Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Quantitative real-time imaging of glutathione.

Nature communications | 2017

Glutathione plays many important roles in biological processes; however, the dynamic changes of glutathione concentrations in living cells remain largely unknown. Here, we report a reversible reaction-based fluorescent probe-designated as RealThiol (RT)-that can quantitatively monitor the real-time glutathione dynamics in living cells. Using RT, we observe enhanced antioxidant capability of activated neurons and dynamic glutathione changes during ferroptosis. RT is thus a versatile tool that can be used for both confocal microscopy and flow cytometry based high-throughput quantification of glutathione levels in single cells. We envision that this new glutathione probe will enable opportunities to study glutathione dynamics and transportation and expand our understanding of the physiological and pathological roles of glutathione in living cells.

Pubmed ID: 28703127 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: R01 NS100893
  • Agency: NCI NIH HHS, United States
    Id: R21 CA213535
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM120033
  • Agency: NICHD NIH HHS, United States
    Id: U54 HD083092
  • Agency: NICHD NIH HHS, United States
    Id: P30 HD024064
  • Agency: NCI NIH HHS, United States
    Id: P30 CA125123
  • Agency: NIAID NIH HHS, United States
    Id: P30 AI036211
  • Agency: NIA NIH HHS, United States
    Id: R01 AG045183
  • Agency: NCRR NIH HHS, United States
    Id: S10 RR024574
  • Agency: NIDDK NIH HHS, United States
    Id: DP1 DK113644
  • Agency: NIBIB NIH HHS, United States
    Id: R21 EB022302
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM115622
  • Agency: NCCIH NIH HHS, United States
    Id: R01 AT009050
  • Agency: NCI NIH HHS, United States
    Id: R01 CA207701

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ATCC (tool)

RRID:SCR_001672

Global nonprofit biological resource center (BRC) and research organization that provides biological products, technical services and educational programs to private industry, government and academic organizations. Its mission is to acquire, authenticate, preserve, develop and distribute biological materials, information, technology, intellectual property and standards for the advancement and application of scientific knowledge. The primary purpose of ATCC is to use its resources and experience as a BRC to become the world leader in standard biological reference materials management, intellectual property resource management and translational research as applied to biomaterial development, standardization and certification. ATCC characterizes cell lines, bacteria, viruses, fungi and protozoa, as well as develops and evaluates assays and techniques for validating research resources and preserving and distributing biological materials to the public and private sector research communities.

View all literature mentions

FlowJo (tool)

RRID:SCR_008520

Software for single-cell flow cytometry analysis. Its functions include management, display, manipulation, analysis and publication of the data stream produced by flow and mass cytometers.

View all literature mentions

PRISM (tool)

RRID:SCR_005375

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 5,2022.Tool that predicts interactions between transcription factors and their regulated genes from binding motifs. Understanding vertebrate development requires unraveling the cis-regulatory architecture of gene regulation. PRISM provides accurate genome-wide computational predictions of transcription factor binding sites for the human and mouse genomes, and integrates the predictions with GREAT to provide functional biological context. Together, accurate computational binding site prediction and GREAT produce for each transcription factor: 1. putative binding sites, 2. putative target genes, 3. putative biological roles of the transcription factor, and 4. putative cis-regulatory elements through which the factor regulates each target in each functional role.

View all literature mentions

HeLa (tool)

RRID:CVCL_0030

Cell line HeLa is a Cancer cell line with a species of origin Homo sapiens

View all literature mentions

HT-1080 (tool)

RRID:CVCL_0317

Cell line HT-1080 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions