Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Chemical Biology Toolkit for DCLK1 Reveals Connection to RNA Processing.

  • Yan Liu‎ et al.
  • Cell chemical biology‎
  • 2020‎

Doublecortin-like kinase 1 (DCLK1) is critical for neurogenesis, but overexpression is also observed in multiple cancers and is associated with poor prognosis. Nevertheless, the function of DCLK1 in cancer, especially the context-dependent functions, are poorly understood. We present a "toolkit" that includes the DCLK1 inhibitor DCLK1-IN-1, a complementary DCLK1-IN-1-resistant mutation G532A, and kinase dead mutants D511N and D533N, which can be used to investigate signaling pathways regulated by DCLK1. Using a cancer cell line engineered to be DCLK1 dependent for growth and cell migration, we show that this toolkit can be used to discover associations between DCLK1 kinase activity and biological processes. In particular, we show an association between DCLK1 and RNA processing, including the identification of CDK11 as a potential substrate of DCLK1 using phosphoproteomics.


Leveraging Compound Promiscuity to Identify Targetable Cysteines within the Kinome.

  • Suman Rao‎ et al.
  • Cell chemical biology‎
  • 2019‎

Covalent kinase inhibitors, which typically target cysteine residues, represent an important class of clinically relevant compounds. Approximately 215 kinases are known to have potentially targetable cysteines distributed across 18 spatially distinct locations proximal to the ATP-binding pocket. However, only 40 kinases have been covalently targeted, with certain cysteine sites being the primary focus. To address this disparity, we have developed a strategy that combines the use of a multi-targeted acrylamide-modified inhibitor, SM1-71, with a suite of complementary chemoproteomic and cellular approaches to identify additional targetable cysteines. Using this single multi-targeted compound, we successfully identified 23 kinases that are amenable to covalent inhibition including MKNK2, MAP2K1/2/3/4/6/7, GAK, AAK1, BMP2K, MAP3K7, MAPKAPK5, GSK3A/B, MAPK1/3, SRC, YES1, FGFR1, ZAK (MLTK), MAP3K1, LIMK1, and RSK2. The identification of nine of these kinases previously not targeted by a covalent inhibitor increases the number of targetable kinases and highlights opportunities for covalent kinase inhibitor development.


Discovery of type II inhibitors of TGFβ-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2).

  • Li Tan‎ et al.
  • Journal of medicinal chemistry‎
  • 2015‎

We developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure-activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16 and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. A 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors.


Exploring Targeted Degradation Strategy for Oncogenic KRASG12C.

  • Mei Zeng‎ et al.
  • Cell chemical biology‎
  • 2020‎

KRAS is the most frequently mutated oncogene found in pancreatic, colorectal, and lung cancers. Although it has been challenging to identify targeted therapies for cancers harboring KRAS mutations, KRASG12C can be targeted by small-molecule inhibitors that form covalent bonds with cysteine 12 (C12). Here, we designed a library of C12-directed covalent degrader molecules (PROTACs) and subjected them to a rigorous evaluation process to rapidly identify a lead compound. Our lead degrader successfully engaged CRBN in cells, bound KRASG12Cin vitro, induced CRBN/KRASG12C dimerization, and degraded GFP-KRASG12C in reporter cells in a CRBN-dependent manner. However, it failed to degrade endogenous KRASG12C in pancreatic and lung cancer cells. Our data suggest that inability of the lead degrader to effectively poly-ubiquitinate endogenous KRASG12C underlies the lack of activity. We discuss challenges for achieving targeted KRASG12C degradation and proposed several possible solutions which may lead to efficient degradation of endogenous KRASG12C.


A randomized, double-blind, placebo-controlled, dose-ranging study using Genz-644470 and sevelamer carbonate in hyperphosphatemic chronic kidney disease patients on hemodialysis.

  • Moustafa Moustafa‎ et al.
  • International journal of nephrology and renovascular disease‎
  • 2014‎

Genz-644470 is a new, nonabsorbed phosphate binding polymer. In an in vitro competitive phosphate binding assay, Genz-644470 bound significantly more phosphate per gram than sevelamer. As a consequence, this clinical study evaluated the ability of Genz-644470 to lower serum phosphorus in patients on hemodialysis and compared serum phosphorus lowering of Genz-644470 with sevelamer carbonate and placebo. Because three different fixed doses of Genz-644470 and sevelamer carbonate were used, phosphate-lowering dose-responses of each agent were also analyzed.


Structural dataset for the fast-exchanging KRAS G13D.

  • Jia Lu‎ et al.
  • Data in brief‎
  • 2015‎

Cancers bearing the KRAS G13D mutation are notable for their distinct clinical behavior relative to other oncogenic KRAS mutations. We hypothesized that primary biochemical or biophysical properties of KRAS G13D might contribute to these clinical observations and as part of our study undertook structural studies using x-ray crystallography. In this data article we discuss several x-ray diffraction datasets that yielded structures of oncogenic KRAS mutants including a high resolution (1.13 Å) structure of KRAS G13D. The datasets are typical for high resolution x-ray diffraction data and allow the construction of atomic resolution, three dimensional structural models with high confidence. This data can be correlated with biochemical information such as defects in substrate binding kinetics, GTPase activities and interactions with the RAS effector RAF kinase.


Autonomic symptoms are common and are associated with overall symptom burden and disease activity in primary Sjogren's syndrome.

  • Julia L Newton‎ et al.
  • Annals of the rheumatic diseases‎
  • 2012‎

To determine the prevalence of autonomic dysfunction (dysautonomia) among patients with primary Sjögren's syndrome (PSS) and the relationships between dysautonomia and other clinical features of PSS.


The impact of neoadjuvant concurrent chemoradiation on exosomal markers (CD63 and CD9) expression and their prognostic significance in patients with rectal adenocarcinoma.

  • Moh'd Khushman‎ et al.
  • Oncotarget‎
  • 2021‎

Exosomes have pivotal roles in cancer development. The impact of neoadjuvant concurrent chemoradiation (NCCR) on exosomal markers (CD63 and CD9) expression and their prognostic significance in patients with rectal adenocarcinoma are yet to be explored.


A nephroprotective iodinated contrast agent with cardioprotective properties: A pilot study.

  • Elizabeth S Rowe‎ et al.
  • Journal of neuroimaging : official journal of the American Society of Neuroimaging‎
  • 2021‎

Evaluation and treatment of acute ischemic syndromes, in the heart and brain, require vessel visualization by iodinated X-ray contrast agents. However, these contrast agents can induce injury, in both the kidneys and target organs themselves. Sulfobutylether beta cyclodextrin (SBECD) added to iohexol (SBECD-iohexol) (Captisol Enabled-iohexol, Ligand Pharmaceuticals, Inc, San Diego, CA) is currently in clinical trials in cardiovascular procedures, to determine its relative renal safety in high-risk patients. Preclinical studies showed that SBECD-iohexol reduced contrast-induced acute kidney injury in rodent models by blocking apoptosis. The current study was undertaken to determine whether SBECD-iohexol is also cardioprotective, in the male rat ischemia-reperfusion model, compared to iohexol alone.


PVRIG is a novel natural killer cell immune checkpoint receptor in acute myeloid leukemia.

  • Jessica Li‎ et al.
  • Haematologica‎
  • 2021‎

This study explored the novel immune checkpoint poliovirus receptor-related immunoglobulin domain-containing (PVRIG) in acute myeloid leukemia (AML). We showed that AML patient blasts consistently expressed the PVRIG ligand (poliovirus receptor-related 2, PVRL2). Furthermore, PVRIG blockade significantly enhanced NK cell killing of PVRL2+, poliovirus receptor (PVR)lo AML cell lines, and significantly increased NK cell activation and degranulation in the context of patient primary AML blasts. However, in AML patient bone marrow, NK cell PVRIG expression levels were not increased. To understand how PVRIG blockade might potentially be exploited therapeutically, we investigated the biology of PVRIG and revealed that NK cell activation resulted in reduced PVRIG expression on the cell surface. This occurred whether NK cells were activated by tumour cell recognition, cytokines (IL-2 and IL-12) or activating receptor stimulation (CD16 and NKp46). PVRIG was present at higher levels in the cytoplasm than on the cell surface, particularly on CD56bright NK cells, which further increased cytoplasmic PVRIG levels following IL-2 and IL-12 activation. PVRIG was continually transported to the cell surface via the endoplasmic reticulum (ER) and Golgi in both unstimulated and activated NK cells. Taken together, our findings suggest that anti- PVRIG blocking antibody functions by binding to surface-bound PVRIG, which undergoes rapid turnover in both unstimulated and activated NK cells. We conclude that the PVRIGPVRL2 immune checkpoint axis can feasibly be targeted with PVRIG blocking antibody for NK-mediated immunotherapy of PVRL2+ AML.


Structural Dynamics in Ras and Related Proteins upon Nucleotide Switching.

  • Rane A Harrison‎ et al.
  • Journal of molecular biology‎
  • 2016‎

Structural dynamics of Ras proteins contributes to their activity in signal transduction cascades. Directly targeting Ras proteins with small molecules may rely on the movement of a conserved structural motif, switch II. To understand Ras signaling and advance Ras-targeting strategies, experimental methods to measure Ras dynamics are required. Here, we demonstrate the utility of hydrogen-deuterium exchange (HDX) mass spectrometry (MS) to measure Ras dynamics by studying representatives from two branches of the Ras superfamily, Ras and Rho. A comparison of differential deuterium exchange between active (GMPPNP-bound) and inactive (GDP-bound) proteins revealed differences between the families, with the most notable differences occurring in the phosphate-binding loop and switch II. The P-loop exchange signature correlated with switch II dynamics observed in molecular dynamics simulations focused on measuring main-chain movement. HDX provides a means of evaluating Ras protein dynamics, which may be useful for understanding the mechanisms of Ras signaling, including activated signaling of pathologic mutants, and for targeting strategies that rely on protein dynamics.


KRAS Dimerization Impacts MEK Inhibitor Sensitivity and Oncogenic Activity of Mutant KRAS.

  • Chiara Ambrogio‎ et al.
  • Cell‎
  • 2018‎

The mechanism by which the wild-type KRAS allele imparts a growth inhibitory effect to oncogenic KRAS in various cancers, including lung adenocarcinoma (LUAD), is poorly understood. Here, using a genetically inducible model of KRAS loss of heterozygosity (LOH), we show that KRAS dimerization mediates wild-type KRAS-dependent fitness of human and murine KRAS mutant LUAD tumor cells and underlies resistance to MEK inhibition. These effects are abrogated when wild-type KRAS is replaced by KRASD154Q, a mutant that disrupts dimerization at the α4-α5 KRAS dimer interface without changing other fundamental biochemical properties of KRAS, both in vitro and in vivo. Moreover, dimerization has a critical role in the oncogenic activity of mutant KRAS. Our studies provide mechanistic and biological insights into the role of KRAS dimerization and highlight a role for disruption of dimerization as a therapeutic strategy for KRAS mutant cancers.


KRAS G12C Drug Development: Discrimination between Switch II Pocket Configurations Using Hydrogen/Deuterium-Exchange Mass Spectrometry.

  • Jia Lu‎ et al.
  • Structure (London, England : 1993)‎
  • 2017‎

KRAS G12C, the most common RAS mutation found in non-small-cell lung cancer, has been the subject of multiple recent covalent small-molecule inhibitor campaigns including efforts directed at the guanine nucleotide pocket and separate work focused on an inducible pocket adjacent to the switch motifs. Multiple conformations of switch II have been observed, suggesting that switch II pocket (SIIP) binders may be capable of engaging a range of KRAS conformations. Here we report the use of hydrogen/deuterium-exchange mass spectrometry (HDX MS) to discriminate between conformations of switch II induced by two chemical classes of SIIP binders. We investigated the structural basis for differences in HDX MS using X-ray crystallography and discovered a new SIIP configuration in response to binding of a quinazoline chemotype. These results have implications for structure-guided drug design targeting the RAS SIIP.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: