood. We characterize the single-cell transcriptomes of cancer and immune cells from metastatic RCC patients before or after ICB exposure. In responders, subsets of cytotoxic T cells express higher levels of co-inhibitory receptors and effector molecules. Macrophages from treated biopsies shift toward pro-inflammatory states in response to an interferon-rich microenvironment but also upregulate immunosuppressive markers. In cancer cells, we identify bifurcation into two subpopulations differing in angiogenic signaling and upregulation of immunosuppressive programs after ICB. Expression signatures for cancer cell subpopulations and immune evasion are associated with PBRM1 mutation and survival in primary and ICB-treated advanced RCC. Our findings demonstrate that ICB remodels the RCC microenvironment and modifies the interplay between cancer and immune cell populations critical for understanding response and resistance to ICB.


miR-221-3p Regulates VEGFR2 Expression in High-Risk Prostate Cancer and Represents an Escape Mechanism from Sunitinib In Vitro.

  • Markus Krebs‎ et al.
  • Journal of clinical medicine‎
  • 2020‎

Downregulation of miR-221-3p expression in prostate cancer (PCa) predicted overall and cancer-specific survival of high-risk PCa patients. Apart from PCa, miR-221-3p expression levels predicted a response to tyrosine kinase inhibitors (TKI) in clear cell renal cell carcinoma (ccRCC) patients. Since this role of miR-221-3p was explained with a specific targeting of VEGFR2, we examined whether miR-221-3p regulated VEGFR2 in PCa. First, we confirmed VEGFR2/KDR as a target gene of miR-221-3p in PCa cells by applying Luciferase reporter assays and Western blotting experiments. Although VEGFR2 was mainly downregulated in the PCa cohort of the TCGA (The Cancer Genome Atlas) database, VEGFR2 was upregulated in our high-risk PCa cohort (n = 142) and predicted clinical progression. In vitro miR-221-3p acted as an escape mechanism from TKI in PC3 cells, as displayed by proliferation and apoptosis assays. Moreover, we confirmed that Sunitinib induced an interferon-related gene signature in PC3 cells by analyzing external microarray data and by demonstrating a significant upregulation of miR-221-3p/miR-222-3p after Sunitinib exposure. Our findings bear a clinical perspective for high-risk PCa patients with low miR-221-3p levels since this could predict a favorable TKI response. Apart from this therapeutic niche, we identified a partially oncogenic function of miR-221-3p as an escape mechanism from VEGFR2 inhibition.


Subtype heterogeneity and epigenetic convergence in neuroendocrine prostate cancer.

  • Paloma Cejas‎ et al.
  • Nature communications‎
  • 2021‎

Neuroendocrine carcinomas (NEC) are tumors expressing markers of neuronal differentiation that can arise at different anatomic sites but have strong histological and clinical similarities. Here we report the chromatin landscapes of a range of human NECs and show convergence to the activation of a common epigenetic program. With a particular focus on treatment emergent neuroendocrine prostate cancer (NEPC), we analyze cell lines, patient-derived xenograft (PDX) models and human clinical samples to show the existence of two distinct NEPC subtypes based on the expression of the neuronal transcription factors ASCL1 and NEUROD1. While in cell lines and PDX models these subtypes are mutually exclusive, single-cell analysis of human clinical samples exhibits a more complex tumor structure with subtypes coexisting as separate sub-populations within the same tumor. These tumor sub-populations differ genetically and epigenetically contributing to intra- and inter-tumoral heterogeneity in human metastases. Overall, our results provide a deeper understanding of the shared clinicopathological characteristics shown by NECs. Furthermore, the intratumoral heterogeneity of human NEPCs suggests the requirement of simultaneous targeting of coexisting tumor populations as a therapeutic strategy.


Biologically informed deep neural network for prostate cancer discovery.

  • Haitham A Elmarakeby‎ et al.
  • Nature‎
  • 2021‎

The determination of molecular features that mediate clinically aggressive phenotypes in prostate cancer remains a major biological and clinical challenge1,2. Recent advances in interpretability of machine learning models as applied to biomedical problems may enable discovery and prediction in clinical cancer genomics3-5. Here we developed P-NET-a biologically informed deep learning model-to stratify patients with prostate cancer by treatment-resistance state and evaluate molecular drivers of treatment resistance for therapeutic targeting through complete model interpretability. We demonstrate that P-NET can predict cancer state using molecular data with a performance that is superior to other modelling approaches. Moreover, the biological interpretability within P-NET revealed established and novel molecularly altered candidates, such as MDM4 and FGFR1, which were implicated in predicting advanced disease and validated in vitro. Broadly, biologically informed fully interpretable neural networks enable preclinical discovery and clinical prediction in prostate cancer and may have general applicability across cancer types.


Subgroup-Independent Mapping of Renal Cell Carcinoma-Machine Learning Reveals Prognostic Mitochondrial Gene Signature Beyond Histopathologic Boundaries.

  • André Marquardt‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Background: Renal cell carcinoma (RCC) is divided into three major histopathologic groups-clear cell (ccRCC), papillary (pRCC) and chromophobe RCC (chRCC). We performed a comprehensive re-analysis of publicly available RCC datasets from the TCGA (The Cancer Genome Atlas) database, thereby combining samples from all three subgroups, for an exploratory transcriptome profiling of RCC subgroups. Materials and Methods: We used FPKM (fragments per kilobase per million) files derived from the ccRCC, pRCC and chRCC cohorts of the TCGA database, representing transcriptomic data of 891 patients. Using principal component analysis, we visualized datasets as t-SNE plot for cluster detection. Clusters were characterized by machine learning, resulting gene signatures were validated by correlation analyses in the TCGA dataset and three external datasets (ICGC RECA-EU, CPTAC-3-Kidney, and GSE157256). Results: Many RCC samples co-clustered according to histopathology. However, a substantial number of samples clustered independently from histopathologic origin (mixed subgroup)-demonstrating divergence between histopathology and transcriptomic data. Further analyses of mixed subgroup via machine learning revealed a predominant mitochondrial gene signature-a trait previously known for chRCC-across all histopathologic subgroups. Additionally, ccRCC samples from mixed subgroup presented an inverse correlation of mitochondrial and angiogenesis-related genes in the TCGA and in three external validation cohorts. Moreover, mixed subgroup affiliation was associated with a highly significant shorter overall survival for patients with ccRCC-and a highly significant longer overall survival for chRCC patients. Conclusions: Pan-RCC clustering according to RNA-sequencing data revealed a distinct histology-independent subgroup characterized by strengthened mitochondrial and weakened angiogenesis-related gene signatures. Moreover, affiliation to mixed subgroup went along with a significantly shorter overall survival for ccRCC and a longer overall survival for chRCC patients. Further research could offer a therapy stratification by specifically addressing the mitochondrial metabolism of such tumors and its microenvironment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: