Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 36 papers

The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities.

  • Jessica X Chong‎ et al.
  • American journal of human genetics‎
  • 2015‎

Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families.


MAB21L1 loss of function causes a syndromic neurodevelopmental disorder with distinctive cerebellar, ocular, craniofacial and genital features (COFG syndrome).

  • Abolfazl Rad‎ et al.
  • Journal of medical genetics‎
  • 2019‎

Putative nucleotidyltransferase MAB21L1 is a member of an evolutionarily well-conserved family of the male abnormal 21 (MAB21)-like proteins. Little is known about the biochemical function of the protein; however, prior studies have shown essential roles for several aspects of embryonic development including the eye, midbrain, neural tube and reproductive organs.


Suppression of premature transcription termination leads to reduced mRNA isoform diversity and neurodegeneration.

  • Geneva R LaForce‎ et al.
  • Neuron‎
  • 2022‎

Tight regulation of mRNA isoform expression is essential for neuronal development, maintenance, and function; however, the repertoire of proteins that govern isoform composition and abundance remains incomplete. Here, we show that the RNA kinase CLP1 regulates mRNA isoform expression through suppression of proximal cleavage and polyadenylation. We found that human stem-cell-derived motor neurons without CLP1 or with the disease-associated CLP1 p.R140H variant had distinct patterns of RNA-polymerase-II-associated cleavage and polyadenylation complex proteins that correlated with polyadenylation site usage. These changes resulted in imbalanced mRNA isoform expression of long genes important for neuronal function that were recapitulated in vivo. Strikingly, we observed the same pattern of reduced mRNA isoform diversity in 3' end sequencing data from brain tissues of patients with neurodegenerative disease. Together, our results identify a previously uncharacterized role for CLP1 in mRNA 3' end formation and reveal an mRNA misprocessing signature in neurodegeneration that may suggest a common mechanism of disease.


Mutation spectrum of congenital heart disease in a consanguineous Turkish population.

  • Weilai Dong‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2022‎

While many studies agree that consanguinity increases the rate of congenital heart disease (CHD), few genome analyses have been conducted with consanguineous CHD cohorts.


TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome.

  • Elizabeth A Werren‎ et al.
  • Nature communications‎
  • 2024‎

THOC6 variants are the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 is critical for mammalian Transcription Export complex (TREX) tetramer formation, which is composed of four six-subunit THO monomers. The TREX tetramer facilitates mammalian RNA processing, in addition to the nuclear mRNA export functions of the TREX dimer conserved through yeast. Human and mouse TIDS model systems revealed novel THOC6-dependent, species-specific TREX tetramer functions. Germline biallelic Thoc6 loss-of-function (LOF) variants result in mouse embryonic lethality. Biallelic THOC6 LOF variants reduce the binding affinity of ALYREF to THOC5 without affecting the protein expression of TREX members, implicating impaired TREX tetramer formation. Defects in RNA nuclear export functions were not detected in biallelic THOC6 LOF human neural cells. Instead, mis-splicing was detected in human and mouse neural tissue, revealing novel THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for key signaling pathways known to regulate the transition from proliferative to neurogenic divisions during human corticogenesis. Together, these findings implicate altered RNA processing in the developmental biology of TIDS neuropathology.


Mutations in CSPP1 lead to classical Joubert syndrome.

  • Naiara Akizu‎ et al.
  • American journal of human genetics‎
  • 2014‎

Joubert syndrome and related disorders (JSRDs) are genetically heterogeneous and characterized by a distinctive mid-hindbrain malformation. Causative mutations lead to primary cilia dysfunction, which often results in variable involvement of other organs such as the liver, retina, and kidney. We identified predicted null mutations in CSPP1 in six individuals affected by classical JSRDs. CSPP1 encodes a protein localized to centrosomes and spindle poles, as well as to the primary cilium. Despite the known interaction between CSPP1 and nephronophthisis-associated proteins, none of the affected individuals in our cohort presented with kidney disease, and further, screening of a large cohort of individuals with nephronophthisis demonstrated no mutations. CSPP1 is broadly expressed in neural tissue, and its encoded protein localizes to the primary cilium in an in vitro model of human neurogenesis. Here, we show abrogated protein levels and ciliogenesis in affected fibroblasts. Our data thus suggest that CSPP1 is involved in neural-specific functions of primary cilia.


An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge.

  • Catherine A Brownstein‎ et al.
  • Genome biology‎
  • 2014‎

There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance.


Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration.

  • Ashleigh E Schaffer‎ et al.
  • Nature genetics‎
  • 2018‎

Neuronal migration defects, including pachygyria, are among the most severe developmental brain defects in humans. Here, we identify biallelic truncating mutations in CTNNA2, encoding αN-catenin, in patients with a distinct recessive form of pachygyria. CTNNA2 was expressed in human cerebral cortex, and its loss in neurons led to defects in neurite stability and migration. The αN-catenin paralog, αE-catenin, acts as a switch regulating the balance between β-catenin and Arp2/3 actin filament activities1. Loss of αN-catenin did not affect β-catenin signaling, but recombinant αN-catenin interacted with purified actin and repressed ARP2/3 actin-branching activity. The actin-binding domain of αN-catenin or ARP2/3 inhibitors rescued the neuronal phenotype associated with CTNNA2 loss, suggesting ARP2/3 de-repression as a potential disease mechanism. Our findings identify CTNNA2 as the first catenin family member with biallelic mutations in humans, causing a new pachygyria syndrome linked to actin regulation, and uncover a key factor involved in ARP2/3 repression in neurons.


De novo MYH9 mutation in congenital scalp hemangioma.

  • Elena I Fomchenko‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2018‎

Congenital hemangiomas are tumor-like vascular malformations with poorly understood pathogenesis. We report the case of a neonate with a massive congenital scalp hemangioma that required urgent neurosurgical removal on the second day of life because of concern for high-flow arteriovenous shunting. Exome sequencing identified a rare damaging de novo germline mutation in MYH9 (c.5308C>T, p.[Arg1770Cys]), encoding the MYH9 nonmuscle myosin IIA. MYH9 has a probability of loss-of-function intolerance (pLI) score of >0.99 and is highly intolerant to missense variation (z score = 5.59). The p.(Arg1770Cys) mutation substitutes an evolutionarily conserved amino acid in the protein's critical myosin tail domain and is predicted to be highly deleterious by SIFT, PolyPhen-2, MetaSVM, and CADD. MYH9 is a known regulator of cytokinesis, VEGF-regulated angiogenesis, and p53-dependent tumorigenesis. These findings reveal a novel association of germline de novo MYH9 mutation with congenital hemangioma.


Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders.

  • Betul Bakkaloglu‎ et al.
  • American journal of human genetics‎
  • 2008‎

Autism spectrum disorders (ASD) are a group of related neurodevelopmental syndromes with complex genetic etiology. We identified a de novo chromosome 7q inversion disrupting Autism susceptibility candidate 2 (AUTS2) and Contactin Associated Protein-Like 2 (CNTNAP2) in a child with cognitive and social delay. We focused our initial analysis on CNTNAP2 based on our demonstration of disruption of Contactin 4 (CNTN4) in a patient with ASD; the recent finding of rare homozygous mutations in CNTNAP2 leading to intractable seizures and autism; and in situ and biochemical analyses reported herein that confirm expression in relevant brain regions and demonstrate the presence of CNTNAP2 in the synaptic plasma membrane fraction of rat forebrain lysates. We comprehensively resequenced CNTNAP2 in 635 patients and 942 controls. Among patients, we identified a total of 27 nonsynonymous changes; 13 were rare and unique to patients and 8 of these were predicted to be deleterious by bioinformatic approaches and/or altered residues conserved across all species. One variant at a highly conserved position, I869T, was inherited by four affected children in three unrelated families, but was not found in 4010 control chromosomes (p = 0.014). Overall, this resequencing data demonstrated a modest nonsignificant increase in the burden of rare variants in cases versus controls. Nonetheless, when viewed in light of two independent studies published in this issue of AJHG showing a relationship between ASD and common CNTNAP2 alleles, the cytogenetic and mutation screening data suggest that rare variants may also contribute to the pathophysiology of ASD, but place limits on the magnitude of this contribution.


An AKT3-FOXG1-reelin network underlies defective migration in human focal malformations of cortical development.

  • Seung Tae Baek‎ et al.
  • Nature medicine‎
  • 2015‎

Focal malformations of cortical development (FMCDs) account for the majority of drug-resistant pediatric epilepsy. Postzygotic somatic mutations activating the phosphatidylinositol-4,5-bisphosphate-3-kinase (PI3K)-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) pathway are found in a wide range of brain diseases, including FMCDs. It remains unclear how a mutation in a small fraction of cells disrupts the architecture of the entire hemisphere. Within human FMCD-affected brain, we found that cells showing activation of the PI3K-AKT-mTOR pathway were enriched for the AKT3(E17K) mutation. Introducing the FMCD-causing mutation into mouse brain resulted in electrographic seizures and impaired hemispheric architecture. Mutation-expressing neural progenitors showed misexpression of reelin, which led to a non-cell autonomous migration defect in neighboring cells, due at least in part to derepression of reelin transcription in a manner dependent on the forkhead box (FOX) transcription factor FOXG1. Treatments aimed at either blocking downstream AKT signaling or inactivating reelin restored migration. These findings suggest a central AKT-FOXG1-reelin signaling pathway in FMCD and support pathway inhibitors as potential treatments or therapies for some forms of focal epilepsy.


Recessive Inheritance of Congenital Hydrocephalus With Other Structural Brain Abnormalities Caused by Compound Heterozygous Mutations in ATP1A3.

  • August A Allocco‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2019‎

ATP1A3 encodes the α3 subunit of the Na+/K+ ATPase, a fundamental ion-transporting enzyme. Primarily expressed in neurons, ATP1A3 is mutated in several autosomal dominant neurological diseases. To our knowledge, damaging recessive genotypes in ATP1A3 have never been associated with any human disease. Atp1a3 deficiency in zebrafish results in hydrocephalus; however, no known association exists between ATP1A3 and human congenital hydrocephalus (CH).


Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction.

  • Naiara Akizu‎ et al.
  • Nature genetics‎
  • 2015‎

Pediatric-onset ataxias often present clinically as developmental delay and intellectual disability, with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe a new clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy together with ataxia, coarsened facial features and intellectual disability, due to truncating mutations in the sorting nexin gene SNX14, encoding a ubiquitously expressed modular PX domain-containing sorting factor. We found SNX14 localized to lysosomes and associated with phosphatidylinositol (3,5)-bisphosphate, a key component of late endosomes/lysosomes. Patient-derived cells showed engorged lysosomes and a slower autophagosome clearance rate upon autophagy induction by starvation. Zebrafish morphants for snx14 showed dramatic loss of cerebellar parenchyma, accumulation of autophagosomes and activation of apoptosis. Our results characterize a unique ataxia syndrome due to biallelic SNX14 mutations leading to lysosome-autophagosome dysfunction.


High risk population isolate reveals low frequency variants predisposing to intracranial aneurysms.

  • Mitja I Kurki‎ et al.
  • PLoS genetics‎
  • 2014‎

3% of the population develops saccular intracranial aneurysms (sIAs), a complex trait, with a sporadic and a familial form. Subarachnoid hemorrhage from sIA (sIA-SAH) is a devastating form of stroke. Certain rare genetic variants are enriched in the Finns, a population isolate with a small founder population and bottleneck events. As the sIA-SAH incidence in Finland is >2× increased, such variants may associate with sIA in the Finnish population. We tested 9.4 million variants for association in 760 Finnish sIA patients (enriched for familial sIA), and in 2,513 matched controls with case-control status and with the number of sIAs. The most promising loci (p<5E-6) were replicated in 858 Finnish sIA patients and 4,048 controls. The frequencies and effect sizes of the replicated variants were compared to a continental European population using 717 Dutch cases and 3,004 controls. We discovered four new high-risk loci with low frequency lead variants. Three were associated with the case-control status: 2q23.3 (MAF 2.1%, OR 1.89, p 1.42×10-9); 5q31.3 (MAF 2.7%, OR 1.66, p 3.17×10-8); 6q24.2 (MAF 2.6%, OR 1.87, p 1.87×10-11) and one with the number of sIAs: 7p22.1 (MAF 3.3%, RR 1.59, p 6.08×-9). Two of the associations (5q31.3, 6q24.2) replicated in the Dutch sample. The 7p22.1 locus was strongly differentiated; the lead variant was more frequent in Finland (4.6%) than in the Netherlands (0.3%). Additionally, we replicated a previously inconclusive locus on 2q33.1 in all samples tested (OR 1.27, p 1.87×10-12). The five loci explain 2.1% of the sIA heritability in Finland, and may relate to, but not explain, the increased incidence of sIA-SAH in Finland. This study illustrates the utility of population isolates, familial enrichment, dense genotype imputation and alternate phenotyping in search for variants associated with complex diseases.


Neuroinvasion of SARS-CoV-2 in human and mouse brain.

  • Eric Song‎ et al.
  • The Journal of experimental medicine‎
  • 2021‎

Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus on the consequences of CNS infections. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain organoids, we observed clear evidence of infection with accompanying metabolic changes in infected and neighboring neurons. However, no evidence for type I interferon responses was detected. We demonstrate that neuronal infection can be prevented by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Second, using mice overexpressing human ACE2, we demonstrate SARS-CoV-2 neuroinvasion in vivo. Finally, in autopsies from patients who died of COVID-19, we detect SARS-CoV-2 in cortical neurons and note pathological features associated with infection with minimal immune cell infiltrates. These results provide evidence for the neuroinvasive capacity of SARS-CoV-2 and an unexpected consequence of direct infection of neurons by SARS-CoV-2.


Mutations in Chromatin Modifier and Ephrin Signaling Genes in Vein of Galen Malformation.

  • Daniel Duran‎ et al.
  • Neuron‎
  • 2019‎

Normal vascular development includes the formation and specification of arteries, veins, and intervening capillaries. Vein of Galen malformations (VOGMs) are among the most common and severe neonatal brain arterio-venous malformations, shunting arterial blood into the brain's deep venous system through aberrant direct connections. Exome sequencing of 55 VOGM probands, including 52 parent-offspring trios, revealed enrichment of rare damaging de novo mutations in chromatin modifier genes that play essential roles in brain and vascular development. Other VOGM probands harbored rare inherited damaging mutations in Ephrin signaling genes, including a genome-wide significant mutation burden in EPHB4. Inherited mutations showed incomplete penetrance and variable expressivity, with mutation carriers often exhibiting cutaneous vascular abnormalities, suggesting a two-hit mechanism. The identified mutations collectively account for ∼30% of studied VOGM cases. These findings provide insight into disease biology and may have clinical implications for risk assessment.


Pleiotropic role of TRAF7 in skull-base meningiomas and congenital heart disease.

  • Ketu Mishra-Gorur‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

While somatic variants of TRAF7 (Tumor necrosis factor receptor-associated factor 7) underlie anterior skull-base meningiomas, here we report the inherited mutations of TRAF7 that cause congenital heart defects. We show that TRAF7 mutants operate in a dominant manner, inhibiting protein function via heterodimerization with wild-type protein. Further, the shared genetics of the two disparate pathologies can be traced to the common origin of forebrain meninges and cardiac outflow tract from the TRAF7-expressing neural crest. Somatic and inherited mutations disrupt TRAF7-IFT57 interactions leading to cilia degradation. TRAF7-mutant meningioma primary cultures lack cilia, and TRAF7 knockdown causes cardiac, craniofacial, and ciliary defects in Xenopus and zebrafish, suggesting a mechanistic convergence for TRAF7-driven meningiomas and developmental heart defects.


Pharmacological chaperones restore proteostasis of epilepsy-associated GABAA receptor variants.

  • Ya-Juan Wang‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Recent advances in genetic diagnosis identified variants in genes encoding GABAA receptors as causative for genetic epilepsy. Here, we selected eight disease-associated variants in the α1 subunit of GABAA receptors causing mild to severe clinical phenotypes and showed that they are loss of function, mainly by reducing the folding and surface trafficking of the α1 protein. Furthermore, we sought client protein-specific pharmacological chaperones to restore the function of pathogenic receptors. Applications of positive allosteric modulators, including Hispidulin and TP003, increase the functional surface expression of the α1 variants. Mechanism of action study demonstrated that they enhance the folding and assembly and reduce the degradation of GABAA variants without activating the unfolded protein response in HEK293T cells and human iPSC-derived neurons. Since these compounds cross the blood-brain barrier, such a pharmacological chaperoning strategy holds great promise to treat genetic epilepsy in a GABAA receptor-specific manner.


Mutation of key signaling regulators of cerebrovascular development in vein of Galen malformations.

  • Shujuan Zhao‎ et al.
  • Nature communications‎
  • 2023‎

To elucidate the pathogenesis of vein of Galen malformations (VOGMs), the most common and most severe of congenital brain arteriovenous malformations, we performed an integrated analysis of 310 VOGM proband-family exomes and 336,326 human cerebrovasculature single-cell transcriptomes. We found the Ras suppressor p120 RasGAP (RASA1) harbored a genome-wide significant burden of loss-of-function de novo variants (2042.5-fold, p = 4.79 x 10-7). Rare, damaging transmitted variants were enriched in Ephrin receptor-B4 (EPHB4) (17.5-fold, p = 1.22 x 10-5), which cooperates with p120 RasGAP to regulate vascular development. Additional probands had damaging variants in ACVRL1, NOTCH1, ITGB1, and PTPN11. ACVRL1 variants were also identified in a multi-generational VOGM pedigree. Integrative genomic analysis defined developing endothelial cells as a likely spatio-temporal locus of VOGM pathophysiology. Mice expressing a VOGM-specific EPHB4 kinase-domain missense variant (Phe867Leu) exhibited disrupted developmental angiogenesis and impaired hierarchical development of arterial-capillary-venous networks, but only in the presence of a "second-hit" allele. These results illuminate human arterio-venous development and VOGM pathobiology and have implications for patients and their families.


Biallelic mutations in the 3' exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing.

  • Rea M Lardelli‎ et al.
  • Nature genetics‎
  • 2017‎

Deadenylases are best known for degrading the poly(A) tail during mRNA decay. The deadenylase family has expanded throughout evolution and, in mammals, consists of 12 Mg2+-dependent 3'-end RNases with substrate specificity that is mostly unknown. Pontocerebellar hypoplasia type 7 (PCH7) is a unique recessive syndrome characterized by neurodegeneration and ambiguous genitalia. We studied 12 human families with PCH7, uncovering biallelic, loss-of-function mutations in TOE1, which encodes an unconventional deadenylase. toe1-morphant zebrafish displayed midbrain and hindbrain degeneration, modeling PCH-like structural defects in vivo. Surprisingly, we found that TOE1 associated with small nuclear RNAs (snRNAs) incompletely processed spliceosomal. These pre-snRNAs contained 3' genome-encoded tails often followed by post-transcriptionally added adenosines. Human cells with reduced levels of TOE1 accumulated 3'-end-extended pre-snRNAs, and the immunoisolated TOE1 complex was sufficient for 3'-end maturation of snRNAs. Our findings identify the cause of a neurodegenerative syndrome linked to snRNA maturation and uncover a key factor involved in the processing of snRNA 3' ends.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: