Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 113 papers

Practical management of heterogeneous neuroimaging metadata by global neuroimaging data repositories.

  • Scott C Neu‎ et al.
  • Frontiers in neuroinformatics‎
  • 2012‎

Rapidly evolving neuroimaging techniques are producing unprecedented quantities of digital data at the same time that many research studies are evolving into global, multi-disciplinary collaborations between geographically distributed scientists. While networked computers have made it almost trivial to transmit data across long distances, collecting and analyzing this data requires extensive metadata if the data is to be maximally shared. Though it is typically straightforward to encode text and numerical values into files and send content between different locations, it is often difficult to attach context and implicit assumptions to the content. As the number of and geographic separation between data contributors grows to national and global scales, the heterogeneity of the collected metadata increases and conformance to a single standardization becomes implausible. Neuroimaging data repositories must then not only accumulate data but must also consolidate disparate metadata into an integrated view. In this article, using specific examples from our experiences, we demonstrate how standardization alone cannot achieve full integration of neuroimaging data from multiple heterogeneous sources and why a fundamental change in the architecture of neuroimaging data repositories is needed instead.


10Kin1day: A Bottom-Up Neuroimaging Initiative.

  • Martijn P van den Heuvel‎ et al.
  • Frontiers in neurology‎
  • 2019‎

We organized 10Kin1day, a pop-up scientific event with the goal to bring together neuroimaging groups from around the world to jointly analyze 10,000+ existing MRI connectivity datasets during a 3-day workshop. In this report, we describe the motivation and principles of 10Kin1day, together with a public release of 8,000+ MRI connectome maps of the human brain.


The LONI Debabeler: a mediator for neuroimaging software.

  • Scott C Neu‎ et al.
  • NeuroImage‎
  • 2005‎

Brain image analysis often involves processing neuroimaging data with different software packages. Using different software packages together requires exchanging files between them; the output files of one package are used as input files to the next package in the processing sequence. File exchanges become problematic when different packages use different file formats or different conventions within the same file format. Although comprehensive medical image file formats have been developed, no one format exists that satisfies the needs of analyses that involve multiple processing algorithms. The LONI Debabeler acts as a mediator between neuroimaging software packages by automatically using an appropriate file translation to convert files between each pair of linked packages. These translations are built and edited using the Debabeler graphical interface and compensate for package-dependent variations that result in intrapackage incompatibilities. The Debabeler gives neuroimaging processing environments a configurable automaton for file translation and provides users a flexible application for developing robust solutions to translation problems.


Is it time to re-prioritize neuroimaging databases and digital repositories?

  • John Darrell Van Horn‎ et al.
  • NeuroImage‎
  • 2009‎

The development of in vivo brain imaging has lead to the collection of large quantities of digital information. In any individual research article, several tens of gigabytes-worth of data may be represented-collected across normal and patient samples. With the ease of collecting such data, there is increased desire for brain imaging datasets to be openly shared through sophisticated databases. However, very often the raw and pre-processed versions of these data are not available to researchers outside of the team that collected them. A range of neuroimaging databasing approaches has streamlined the transmission, storage, and dissemination of data from such brain imaging studies. Though early sociological and technical concerns have been addressed, they have not been ameliorated altogether for many in the field. In this article, we review the progress made in neuroimaging databases, their role in data sharing, data management, potential for the construction of brain atlases, recording data provenance, and value for re-analysis, new publication, and training. We feature the LONI IDA as an example of an archive being used as a source for brain atlas workflow construction, list several instances of other successful uses of image databases, and comment on archive sustainability. Finally, we suggest that, given these developments, now is the time for the neuroimaging community to re-prioritize large-scale databases as a valuable component of brain imaging science.


Mapping longitudinal scientific progress, collaboration and impact of the Alzheimer's disease neuroimaging initiative.

  • Xiaohui Yao‎ et al.
  • PloS one‎
  • 2017‎

Alzheimer's disease neuroimaging initiative (ADNI) is a landmark imaging and omics study in AD. ADNI research literature has increased substantially over the past decade, which poses challenges for effectively communicating information about the results and impact of ADNI-related studies. In this work, we employed advanced information visualization techniques to perform a comprehensive and systematic mapping of the ADNI scientific growth and impact over a period of 12 years.


Using Machine Learning and Structural Neuroimaging to Detect First Episode Psychosis: Reconsidering the Evidence.

  • Sandra Vieira‎ et al.
  • Schizophrenia bulletin‎
  • 2020‎

Despite the high level of interest in the use of machine learning (ML) and neuroimaging to detect psychosis at the individual level, the reliability of the findings is unclear due to potential methodological issues that may have inflated the existing literature. This study aimed to elucidate the extent to which the application of ML to neuroanatomical data allows detection of first episode psychosis (FEP), while putting in place methodological precautions to avoid overoptimistic results. We tested both traditional ML and an emerging approach known as deep learning (DL) using 3 feature sets of interest: (1) surface-based regional volumes and cortical thickness, (2) voxel-based gray matter volume (GMV) and (3) voxel-based cortical thickness (VBCT). To assess the reliability of the findings, we repeated all analyses in 5 independent datasets, totaling 956 participants (514 FEP and 444 within-site matched controls). The performance was assessed via nested cross-validation (CV) and cross-site CV. Accuracies ranged from 50% to 70% for surfaced-based features; from 50% to 63% for GMV; and from 51% to 68% for VBCT. The best accuracies (70%) were achieved when DL was applied to surface-based features; however, these models generalized poorly to other sites. Findings from this study suggest that, when methodological precautions are adopted to avoid overoptimistic results, detection of individuals in the early stages of psychosis is more challenging than originally thought. In light of this, we argue that the current evidence for the diagnostic value of ML and structural neuroimaging should be reconsidered toward a more cautious interpretation.


Neuroimaging-AI Endophenotypes of Brain Diseases in the General Population: Towards a Dimensional System of Vulnerability.

  • Junhao Wen‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

Disease heterogeneity poses a significant challenge for precision diagnostics in both clinical and sub-clinical stages. Recent work leveraging artificial intelligence (AI) has offered promise to dissect this heterogeneity by identifying complex intermediate phenotypes - herein called dimensional neuroimaging endophenotypes (DNEs) - which subtype various neurologic and neuropsychiatric diseases. We investigate the presence of nine such DNEs derived from independent yet harmonized studies on Alzheimer's disease (AD1-2)1, autism spectrum disorder (ASD1-3)2, late-life depression (LLD1-2)3, and schizophrenia (SCZ1-2)4, in the general population of 39,178 participants in the UK Biobank study. Phenome-wide associations revealed prominent associations between the nine DNEs and phenotypes related to the brain and other human organ systems. This phenotypic landscape aligns with the SNP-phenotype genome-wide associations, revealing 31 genomic loci associated with the nine DNEs (Bonferroni corrected P-value < 5×10-8/9). The DNEs exhibited significant genetic correlations, colocalization, and causal relationships with multiple human organ systems and chronic diseases. A causal effect (odds ratio=1.25 [1.11, 1.40], P-value=8.72×1-4) was established from AD2, characterized by focal medial temporal lobe atrophy, to AD. The nine DNEs and their polygenic risk scores significantly improved the prediction accuracy for 14 systemic disease categories and mortality. These findings underscore the potential of the nine DNEs to identify individuals at a high risk of developing the four brain diseases during preclinical stages for precision diagnostics. All results are publicly available at: http://labs.loni.usc.edu/medicine/.


Association analysis of rare variants near the APOE region with CSF and neuroimaging biomarkers of Alzheimer's disease.

  • Kwangsik Nho‎ et al.
  • BMC medical genomics‎
  • 2017‎

The APOE ε4 allele is the most significant common genetic risk factor for late-onset Alzheimer's disease (LOAD). The region surrounding APOE on chromosome 19 has also shown consistent association with LOAD. However, no common variants in the region remain significant after adjusting for APOE genotype. We report a rare variant association analysis of genes in the vicinity of APOE with cerebrospinal fluid (CSF) and neuroimaging biomarkers of LOAD.


Higher homocysteine associated with thinner cortical gray matter in 803 participants from the Alzheimer's Disease Neuroimaging Initiative.

  • Sarah K Madsen‎ et al.
  • Neurobiology of aging‎
  • 2015‎

A significant portion of our risk for dementia in old age is associated with lifestyle factors (diet, exercise, and cardiovascular health) that are modifiable, at least in principle. One such risk factor, high-homocysteine levels in the blood, is known to increase risk for Alzheimer's disease and vascular disorders. Here, we set out to understand how homocysteine levels relate to 3D surface-based maps of cortical gray matter distribution (thickness, volume, and surface area) computed from brain magnetic resonance imaging in 803 elderly subjects from the Alzheimer's Disease Neuroimaging Initiative data set. Individuals with higher plasma levels of homocysteine had lower gray matter thickness in bilateral frontal, parietal, occipital, and right temporal regions and lower gray matter volumes in left frontal, parietal, temporal, and occipital regions, after controlling for diagnosis, age, and sex and after correcting for multiple comparisons. No significant within-group associations were found in cognitively healthy people, patients with mild cognitive impairment, or patients with Alzheimer's disease. These regional differences in gray matter structure may be useful biomarkers to assess the effectiveness of interventions, such as vitamin B supplements, that aim to prevent homocysteine-related brain atrophy by normalizing homocysteine levels.


The LONI QC System: A Semi-Automated, Web-Based and Freely-Available Environment for the Comprehensive Quality Control of Neuroimaging Data.

  • Hosung Kim‎ et al.
  • Frontiers in neuroinformatics‎
  • 2019‎

Quantifying, controlling, and monitoring image quality is an essential prerequisite for ensuring the validity and reproducibility of many types of neuroimaging data analyses. Implementation of quality control (QC) procedures is the key to ensuring that neuroimaging data are of high-quality and their validity in the subsequent analyses. We introduce the QC system of the Laboratory of Neuro Imaging (LONI): a web-based system featuring a workflow for the assessment of various modality and contrast brain imaging data. The design allows users to anonymously upload imaging data to the LONI-QC system. It then computes an exhaustive set of QC metrics which aids users to perform a standardized QC by generating a range of scalar and vector statistics. These procedures are performed in parallel using a large compute cluster. Finally, the system offers an automated QC procedure for structural MRI, which can flag each QC metric as being 'good' or 'bad.' Validation using various sets of data acquired from a single scanner and from multiple sites demonstrated the reproducibility of our QC metrics, and the sensitivity and specificity of the proposed Auto QC to 'bad' quality images in comparison to visual inspection. To the best of our knowledge, LONI-QC is the first online QC system that uniquely supports the variety of functionality where we compute numerous QC metrics and perform visual/automated image QC of multi-contrast and multi-modal brain imaging data. The LONI-QC system has been used to assess the quality of large neuroimaging datasets acquired as part of various multi-site studies such as the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study and the Alzheimer's Disease Neuroimaging Initiative (ADNI). LONI-QC's functionality is freely available to users worldwide and its adoption by imaging researchers is likely to contribute substantially to upholding high standards of brain image data quality and to implementing these standards across the neuroimaging community.


Effects of traumatic brain injury and posttraumatic stress disorder on Alzheimer's disease in veterans, using the Alzheimer's Disease Neuroimaging Initiative.

  • Michael W Weiner‎ et al.
  • Alzheimer's & dementia : the journal of the Alzheimer's Association‎
  • 2014‎

Both traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are common problems resulting from military service, and both have been associated with increased risk of cognitive decline and dementia resulting from Alzheimer's disease (AD) or other causes. This study aims to use imaging techniques and biomarker analysis to determine whether traumatic brain injury (TBI) and/or PTSD resulting from combat or other traumas increase the risk for AD and decrease cognitive reserve in Veteran subjects, after accounting for age. Using military and Department of Veterans Affairs records, 65 Vietnam War veterans with a history of moderate or severe TBI with or without PTSD, 65 with ongoing PTSD without TBI, and 65 control subjects are being enrolled in this study at 19 sites. The study aims to select subject groups that are comparable in age, gender, ethnicity, and education. Subjects with mild cognitive impairment (MCI) or dementia are being excluded. However, a new study just beginning, and similar in size, will study subjects with TBI, subjects with PTSD, and control subjects with MCI. Baseline measurements of cognition, function, blood, and cerebrospinal fluid biomarkers; magnetic resonance images (structural, diffusion tensor, and resting state blood-level oxygen dependent (BOLD) functional magnetic resonance imaging); and amyloid positron emission tomographic (PET) images with florbetapir are being obtained. One-year follow-up measurements will be collected for most of the baseline procedures, with the exception of the lumbar puncture, the PET imaging, and apolipoprotein E genotyping. To date, 19 subjects with TBI only, 46 with PTSD only, and 15 with TBI and PTSD have been recruited and referred to 13 clinics to undergo the study protocol. It is expected that cohorts will be fully recruited by October 2014. This study is a first step toward the design and statistical powering of an AD prevention trial using at-risk veterans as subjects, and provides the basis for a larger, more comprehensive study of dementia risk factors in veterans.


Increasing participant diversity in AD research: Plans for digital screening, blood testing, and a community-engaged approach in the Alzheimer's Disease Neuroimaging Initiative 4.

  • Michael W Weiner‎ et al.
  • Alzheimer's & dementia : the journal of the Alzheimer's Association‎
  • 2023‎

The Alzheimer's Disease Neuroimaging Initiative (ADNI) aims to validate biomarkers for Alzheimer's disease (AD) clinical trials. To improve generalizability, ADNI4 aims to enroll 50-60% of its new participants from underrepresented populations (URPs) using new biofluid and digital technologies. ADNI4 has received funding from the National Institute on Aging beginning September 2022.


Homological landscape of human brain functional sub-circuits.

  • Duy Duong-Tran‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Human whole-brain functional connectivity networks have been shown to exhibit both local/quasilocal (e.g., set of functional sub-circuits induced by node or edge attributes) and non-local (e.g., higher-order functional coordination patterns) properties. Nonetheless, the non-local properties of topological strata induced by local/quasilocal functional sub-circuits have yet to be addressed. To that end, we proposed a homological formalism that enables the quantification of higher-order characteristics of human brain functional sub-circuits. Our results indicated that each homological order uniquely unravels diverse, complementary properties of human brain functional sub-circuits. Noticeably, the H1 homological distance between rest and motor task were observed at both whole-brain and sub-circuit consolidated level which suggested the self-similarity property of human brain functional connectivity unraveled by homological kernel. Furthermore, at the whole-brain level, the rest-task differentiation was found to be most prominent between rest and different tasks at different homological orders: i) Emotion task H0, ii) Motor task H1, and iii) Working memory task H2. At the functional sub-circuit level, the rest-task functional dichotomy of default mode network is found to be mostly prominent at the first and second homological scaffolds. Also at such scale, we found that the limbic network plays a significant role in homological reconfiguration across both task- and subject- domain which sheds light to subsequent Investigations on the complex neuro-physiological role of such network. From a wider perspective, our formalism can be applied, beyond brain connectomics, to study non-localized coordination patterns of localized structures stretching across complex network fibers.


Heritability of the network architecture of intrinsic brain functional connectivity.

  • Benjamin Sinclair‎ et al.
  • NeuroImage‎
  • 2015‎

The brain's functional network exhibits many features facilitating functional specialization, integration, and robustness to attack. Using graph theory to characterize brain networks, studies demonstrate their small-world, modular, and "rich-club" properties, with deviations reported in many common neuropathological conditions. Here we estimate the heritability of five widely used graph theoretical metrics (mean clustering coefficient (γ), modularity (Q), rich-club coefficient (ϕnorm), global efficiency (λ), small-worldness (σ)) over a range of connection densities (k=5-25%) in a large cohort of twins (N=592, 84 MZ and 89 DZ twin pairs, 246 single twins, age 23 ± 2.5). We also considered the effects of global signal regression (GSR). We found that the graph metrics were moderately influenced by genetic factors h(2) (γ=47-59%, Q=38-59%, ϕnorm=0-29%, λ=52-64%, σ=51-59%) at lower connection densities (≤ 15%), and when global signal regression was implemented, heritability estimates decreased substantially h(2) (γ=0-26%, Q=0-28%, ϕnorm=0%, λ=23-30%, σ=0-27%). Distinct network features were phenotypically correlated (|r|=0.15-0.81), and γ, Q, and λ were found to be influenced by overlapping genetic factors. Our findings suggest that these metrics may be potential endophenotypes for psychiatric disease and suitable for genetic association studies, but that genetic effects must be interpreted with respect to methodological choices.


Functional connectivity among brain regions affected in Alzheimer's disease is associated with CSF TNF-α in APOE4 carriers.

  • Joey Annette Contreras‎ et al.
  • Neurobiology of aging‎
  • 2020‎

It is now recognized that understanding how neuroinflammation affects brain function may provide new insights into Alzheimer's pathophysiology. Tumor necrosis factor (TNF)-α, an inflammatory cytokine marker, has been implicated in Alzheimer's disease (AD), as it can impair neuronal function through suppression of long-term potentiation. Our study investigated the relationship between cerebrospinal fluid TNF-α and functional connectivity (FC) in a cohort of 64 older adults (μ age = 69.76 years; 30 cognitively normal, 34 mild AD). Higher cerebrospinal fluid TNF-α levels were associated with lower FC among brain regions important for high-level decision-making, inhibitory control, and memory. This effect was moderated by apolipoprotein E-ε4 (APOE4) status. Graph theory metrics revealed there were significant differences between APOE4 carriers at the node level, and by diagnosis at the network level suggesting global brain network dysfunction in participants with AD. These findings suggest proinflammatory mechanisms may contribute to reduced FC in regions important for high-level cognition. Future studies are needed to understand the role of inflammation on brain function and clinical progression, especially in APOE4 carriers.


A polygenic risk score analysis of psychosis endophenotypes across brain functional, structural, and cognitive domains.

  • Siri Ranlund‎ et al.
  • American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics‎
  • 2018‎

This large multi-center study investigates the relationships between genetic risk for schizophrenia and bipolar disorder, and multi-modal endophenotypes for psychosis. The sample included 4,242 individuals; 1,087 patients with psychosis, 822 unaffected first-degree relatives of patients, and 2,333 controls. Endophenotypes included the P300 event-related potential (N = 515), lateral ventricular volume (N = 798), and the cognitive measures block design (N = 3,089), digit span (N = 1,437), and the Ray Auditory Verbal Learning Task (N = 2,406). Data were collected across 11 sites in Europe and Australia; all genotyping and genetic analyses were done at the same laboratory in the United Kingdom. We calculated polygenic risk scores for schizophrenia and bipolar disorder separately, and used linear regression to test whether polygenic scores influenced the endophenotypes. Results showed that higher polygenic scores for schizophrenia were associated with poorer performance on the block design task and explained 0.2% (p = 0.009) of the variance. Associations in the same direction were found for bipolar disorder scores, but this was not statistically significant at the 1% level (p = 0.02). The schizophrenia score explained 0.4% of variance in lateral ventricular volumes, the largest across all phenotypes examined, although this was not significant (p = 0.063). None of the remaining associations reached significance after correction for multiple testing (with alpha at 1%). These results indicate that common genetic variants associated with schizophrenia predict performance in spatial visualization, providing additional evidence that this measure is an endophenotype for the disorder with shared genetic risk variants. The use of endophenotypes such as this will help to characterize the effects of common genetic variation in psychosis.


Mapping Complex Brain Torque Components and Their Genetic Architecture and Phenomic Associations in 24,112 Individuals.

  • Lu Zhao‎ et al.
  • Biological psychiatry‎
  • 2022‎

The functional significance and mechanisms determining the development and individual variability of structural brain asymmetry remain unclear. Here, we systematically analyzed all relevant components of the most prominent structural asymmetry, brain torque (BT), and their relationships with potential genetic and nongenetic modifiers in a sample comprising 24,112 individuals from six cohorts.


The mouse cortico-striatal projectome.

  • Houri Hintiryan‎ et al.
  • Nature neuroscience‎
  • 2016‎

Different cortical areas are organized into distinct intracortical subnetworks. The manner in which descending pathways from the entire cortex interact subcortically as a network remains unclear. We developed an open-access comprehensive mesoscale mouse cortico-striatal projectome: a detailed connectivity projection map from the entire cerebral cortex to the dorsal striatum or caudoputamen (CP) in rodents. On the basis of these projections, we used new computational neuroanatomical tools to identify 29 distinct functional striatal domains. Furthermore, we characterized different cortico-striatal networks and how they reconfigure across the rostral-caudal extent of the CP. The workflow was also applied to select cortico-striatal connections in two different mouse models of disconnection syndromes to demonstrate its utility for characterizing circuitry-specific connectopathies. Together, our results provide the structural basis for studying the functional diversity of the dorsal striatum and disruptions of cortico-basal ganglia networks across a broad range of disorders.


Genome-wide interaction analysis reveals replicated epistatic effects on brain structure.

  • Derrek P Hibar‎ et al.
  • Neurobiology of aging‎
  • 2015‎

The discovery of several genes that affect the risk for Alzheimer's disease ignited a worldwide search for single-nucleotide polymorphisms (SNPs), common genetic variants that affect the brain. Genome-wide search of all possible SNP-SNP interactions is challenging and rarely attempted because of the complexity of conducting approximately 10(11) pairwise statistical tests. However, recent advances in machine learning, for example, iterative sure independence screening, make it possible to analyze data sets with vastly more predictors than observations. Using an implementation of the sure independence screening algorithm (called EPISIS), we performed a genome-wide interaction analysis testing all possible SNP-SNP interactions affecting regional brain volumes measured on magnetic resonance imaging and mapped using tensor-based morphometry. We identified a significant SNP-SNP interaction between rs1345203 and rs1213205 that explains 1.9% of the variance in temporal lobe volume. We mapped the whole brain, voxelwise effects of the interaction in the Alzheimer's Disease Neuroimaging Initiative data set and separately in an independent replication data set of healthy twins (Queensland Twin Imaging). Each additional loading in the interaction effect was associated with approximately 5% greater brain regional brain volume (a protective effect) in both Alzheimer's Disease Neuroimaging Initiative and Queensland Twin Imaging samples.


Image processing approaches to enhance perivascular space visibility and quantification using MRI.

  • Farshid Sepehrband‎ et al.
  • Scientific reports‎
  • 2019‎

Imaging the perivascular spaces (PVS), also known as Virchow-Robin space, has significant clinical value, but there remains a need for neuroimaging techniques to improve mapping and quantification of the PVS. Current technique for PVS evaluation is a scoring system based on visual reading of visible PVS in regions of interest, and often limited to large caliber PVS. Enhancing the visibility of the PVS could support medical diagnosis and enable novel neuroscientific investigations. Increasing the MRI resolution is one approach to enhance the visibility of PVS but is limited by acquisition time and physical constraints. Alternatively, image processing approaches can be utilized to improve the contrast ratio between PVS and surrounding tissue. Here we combine T1- and T2-weighted images to enhance PVS contrast, intensifying the visibility of PVS. The Enhanced PVS Contrast (EPC) was achieved by combining T1- and T2-weighted images that were adaptively filtered to remove non-structured high-frequency spatial noise. EPC was evaluated on healthy young adults by presenting them to two expert readers and also through automated quantification. We found that EPC improves the conspicuity of the PVS and aid resolving a larger number of PVS. We also present a highly reliable automated PVS quantification approach, which was optimized using expert readings.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: