Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 378 papers

De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome.

  • Lindsay C Burrage‎ et al.
  • American journal of human genetics‎
  • 2015‎

Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5' end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1(st) coding exon), c.16A>T (p.Lys6(∗)) and c.35_38delTCAA (p.Ile12Lysfs(∗)4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5' end of the geminin protein. All three GMNN mutations identified alter sites 5' to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS.


Low-dose bevacizumab induces radiographic regression of vestibular schwannomas in neurofibromatosis type 2: A case report and literature review.

  • Pengfei Liu‎ et al.
  • Oncology letters‎
  • 2016‎

The current case study aimed to explore the efficacy of a low-dose bevacizumab regimen in inhibiting tumor growth and minimizing adverse effects. A 55-year-old man with neurofibromatosis type 2 (NF2) suffered bilateral vestibular schwannomas (VS) measuring 5.25 and 2.54 cm3 on the left and right, respectively. His capacity for bilateral language recognition was impaired. However, the patient refused microsurgical tumor resection and gamma knife therapy. Low-dose bevacizumab regimen (3.3-2.2 mg/kg every 2-4 weeks) was administered by intravenous injection for ~1.5 years to inhibit tumor growth and avoid further deterioration of hearing. Compared with baseline measurements prior to treatment, the bilateral VS regressed to 3.59 cm3 (68%) and 2.08 cm3 (82%) on the left and right, respectively. No hearing improvement was detected; however, the patient subjectively experienced a significant hearing improvement as his ability to communicate with people and distinguish voices was restored. No adverse effects were observed. Bevacizumab provides an alternative treatment option for those who refuse surgical intervention. Given the adverse effects commonly induced by bevacizumab, the use of a low-dose regimen would appear to be promising with regard to tumor regression and hearing preservation for patients with VS in NF2. However, the minimum dose required to sustain a response to bevacizumab in NF2 patients remains unknown. Finding the minimum effective dose sufficient to sustain hearing and/or volumetric response for individual patients is required.


Insight into the maintenance of odontogenic potential in mouse dental mesenchymal cells based on transcriptomic analysis.

  • Yunfei Zheng‎ et al.
  • PeerJ‎
  • 2016‎

Background. Mouse dental mesenchymal cells (mDMCs) from tooth germs of cap or later stages are frequently used in the context of developmental biology or whole-tooth regeneration due to their odontogenic potential. In vitro-expanded mDMCs serve as an alternative cell source considering the difficulty in obtaining primary mDMCs; however, cultured mDMCs fail to support tooth development as a result of functional failures of specific genes or pathways. The goal of this study was to identify the genes that maintain the odontogenic potential of mDMCs in culture. Methods. We examined the odontogenic potential of freshly isolated versus cultured mDMCs from the lower first molars of embryonic day 14.5 mice. The transcriptome of mDMCs was detected using RNA sequencing and the data were validated by qRT-PCR. Differential expression analysis and pathway analysis were conducted to identify the genes that contribute to the loss of odontogenic potential. Results. Cultured mDMCs failed to develop into well-structured tooth when they were recombined with dental epithelium. Compared with freshly isolated mDMCs, we found that 1,004 genes were upregulated and 948 were downregulated in cultured mDMCs. The differentially expressed genes were clustered in the biological processes and signaling pathways associated with tooth development. Following in vitro culture, genes encoding a wide array of components of MAPK, TGF-β/BMP, and Wnt pathways were significantly downregulated. Moreover, the activities of Bdnf, Vegfα, Bmp2, and Bmp7 were significantly inhibited in cultured mDMCs. Supplementation of VEGFα, BMP2, and BMP7 restored the expression of a subset of downregulated genes and induced mDMCs to form dentin-like structures in vivo. Conclusions. Vegfα, Bmp2, and Bmp7 play a role in the maintenance of odontogenic potential in mDMCs.


De Novo Truncating Variants in SON Cause Intellectual Disability, Congenital Malformations, and Failure to Thrive.

  • Mari J Tokita‎ et al.
  • American journal of human genetics‎
  • 2016‎

SON is a key component of the spliceosomal complex and a critical mediator of constitutive and alternative splicing. Additionally, SON has been shown to influence cell-cycle progression, genomic integrity, and maintenance of pluripotency in stem cell populations. The clear functional relevance of SON in coordinating essential cellular processes and its presence in diverse human tissues suggests that intact SON might be crucial for normal growth and development. However, the phenotypic effects of deleterious germline variants in SON have not been clearly defined. Herein, we describe seven unrelated individuals with de novo variants in SON and propose that deleterious variants in SON are associated with a severe multisystem disorder characterized by developmental delay, persistent feeding difficulties, and congenital malformations, including brain anomalies.


Copy-Number Variation Contributes to the Mutational Load of Bardet-Biedl Syndrome.

  • Anna Lindstrand‎ et al.
  • American journal of human genetics‎
  • 2016‎

Bardet-Biedl syndrome (BBS) is a defining ciliopathy, notable for extensive allelic and genetic heterogeneity, almost all of which has been identified through sequencing. Recent data have suggested that copy-number variants (CNVs) also contribute to BBS. We used a custom oligonucleotide array comparative genomic hybridization (aCGH) covering 20 genes that encode intraflagellar transport (IFT) components and 74 ciliopathy loci to screen 92 unrelated individuals with BBS, irrespective of their known mutational burden. We identified 17 individuals with exon-disruptive CNVs (18.5%), including 13 different deletions in eight BBS genes (BBS1, BBS2, ARL6/BBS3, BBS4, BBS5, BBS7, BBS9, and NPHP1) and a deletion and a duplication in other ciliopathy-associated genes (ALMS1 and NPHP4, respectively). By contrast, we found a single heterozygous exon-disruptive event in a BBS-associated gene (BBS9) in 229 control subjects. Superimposing these data with resequencing revealed CNVs to (1) be sufficient to cause disease, (2) Mendelize heterozygous deleterious alleles, and (3) contribute oligogenic alleles by combining point mutations and exonic CNVs in multiple genes. Finally, we report a deletion and a splice site mutation in IFT74, inherited under a recessive paradigm, defining a candidate BBS locus. Our data suggest that CNVs contribute pathogenic alleles to a substantial fraction of BBS-affected individuals and highlight how either deletions or point mutations in discrete splice isoforms can induce hypomorphic mutations in genes otherwise intolerant to deleterious variation. Our data also suggest that CNV analyses and resequencing studies unbiased for previous mutational burden is necessary to delineate the complexity of disease architecture.


Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress.

  • Ridhi Goel‎ et al.
  • Frontiers in plant science‎
  • 2016‎

The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively.


Exploring the Molecular Mechanism and Biomakers of Liver Cancer Based on Gene Expression Microarray.

  • Pengfei Liu‎ et al.
  • Pathology oncology research : POR‎
  • 2015‎

Liver cancer is one of the most common cancers worldwide with high morbidity and mortality. Its molecular mechanism hasn't been fully understood though many studies have been conducted and thus further researches are still needed to improve the prognosis of liver cancer. Firstly, differentially expressed genes (DEGs) between six Mdr2-knockout (Mdr2-KO) mutant mice samples (3-month-old and 12-month-old) and six control mice samples were identified. Then, the enriched GO terms and KEGG pathways of those DEGs were obtained using the Database for Annotation, Visualization and Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gov/). Finally, protein-protein interactions (PPI) network of those DEGs were constructed using STRING database ( http://www.string-db.org/) and visualized by Cytoscape software, at the same time, genes with high degree were selected out. Several novel biomarkers that might play important roles in liver cancer were identified through the analysis of gene microarray in GEO. Also, some genes such as Tyrobp, Ctss and pathways such as Pathways in cancer, ECM-receptor interaction that had been researched previously were further confirmed in this study. Through the bioinformatics analysis of the gene microarray in GEO, we found some novel biomarkers of liver cancer and further confirmed some known biomarkers.


New Dimeric and seco-Abietane Diterpenoids from Salvia wardii.

  • Qiu-Li Xiao‎ et al.
  • Natural products and bioprospecting‎
  • 2015‎

Two dimeric abietane diterpenoids, salviwardins A and B (1 and 2), and a seco-abietane diterpenoid salviwardin C (3), along with five known analogues (4-8), were isolated from the roots of Salvia wardii. The structures of these isolates were elucidated by extensive spectroscopic methods. The inhibitory activities of these isolates against five human cancer cell lines in vitro were also tested.


Prepregnancy obesity status and risks on pregnancy outcomes in Shanghai: A prospective cohort study.

  • Jie Shen‎ et al.
  • Medicine‎
  • 2018‎

Obesity in women of reproductive age is not only associated with numerous adverse maternal and fetal effects prenatally but also exerts a negative influence on female fertility. The aim of this study was to investigate the situation of prepregnant obesity in Shanghai and explore the impact of prepregnant obesity on gestational weight gain as well as other pregnancy outcomes. A prospective hospital-based pregnant women cohort was established in Shanghai since January 2015. All pregnant women who were registered and expected to deliver in this hospital were included in the cohort. Nearly one fourth of pregnant women in Shanghai were overweight/obese and the prevalence of overweight/obesity was more common among women with advancing age (P < .001). Women prepregnancy overweight/obesity was associated with 3.5-fold higher risk of excessive gestational weight gain (odds ratio, OR 3.58; 95% confidence interval, CI, 2.82-4.55; P < .001). Women prepregnancy BMI was statistically related to pregnancy outcomes as macrosomia (OR 2.24; 95% CI, 1.55-3.23; P < .001), cesarean delivery (OR 2.04; 95% CI, 1.60-2.62; P < .001), maternal complications (OR 1.53; 95% CI, 1.18-1.98; P < .001). Prepregnancy obesity is associated with a much higher risk of excessive gestational weight gain and pregnancy outcomes in Shanghai. Further interventions targeting maternal obesity, especially prepregnancy obesity are required.


A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy.

  • Xiaoqing Yi‎ et al.
  • Communications biology‎
  • 2018‎

Combination of photodynamic therapy and chemotherapy has been emerging as a new strategy for cancer treatment. Conventional photosensitizer tends to aggregate in aqueous media, which causes fluorescence quenching, reduces reactive oxygen species (ROS) production, and limits its clinical application to photodynamic therapy. Traditional nanoparticle drug delivery system for chemotherapy also has its disadvantages, such as low drug loading content, drug leakage, and off-target toxicity for normal tissues. Here, we developed a reduction-sensitive co-delivery micelles TB@PMP for combinational therapy, which composed of entrapping a red aggregation-induced emission fluorogen (AIEgen) for photodynamic therapy and PMP that contains a reduction-sensitive paclitaxel polymeric prodrug for chemotherapy. AIEgen photosensitizer illustrates a much improved photostability and ROS production efficiency in aggregate state and PMP loads a high dose of paclitaxel and carries a smart stimuli-triggered drug release property. This co-delivery system provides a better option that replaces AIEgen photosensitizer for cancer diagnosis and therapy.


Modulation of the Gut Microbiota in Rats by Hugan Qingzhi Tablets during the Treatment of High-Fat-Diet-Induced Nonalcoholic Fatty Liver Disease.

  • Waijiao Tang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2018‎

Accumulative evidence showed that gut microbiota was important in regulating the development of nonalcoholic fatty liver disease (NAFLD). Hugan Qingzhi tablet (HQT), a lipid-lowering and anti-inflammatory medicinal formula, has been used to prevent and treat NAFLD. However, its mechanism of action is unknown. The aim of this study was to confirm whether HQT reversed the gut microbiota dysbiosis in NAFLD rats.


Megabase Length Hypermutation Accompanies Human Structural Variation at 17p11.2.

  • Christine R Beck‎ et al.
  • Cell‎
  • 2019‎

DNA rearrangements resulting in human genome structural variants (SVs) are caused by diverse mutational mechanisms. We used long- and short-read sequencing technologies to investigate end products of de novo chromosome 17p11.2 rearrangements and query the molecular mechanisms underlying both recurrent and non-recurrent events. Evidence for an increased rate of clustered single-nucleotide variant (SNV) mutation in cis with non-recurrent rearrangements was found. Indel and SNV formation are associated with both copy-number gains and losses of 17p11.2, occur up to ∼1 Mb away from the breakpoint junctions, and favor C > G transversion substitutions; results suggest that single-stranded DNA is formed during the genesis of the SV and provide compelling support for a microhomology-mediated break-induced replication (MMBIR) mechanism for SV formation. Our data show an additional mutational burden of MMBIR consisting of hypermutation confined to the locus and manifesting as SNVs and indels predominantly within genes.


Polydatin inhibits hepatocellular carcinoma via the AKT/STAT3-FOXO1 signaling pathway.

  • Jian Jiang‎ et al.
  • Oncology letters‎
  • 2019‎

Polydatin, extracted from Polygonum cuspidatum, is known for its anti-platelet aggregation and anti-inflammatory effects. However, studies on the association of polydatin with cancer are limited, particularly with regards to epithelial-mesenchymal transition (EMT)-associated migration and invasion of cancer cells. The purpose of the present study was to reveal the potential anticancer effects of polydatin on hepatocellular carcinoma (HCC) cells, particularly its effects on EMT. MTT assay was used to determine cell viability. Migration and invasion were evaluated through wound healing and transwell assays. Colony formation efficiency assay was conducted to detect proliferation. Flow cytometric analyses of apoptosis and cell cycle progression were performed following cells staining with Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) and PI alone, respectively. Western blotting was used to investigate relevant molecular mechanisms. The results indicated that polydatin inhibited proliferation via G2/M arrest, suppressed migration and invasion of HCC cells, and promoted their apoptosis. In addition, phosphorylated (p)-protein kinase B (AKT), p-Janus kinase 1 and p-signal transducer and activator of transcription 3 (STAT3) levels were decreased as polydatin concentrations increased, and forkhead box protein O1 (FOXO1) expression was upregulated. Furthermore, the expression levels of various markers of EMT were reversed following treatment with polydatin. In conclusion, the present study validated that polydatin may inhibit proliferation via G2/M arrest, and suppressed EMT-associated migration and invasion of HCC cells. The results also suggested that polydatin may promote HCC cell apoptosis by blocking the AKT/STAT3-FOXO1 signaling pathway.


Niclosamide Triggers Non-Canonical LC3 Lipidation.

  • Yajun Liu‎ et al.
  • Cells‎
  • 2019‎

Autophagy is a highly- evolutionarily-conserved catabolic pathway activated by various cellular stresses. Recently, non-canonical autophagy (NCA), which does not require all of the ATG proteins to form autophagosome or autophagosome-like structures, has been found in various conditions. Moreover, mounting evidence has indicated that non-canonical LC3 lipidation (NCLL) may reflect NCA. We and others have reported that niclosamide (Nic), an anti-helminthic drug approved by the Food and Drug Administration, could induce canonical autophagy via a feedback downregulation of mTOR complex 1. In this study, we found that Nic could also induce NCLL, which is independent of the ULK1 complex and Beclin 1 complex, but dependent on ubiquitin-like conjugation systems. Although bafilomycin A1 and concanamycin A, two known V-ATPase inhibitors, significantly inhibited Nic-induced NCLL, Nic-induced NCLL was demonstrated to be independent of V-ATPase. In addition, the Golgi complex and vimentin were involved in Nic-induced NCLL, which might be a platform or membrane source for Nic-induced LC3-positive structures. These results would be helpful to broaden our understanding of the working mechanisms of Nic and evaluate its pharmacological activities in diseases.


Mutations in the Chromatin Regulator Gene BRPF1 Cause Syndromic Intellectual Disability and Deficient Histone Acetylation.

  • Kezhi Yan‎ et al.
  • American journal of human genetics‎
  • 2017‎

Identification of over 500 epigenetic regulators in humans raises an interesting question regarding how chromatin dysregulation contributes to different diseases. Bromodomain and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator possessing three histone-binding domains, one non-specific DNA-binding module, and several motifs for interacting with and activating three lysine acetyltransferases. Genetic analyses of fish brpf1 and mouse Brpf1 have uncovered an important role in skeletal, hematopoietic, and brain development, but it remains unclear how BRPF1 is linked to human development and disease. Here, we describe an intellectual disability disorder in ten individuals with inherited or de novo monoallelic BRPF1 mutations. Symptoms include infantile hypotonia, global developmental delay, intellectual disability, expressive language impairment, and facial dysmorphisms. Central nervous system and spinal abnormalities are also seen in some individuals. These clinical features overlap with but are not identical to those reported for persons with KAT6A or KAT6B mutations, suggesting that BRPF1 targets these two acetyltransferases and additional partners in humans. Functional assays showed that the resulting BRPF1 variants are pathogenic and impair acetylation of histone H3 at lysine 23, an abundant but poorly characterized epigenetic mark. We also found a similar deficiency in different lines of Brpf1-knockout mice. These data indicate that aberrations in the chromatin regulator gene BRPF1 cause histone H3 acetylation deficiency and a previously unrecognized intellectual disability syndrome.


Clinical exome sequencing reveals locus heterogeneity and phenotypic variability of cohesinopathies.

  • Bo Yuan‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2019‎

Defects in the cohesin pathway are associated with cohesinopathies, notably Cornelia de Lange syndrome (CdLS). We aimed to delineate pathogenic variants in known and candidate cohesinopathy genes from a clinical exome perspective.


Sensitized genetic backgrounds reveal differential roles for EGF repeat xylosyltransferases in Drosophila Notch signaling.

  • Ashutosh Pandey‎ et al.
  • Glycobiology‎
  • 2018‎

In multicellular organisms, glycosylation regulates various developmental signaling pathways including the Notch pathway. One of the O-linked glycans added to epidermal growth factor-like (EGF) repeats in animal proteins including the Notch receptors is the xylose-xylose-glucose-O oligosaccharide. Drosophila glucoside xylosyltransferase (Gxylt) Shams negatively regulates Notch signaling in specific contexts. Since Shams adds the first xylose residue to O-glucose, its loss-of-function phenotype could be due to the loss of the first xylose, the second xylose or both. To examine the contribution of the second xylose residues to Drosophila Notch signaling, we have performed biochemical and genetic analysis on CG11388, which is the Drosophila homolog of human xyloside xylosyltransferase 1 (XXYLT1). Experiments in S2 cells indicated that similar to human XXYLT1, CG11388 can add the second xylose to xylose-glucose-O glycans. Flies lacking both copies of CG11388 (Xxylt) are viable and fertile and do not show gross phenotypes indicative of altered Notch signaling. However, genetic interaction experiments show that in sensitized genetic backgrounds with decreased or increased Notch pathway components, loss of Xxylt promotes Delta-mediated activation of Notch. Unexpectedly, we find that in such sensitized backgrounds, even loss of one copy of the fly Gxylt shams enhances Delta-mediated Notch activation. Taken together, these data indicate that while the first xylose plays a key role in tuning the Delta-mediated Notch signaling in Drosophila, the second xylose has a fine-tuning role only revealed in sensitized genetic backgrounds.


IRF2BPL Is Associated with Neurological Phenotypes.

  • Paul C Marcogliese‎ et al.
  • American journal of human genetics‎
  • 2018‎

Interferon regulatory factor 2 binding protein-like (IRF2BPL) encodes a member of the IRF2BP family of transcriptional regulators. Currently the biological function of this gene is obscure, and the gene has not been associated with a Mendelian disease. Here we describe seven individuals who carry damaging heterozygous variants in IRF2BPL and are affected with neurological symptoms. Five individuals who carry IRF2BPL nonsense variants resulting in a premature stop codon display severe neurodevelopmental regression, hypotonia, progressive ataxia, seizures, and a lack of coordination. Two additional individuals, both with missense variants, display global developmental delay and seizures and a relatively milder phenotype than those with nonsense alleles. The IRF2BPL bioinformatics signature based on population genomics is consistent with a gene that is intolerant to variation. We show that the fruit-fly IRF2BPL ortholog, called pits (protein interacting with Ttk69 and Sin3A), is broadly detected, including in the nervous system. Complete loss of pits is lethal early in development, whereas partial knockdown with RNA interference in neurons leads to neurodegeneration, revealing a requirement for this gene in proper neuronal function and maintenance. The identified IRF2BPL nonsense variants behave as severe loss-of-function alleles in this model organism, and ectopic expression of the missense variants leads to a range of phenotypes. Taken together, our results show that IRF2BPL and pits are required in the nervous system in humans and flies, and their loss leads to a range of neurological phenotypes in both species.


Dioscin promotes osteoblastic proliferation and differentiation via Lrp5 and ER pathway in mouse and human osteoblast-like cell lines.

  • Chunfang Zhang‎ et al.
  • Journal of biomedical science‎
  • 2014‎

Dioscin, a typical steroid saponin, is isolated from Dioscorea nipponica Makino and Dioscorea zingiberensis Wright. It has estrogenic activity and many studies have also reported that dioscorea plants have an effect in preventing and treating osteoporosis. However, the molecular mechanisms underlying their effect on osteoporosis treatment are poorly understood. Therefore, the present study aims to investigate the mechanism (s) by which dioscin promotes osteoblastic proliferation and differentiation in mouse pre-osteoblast like MC3T3-E1 cells and human osteoblast-like MG-63 cells.


Quantitative real-time imaging of glutathione.

  • Xiqian Jiang‎ et al.
  • Nature communications‎
  • 2017‎

Glutathione plays many important roles in biological processes; however, the dynamic changes of glutathione concentrations in living cells remain largely unknown. Here, we report a reversible reaction-based fluorescent probe-designated as RealThiol (RT)-that can quantitatively monitor the real-time glutathione dynamics in living cells. Using RT, we observe enhanced antioxidant capability of activated neurons and dynamic glutathione changes during ferroptosis. RT is thus a versatile tool that can be used for both confocal microscopy and flow cytometry based high-throughput quantification of glutathione levels in single cells. We envision that this new glutathione probe will enable opportunities to study glutathione dynamics and transportation and expand our understanding of the physiological and pathological roles of glutathione in living cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: