Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

Prokineticin 1 mediates fetal-maternal dialogue regulating endometrial leukemia inhibitory factor.

  • Jemma Evans‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2009‎

Implantation requires communication between a receptive endometrium and a healthy blastocyst. This maternal-embryonic crosstalk involves local mediators within the uterine microenvironment. We demonstrate that a secreted protein, prokineticin 1 (PROK1), is expressed in the receptive endometrium and during early pregnancy. PROK1 induces expression of leukemia inhibitory factor (LIF) in endometrial epithelial cells and first trimester decidua via a Gq-Ca(2+)-cSrc-mitogen-activated protein kinase kinase-mediated pathway. We show that human embryonic chorionic gonadotropin (hCG) induces sequential mRNA expression of PROK1 and LIF in an in vivo baboon model, in human endometrial epithelial cells, and in first-trimester decidua. We have used micro RNA constructs targeted to PROK1 to demonstrate that hCG-mediated LIF expression in the endometrium is dependent on prior induction of PROK1. Dual immunohistochemical analysis colocalized expression of the luteinizing hormone/chorionic gonadotropin receptor, PROK1, PROKR1, and LIF to the glandular epithelial cells of the first trimester decidual tissue. PROK1 enhances adhesion of trophoblast cells to fibronectin and laminin matrices, which are mediated predominantly via LIF induction. These data describe a novel signaling pathway mediating maternal-embryonic crosstalk, in which embryonic hCG via endometrial PROK1 may play a pivotal role in enhancing receptivity and maintaining early pregnancy.


Decreased Notch pathway signaling in the endometrium of women with endometriosis impairs decidualization.

  • Ren-Wei Su‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2015‎

Endometriosis is a common gynecological disease affecting one in 10 women of reproductive age and is a major cause of pelvic pain and impaired fertility. Endometrial stromal cells of women with endometriosis exhibit a reduced response to in vitro decidualization. NOTCH1 is critical for decidualization of both mouse and human uterine stromal cells.


CRISPLD2 is a target of progesterone receptor and its expression is decreased in women with endometriosis.

  • Jung-Yoon Yoo‎ et al.
  • PloS one‎
  • 2014‎

Endometriosis, defined as the presence of endometrial cells outside of the uterine cavity, is a major cause of infertility and pelvic pain, afflicting more than 10% of reproductive age women. Endometriosis is a chronic inflammatory disease and lipopolysaccharide promotes the proliferation and invasion of endometriotic stromal cells. Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2) has high affinity for lipopolysaccharide and plays a critical role in defense against endotoxin shock. However, the function of CRISPLD2 has not been studied in endometriosis and uterine biology. Herein, we examined the expression of CRISPLD2 in endometrium from patients with and without endometriosis using immunohistochemistry. The expression of CRISPLD2 was higher in the secretory phase in human menstrual cycle compared to proliferative phase. The expression of CRISPLD2 was significantly decreased in the endometrium of women with endometriosis in the early secretory phase compared to women without endometriosis. The increase of CRISPLD2 expression at the early secretory and dysregulation of its expression in endometriosis suggest progesterone (P4) regulation of CRISPLD2. To investigate whether CRISPLD2 is regulated by P4, we examined the expression of the CRISPLD2 in the uteri of wild-type and progesterone receptor knock out (PRKO) mice. The expression of CRISPLD2 was significantly increased after P4 treatment in the wild-type mice. However, CRISPLD2 expression was significantly decreased in the (PRKO) mice treated with P4. During early pregnancy, the expression of CRISPLD2 was increased in decidua of implantation and post-implantation stages. CRISPLD2 levels were also increased in cultured human endometrial stromal cells during in vitro decidualization. These results suggest that the CRISPLD2 is a target of the progesterone receptor and may play an important role in pathogenesis of endometriosis.


Frontiers in Reproduction (FIR): An Assessment of Success.

  • Mario Ascoli‎ et al.
  • Biology of reproduction‎
  • 2016‎

The Frontiers in Reproduction (FIR) course has been held annually since 1998 at the Marine Biological Laboratories in Woods Hole, MA. The primary purpose of the course is to train young reproductive biologists in cutting-edge techniques that would strengthen their career opportunities. An initial evaluation of the FIR course was conducted by surveying the participants who took the course between 1998 and 2002. The findings of this survey were published in Biology of Reproduction in 2006, which highlighted the overall positive impact the course had on the training and upward career trajectory of the participants during the first 5 yr. The current study was designed to access the continued impact of FIR at the 10-yr mark by evaluating the participants who took the course between 1998 and 2008 using two different survey mechanisms. Based on these evaluations and feedback from the participants, it was evident that 1) FIR continues to have a significant positive impact on the careers of the participants, 2) the majority of the participants continue to be involved in research or administration related to the reproductive sciences, 3) nearly 90% of the attendees have been successful in obtaining funding for their research, and 4) most alumni have published at least five manuscripts in higher impact journals since they took the course. Therefore, it is evident that FIR participants are highly successful and continue to significantly impact the advances in the reproductive sciences worldwide.


Prokineticin 1 induces inflammatory response in human myometrium: a potential role in initiating term and preterm parturition.

  • Marta R Gorowiec‎ et al.
  • The American journal of pathology‎
  • 2011‎

The infiltration of human myometrium and cervix with leukocytes and the formation of a pro-inflammatory environment within the uterus have been associated with the initiation of both term and preterm parturition. The mechanism regulating the onset of this pro-inflammatory cascade is not fully elucidated. We demonstrate that prokineticin 1 (PROK1) is up-regulated in human myometrium and placenta during labor. The expression of PROK1 receptor remains unchanged during labor and is abundantly expressed in the myometrium. Gene array analysis identified 65 genes up-regulated by PROK1 in human myometrium, mainly cytokines and chemokines, including IL-1β, chemokine C-C motif ligand 3, and colony-stimulating factor 3. In addition, we demonstrate that PROK1 increases the expression of chemokine C-C motif ligand 20, IL-6, IL-8, prostaglandin synthase 2, and prostaglandin E(2) and F(2α) secretion. The treatment of myometrial explants with 100 ng/mL of lipopolysaccharide up-regulates the expression of PROK1, PROK1 receptor, and inflammatory mediators. The infection of myometrial explants with lentiviral microRNA targeting PROK1, preceding treatment with lipopolysaccharide, reduces the expression of inflammatory genes. We propose that PROK1 is a novel inflammatory mediator that can contribute to the onset of human parturition at term and partially mediate premature onset of inflammatory pathways during bacterial infection.


A balancing act: RNA binding protein HuR/TTP axis in endometriosis patients.

  • Kasra Khalaj‎ et al.
  • Scientific reports‎
  • 2017‎

Endometriosis, a major reproductive pathology affecting 8-10% of women is characterized by chronic inflammation and immune dysfunction. Human antigen R (HuR) and Tristetraprolin (TTP) are RNA binding proteins that competitively bind to cytokines involved in inflammation including: tumor necrosis factor alpha (TNF-α), granulocyte macrophage colony stimulating factor (GM-CSF), interleukin 6 (IL-6) among others, and stabilize and destabilize them, respectively. The aim of this study was to examine RNA binding protein (RNABP) HuR/TTP axis in endometriosis patients compared to menstrual stage matched healthy fertile controls in hopes of better understanding their contribution to the pathogenesis of endometriosis. Additionally, using a targeted in vitro siRNA approach, we examined whether knock-down of TTP can play a functional role on other RNABPs that competitively bind to inflammatory targets of TTP in both endometriotic and endometrial epithelial cell lines. Our results suggest that RNABPs TTP and HuR are dysregulated in endometriotic lesions compared to matched eutopic patient samples as well endometrium from healthy controls. Silencing of TTP in endometriotic and endometrial epithelial cells revealed differential response to inflammatory cytokines and other RNABPs. Our results suggest potential involvement of HuR/TTP RNA binding protein axis in regulation of inflammation in endometriosis.


Transcriptome Analyses of Myometrium from Fibroid Patients Reveals Phenotypic Differences Compared to Non-Diseased Myometrium.

  • Emmanuel N Paul‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Uterine fibroid tissues are often compared to their matched myometrium in an effort to understand their pathophysiology, but it is not clear whether the myometria of uterine fibroid patients represent truly non-disease control tissues. We analyzed the transcriptomes of myometrial samples from non-fibroid patients (M) and compared them with fibroid (F) and matched myometrial (MF) samples to determine whether there is a phenotypic difference between fibroid and non-fibroid myometria. Multidimensional scaling plots revealed that M samples clustered separately from both MF and F samples. A total of 1169 differentially expressed genes (DEGs) (false discovery rate < 0.05) were observed in the MF comparison with M. Overrepresented Gene Ontology terms showed a high concordance of upregulated gene sets in MF compared to M, particularly extracellular matrix and structure organization. Gene set enrichment analyses showed that the leading-edge genes from the TGFβ signaling and inflammatory response gene sets were significantly enriched in MF. Overall comparison of the three tissues by three-dimensional principal component analyses showed that M, MF, and F samples clustered separately from each other and that a total of 732 DEGs from F vs. M were not found in the F vs. MF, which are likely understudied in the pathogenesis of uterine fibroids and could be key genes for future investigation. These results suggest that the transcriptome of fibroid-associated myometrium is different from that of non-diseased myometrium and that fibroid studies should consider using both matched myometrium and non-diseased myometrium as controls.


ARID1A-dependent maintenance of H3.3 is required for repressive CHD4-ZMYND8 chromatin interactions at super-enhancers.

  • Jake J Reske‎ et al.
  • BMC biology‎
  • 2022‎

SWI/SNF (BAF) chromatin remodeling complexes regulate lineage-specific enhancer activity by promoting accessibility for diverse DNA-binding factors and chromatin regulators. Additionally, they are known to modulate the function of the epigenome through regulation of histone post-translational modifications and nucleosome composition, although the way SWI/SNF complexes govern the epigenome remains poorly understood. Here, we investigate the function of ARID1A, a subunit of certain mammalian SWI/SNF chromatin remodeling complexes associated with malignancies and benign diseases originating from the uterine endometrium.


Decidual neutrophil infiltration is not required for preterm birth in a mouse model of infection-induced preterm labor.

  • Sara F Rinaldi‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 2014‎

Parturition is associated with a leukocyte influx into the intrauterine tissues; however, the exact role these leukocytes play in the onset of labor remains unclear. Neutrophil infiltration of the uteroplacental tissues has been particularly associated with infection-associated preterm labor (PTL) in both women and mouse models. In this study, we investigated the role of neutrophils in a mouse model of infection-induced PTL. Intrauterine administration of LPS on day 17 of gestation resulted in a 7-fold increase in the number of decidual neutrophils compared with control mice receiving PBS (p < 0.01; n = 8-11). We hypothesized that neutrophil influx is necessary for PTL and that neutrophil depletion would abolish preterm birth. To test this hypothesis, mice were depleted of neutrophils by treatment with anti-Gr-1, anti-Ly-6G, or the appropriate IgG control Ab on day 16 of gestation prior to LPS on day 17 (n = 6-7). Successful neutrophil depletion was confirmed by flow cytometry and immunohistochemistry. Neutrophil depletion with Gr-1 resulted in reduced uterine and placental Il-1β expression (p < 0.05). Neutrophil depletion with Ly-6G reduced uterine Il-1β and Tnf-α expression (p < 0.05). However, neutrophil depletion with either Ab did not delay LPS-induced preterm birth. Collectively, these data show that decidual neutrophil infiltration is not essential for the induction of infection-induced PTL in the mouse, but that neutrophils contribute to the LPS-induced inflammatory response of the uteroplacental tissues.


Interleukin-33 modulates inflammation in endometriosis.

  • Jessica E Miller‎ et al.
  • Scientific reports‎
  • 2017‎

Endometriosis is a debilitating condition that is categorized by the abnormal growth of endometrial tissue outside the uterus. Although the pathogenesis of this disease remains unknown, it is well established that endometriosis patients exhibit immune dysfunction. Interleukin (IL)-33 is a danger signal that is a critical regulator of chronic inflammation. Although plasma and peritoneal fluid levels of IL-33 have been associated with deep infiltrating endometriosis, its contribution to the disease pathophysiology is unknown. We investigated the role of IL-33 in the pathology of endometriosis using patient samples, cell lines and a syngeneic mouse model. We found that endometriotic lesions produce significantly higher levels of IL-33 compared to the endometrium of healthy, fertile controls. In vitro stimulation of endometrial epithelial, endothelial and endometriotic epithelial cells with IL-33 led to the production of pro-inflammatory and angiogenic cytokines. In a syngeneic mouse model of endometriosis, IL-33 injections caused systemic inflammation, which manifested as an increase in plasma pro-inflammatory cytokines compared to control mice. Furthermore, endometriotic lesions from IL-33 treated mice were highly vascularized and exhibited increased proliferation. Collectively, we provide convincing evidence that IL-33 perpetuates inflammation, angiogenesis and lesion proliferation, which are critical events in the lesion survival and progression of endometriosis.


Prostaglandin F(2alpha)-F-prostanoid receptor regulates CXCL8 expression in endometrial adenocarcinoma cells via the calcium-calcineurin-NFAT pathway.

  • Kurt J Sales‎ et al.
  • Biochimica et biophysica acta‎
  • 2009‎

Pro-inflammatory mediators, like prostaglandin (PG) and chemokines, promote tumourigenesis by enhancing cell proliferation, migration of immune cells and recruitment of blood vessels. Recently we showed elevated expression of the chemokine (C-X-C motif) receptor 2 (CXCR2) in endometrial adenocarcinomas localized to neutrophils and neoplastic epithelial and vascular cells. Furthermore we found that PGF(2alpha)-F-prostanoid (FP) receptor regulates the expression of the CXCR2 ligand CXCL1, to promote neutrophil chemotaxis in endometrial adenocarcinomas. In the present study we identified another CXCR2 ligand, CXCL8 as a target for PGF(2alpha)-FP receptor signalling which enhances epithelial cell proliferation in endometrial adenocarcinoma cells in vitro and in nude mice in vivo. We found that PGF(2alpha)-FP receptor interaction induces CXCL8 expression in endometrial adenocarcinoma cells via the protein kinase C-calcium-calcineurin-NFAT signaling pathway. Promoter analysis revealed that CXCL8 transcriptional activation by PGF(2alpha) signaling is mediated by cooperative interactions between the AP1 and NFAT binding sites. Furthermore, PGF(2alpha) via the FP receptor induced the expression of the regulator of calcineurin 1 isoform 4 (RCAN1-4) via the calcineurin/NFAT pathway in a reciprocal manner to CXCL8. Using an adenovirus to overexpress RCAN1-4, we found that RCAN1-4 is a negative regulator of CXCL8 expression in endometrial adenocarcinoma cells. Taken together our data have elucidated the molecular and cellular mechanism whereby PGF(2alpha) regulates CXCL8 expression via the FP receptor in endometrial adenocarcinomas and have highlighted RCAN1-4 as a negative regulator of CXCL8 expression which may be exploited therapeutically to inhibit CXCL8-mediated tumour development.


Extracellular signal-regulated kinase 1/2 signaling pathway is required for endometrial decidualization in mice and human.

  • Chae Hyun Lee‎ et al.
  • PloS one‎
  • 2013‎

Decidualization is a crucial change required for successful embryo implantation and the maintenance of pregnancy. During this process, endometrial stromal cells differentiate into decidual cells in response to the ovarian steroid hormones of early pregnancy. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) are known to regulate cell proliferation and apoptosis in multiple cell types, including uterine endometrial cells. Aberrant activation of ERK1/2 has recently been implicated in the pathological processes of endometriosis and endometrial cancer. However, the function of ERK1/2 signaling during implantation and decidualization is still unknown. To determine the role and regulation of ERK1/2 signaling during implantation and decidualization, we examine ERK1/2 signaling in the mouse uterus during early pregnancy using immunostaining and qPCR. Interestingly, levels of phospho-ERK1/2 were highest within decidual cells located at the implantation sites. Expression levels of ERK1/2 target genes were also significantly higher at implantation sites, when compared to either inter-implantation sites. To determine if ERK1/2 signaling is also important during human endometrial decidualization, we examined levels of phospho-ERK1/2 in cultured human endometrial stromal cells during in vitro decidualization. Following treatment with a well-established decidualization-inducing steroidogenic cocktail, levels of phospho-ERK1/2 were markedly increased. Treatment with the ERK1/2 inhibitor, U0126, significantly decreased the expression of the known decidualization marker genes, IGFBP1 and PRL as well as inhibited the induction of known ERK1/2 target genes; FOS, MSK1, STAT1, and STAT3. Interestingly, the phosphorylation level of CCAAT/ enhancer binding protein β (C/EBPβ), a protein previously shown to be critical for decidualization, was significantly reduced in this model. These results suggest that ERK1/2 signaling is required for successful decidualization in mice as well as human endometrial stromal cells and implicates C/EBPβ as a downstream target of ERK1/2.


ARID1A Mutations Promote P300-Dependent Endometrial Invasion through Super-Enhancer Hyperacetylation.

  • Mike R Wilson‎ et al.
  • Cell reports‎
  • 2020‎

Endometriosis affects 1 in 10 women and is characterized by the presence of abnormal endometrium at ectopic sites. ARID1A mutations are observed in deeply invasive forms of the disease, often correlating with malignancy. To identify epigenetic dependencies driving invasion, we use an unbiased approach to map chromatin state transitions accompanying ARID1A loss in the endometrium. We show that super-enhancers marked by high H3K27 acetylation are strongly associated with ARID1A binding. ARID1A loss leads to H3K27 hyperacetylation and increased chromatin accessibility and enhancer RNA transcription at super-enhancers, but not typical enhancers, indicating that ARID1A normally prevents super-enhancer hyperactivation. ARID1A co-localizes with P300 at super-enhancers, and genetic or pharmacological inhibition of P300 in ARID1A mutant endometrial epithelia suppresses invasion and induces anoikis through the rescue of super-enhancer hyperacetylation. Among hyperactivated super-enhancers, SERPINE1 (PAI-1) is identified as an essential target gene driving ARID1A mutant endometrial invasion. Broadly, our findings provide rationale for therapeutic strategies targeting super-enhancers in ARID1A mutant endometrium.


IL-17A Modulates Peritoneal Macrophage Recruitment and M2 Polarization in Endometriosis.

  • Jessica E Miller‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Endometriosis is a debilitating gynecological disease characterized by the extrauterine presence of endometrial-like tissues located on the peritoneal membrane and organs of the pelvic cavity. Notably, dysfunctional immune activation in women with endometriosis could also contribute to the development of disease. In particular, alternatively activated (M2) peritoneal macrophages are shown to aid peritoneal lesion development by promoting remodeling of extracellular matrix and neovascularization of lesions. However, the stimuli responsible for polarizing M2 macrophages in endometriosis remain elusive. Interleukin-17A (IL-17A) can induce M2 macrophage polarization in other disease models and IL-17A is elevated in the plasma and endometriotic lesions of women with endometriosis. In this study, we investigated whether IL-17A could induce macrophage recruitment and M2 polarization, while promoting endometriotic lesion growth through enhanced vascularization. By utilizing a co-culture of macrophage-like THP-1 cells with an endometriotic epithelial cell line, our in vitro results suggest that IL-17A indirectly induces M2 markers CCL17 and CD206 by interacting with endometriotic epithelial cells. Further, in a syngeneic mouse model of endometriosis, IL-17A treatment increased macrophages in the peritoneum, which were also M2 in phenotype. However, IL-17A treatment did not augment proliferation or vascularization of the lesion in the study time frame. These findings suggest that IL-17A may be a stimulus inducing the pathogenic polarization of macrophages into the M2 phenotype by first acting on the endometriotic lesion itself.


Hypoxia and prostaglandin E receptor 4 signalling pathways synergise to promote endometrial adenocarcinoma cell proliferation and tumour growth.

  • Rob D Catalano‎ et al.
  • PloS one‎
  • 2011‎

The prostaglandin endoperoxide synthase (PTGS) pathway is a potent driver of tumour development in humans by enhancing the biosynthesis and signalling of prostaglandin (PG) E(2). PTGS2 expression and PGE(2) biosynthesis is elevated in endometrial adenocarcinoma, however the mechanism whereby PTGS and PGE(2) regulate endometrial tumour growth is unknown. Here we investigated (a) the expression profile of the PGE synthase enzymes (PTGES, PTGES-2, PTGES-3) and PGE receptors (PTGER1-4) in endometrial adenocarcinomas compared with normal endometrium and (b) the role of PTGER4 in endometrial tumorigenesis in vivo. We found elevated expression of PTGES2 and PTGER4 and suppression of PTGER1 and PTGER3 in endometrial adenocarcinomas compared with normal endometrium. Using WT Ishikawa endometrial adenocarcinoma cells and Ishikawa cells stably transfected with the full length PTGER4 cDNA (PTGER4 cells) xenografted in the dorsal flanks of nude mice, we show that PTGER4 rapidly and significantly enhances tumour growth rate. Coincident with enhanced PTGER4-mediated tumour growth we found elevated expression of PTGS2 in PTGER4 xenografts compared with WT xenografts. Furthermore we found that the augmented growth rate of the PTGER4 xenografts was not due to enhanced angiogenesis, but regulated by an increased proliferation index and hypoxia. In vitro, we found that PGE(2) and hypoxia independently induce expression of PTGER4 indicating two independent pathways regulating prostanoid receptor expression. Finally we have shown that PGE(2) and hypoxia synergise to promote cellular proliferation of endometrial adenocarcinoma cells.


ARID1A Is Essential for Endometrial Function during Early Pregnancy.

  • Tae Hoon Kim‎ et al.
  • PLoS genetics‎
  • 2015‎

AT-rich interactive domain 1A gene (ARID1A) loss is a frequent event in endometriosis-associated ovarian carcinomas. Endometriosis is a disease in which tissue that normally grows inside the uterus grows outside the uterus, and 50% of women with endometriosis are infertile. ARID1A protein levels were significantly lower in the eutopic endometrium of women with endometriosis compared to women without endometriosis. However, an understanding of the physiological effects of ARID1A loss remains quite poor, and the function of Arid1a in the female reproductive tract has remained elusive. In order to understand the role of Arid1a in the uterus, we have generated mice with conditional ablation of Arid1a in the PGR positive cells (Pgrcre/+Arid1af/f; Arid1ad/d). Ovarian function and uterine development of Arid1ad/d mice were normal. However, Arid1ad/d mice were sterile due to defective embryo implantation and decidualization. The epithelial proliferation was significantly increased in Arid1ad/d mice compared to control mice. Enhanced epithelial estrogen activity and reduced epithelial PGR expression, which impedes maturation of the receptive uterus, was observed in Arid1ad/d mice at the peri-implantation period. The microarray analysis revealed that ARID1A represses the genes related to cell cycle and DNA replication. We showed that ARID1A positively regulates Klf15 expression with PGR to inhibit epithelial proliferation at peri-implantation. Our results suggest that Arid1a has a critical role in modulating epithelial proliferation which is a critical requisite for fertility. This finding provides a new signaling pathway for steroid hormone regulation in female reproductive biology and furthers our understanding of the molecular mechanisms that underlie dysregulation of hormonal signaling in human reproductive disorders such as endometriosis.


ARID1A and PI3-kinase pathway mutations in the endometrium drive epithelial transdifferentiation and collective invasion.

  • Mike R Wilson‎ et al.
  • Nature communications‎
  • 2019‎

ARID1A and PI3-Kinase (PI3K) pathway alterations are common in neoplasms originating from the uterine endometrium. Here we show that monoallelic loss of ARID1A in the mouse endometrial epithelium is sufficient for vaginal bleeding when combined with PI3K activation. Sorted mutant epithelial cells display gene expression and promoter chromatin signatures associated with epithelial-to-mesenchymal transition (EMT). We further show that ARID1A is bound to promoters with open chromatin, but ARID1A loss leads to increased promoter chromatin accessibility and the expression of EMT genes. PI3K activation partially rescues the mesenchymal phenotypes driven by ARID1A loss through antagonism of ARID1A target gene expression, resulting in partial EMT and invasion. We propose that ARID1A normally maintains endometrial epithelial cell identity by repressing mesenchymal cell fates, and that coexistent ARID1A and PI3K mutations promote epithelial transdifferentiation and collective invasion. Broadly, our findings support a role for collective epithelial invasion in the spread of abnormal endometrial tissue.


MicroRNA-210-3p Regulates Endometriotic Lesion Development by Targeting IGFBP3 in Baboons and Women with Endometriosis.

  • Kentaro Kai‎ et al.
  • Reproductive sciences (Thousand Oaks, Calif.)‎
  • 2023‎

MicroRNAs (miRs) play an important role in the pathophysiology of endometriosis; however, the role of miR-210 in endometriosis remains unclear. This study explores the role of miR-210 and its targets, IGFBP3 and COL8A1, in ectopic lesion growth and development. Matched eutopic (EuE) and ectopic (EcE) endometrial samples were obtained for analysis from baboons and women with endometriosis. Immortalized human ectopic endometriotic epithelial cells (12Z cells) were utilized for functional assays. Endometriosis was experimentally induced in female baboons (n = 5). Human matched endometrial and endometriotic tissues were obtained from women (n = 9, 18-45 years old) with regular menstrual cycles. Quantitative reverse transcript polymerase chain reaction (RT-qPCR) analysis was performed for in vivo characterization of miR-210, IGFBP3, and COL8A1. In situ hybridization and immunohistochemical analysis were performed for cell-specific localization. Immortalized endometriotic epithelial cell lines (12Z) were utilized for in vitro functional assays. MiR-210 expression was decreased in EcE, while IGFBP3 and COL8A1 expression was increased in EcE. MiR-210 was expressed in the glandular epithelium of EuE but attenuated in those of EcE. IGFBP3 and COL8A1 were expressed in the glandular epithelium of EuE and were increased compared to EcE. MiR-210 overexpression in 12Z cells suppressed IGFBP3 expression and attenuated cell proliferation and migration. MiR-210 repression and subsequent unopposed IGFBP3 expression may contribute to endometriotic lesion development by increasing cell proliferation and migration.


Spheroids as a model for endometriotic lesions.

  • Yong Song‎ et al.
  • JCI insight‎
  • 2023‎

The development and progression of endometriotic lesions are poorly understood, but immune cell dysfunction and inflammation are closely associated with the pathophysiology of endometriosis. There is a need for 3D in vitro models to permit the study of interactions between cell types and the microenvironment. To address this, we developed endometriotic spheroids (ES) to explore the role of epithelial-stromal interactions and model peritoneal invasion associated with lesion development. Using a nonadherent microwell culture system, spheroids were generated with immortalized endometriotic epithelial cells (12Z) combined with endometriotic stromal (iEc-ESC) or uterine stromal (iHUF) cell lines. Transcriptomic analysis found 4,522 differentially expressed genes in ES compared with spheroids containing uterine stromal cells. The top increased gene sets were inflammation-related pathways, and an overlap with baboon endometriotic lesions was highly significant. Finally, to mimic invasion of endometrial tissue into the peritoneum, a model was developed with human peritoneal mesothelial cells in an extracellular matrix. Invasion was increased in the presence of estradiol or pro-inflammatory macrophages and suppressed by a progestin. Taken together, our results strongly support the concept that ES are an appropriate model for dissecting mechanisms that contribute to endometriotic lesion development.


Loss of MIG-6 results in endometrial progesterone resistance via ERBB2.

  • Jung-Yoon Yoo‎ et al.
  • Nature communications‎
  • 2022‎

Female subfertility is highly associated with endometriosis. Endometrial progesterone resistance is suggested as a crucial element in the development of endometrial diseases. We report that MIG-6 is downregulated in the endometrium of infertile women with endometriosis and in a non-human primate model of endometriosis. We find ERBB2 overexpression in the endometrium of uterine-specific Mig-6 knockout mice (Pgrcre/+Mig-6f/f; Mig-6d/d). To investigate the effect of ERBB2 targeting on endometrial progesterone resistance, fertility, and endometriosis, we introduce Erbb2 ablation in Mig-6d/d mice (Mig-6d/dErbb2d/d mice). The additional knockout of Erbb2 rescues all phenotypes seen in Mig-6d/d mice. Transcriptomic analysis shows that genes differentially expressed in Mig-6d/d mice revert to their normal expression in Mig-6d/dErbb2d/d mice. Together, our results demonstrate that ERBB2 overexpression in endometrium with MIG-6 deficiency causes endometrial progesterone resistance and a nonreceptive endometrium in endometriosis-related infertility, and ERBB2 targeting reverses these effects.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: