Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

Animal models of disuse-induced bone loss: study protocol for a systematic review.

  • Mikkel Bo Brent‎ et al.
  • Systematic reviews‎
  • 2020‎

Disuse is a cardinal sign of various neurological diseases like stroke, cerebral palsy, and amyotrophic lateral sclerosis. Disuse leads to reduced mechanical loading of the skeleton, and a substantial and significant loss of bone mass quickly materializes. Several animal models have been proposed to investigate the pathogenesis of disuse-induced bone loss and to test new pharmaceutical targets to counteract it. As animal models may overcome several of the limitations in observational studies conducted in patients and allow for measurements not possible in humans, the primary objective of the present study is to provide a comprehensive overview of the available animal models of disuse-induced bone loss.


Retinal oxygen supply shaped the functional evolution of the vertebrate eye.

  • Christian Damsgaard‎ et al.
  • eLife‎
  • 2019‎

The retina has a very high energy demand but lacks an internal blood supply in most vertebrates. Here we explore the hypothesis that oxygen diffusion limited the evolution of retinal morphology by reconstructing the evolution of retinal thickness and the various mechanisms for retinal oxygen supply, including capillarization and acid-induced haemoglobin oxygen unloading. We show that a common ancestor of bony fishes likely had a thin retina without additional retinal oxygen supply mechanisms and that three different types of retinal capillaries were gained and lost independently multiple times during the radiation of vertebrates, and that these were invariably associated with parallel changes in retinal thickness. Since retinal thickness confers multiple advantages to vision, we propose that insufficient retinal oxygen supply constrained the functional evolution of the eye in early vertebrates, and that recurrent origins of additional retinal oxygen supply mechanisms facilitated the phenotypic evolution of improved functional eye morphology.


PTH (1-34) and growth hormone in prevention of disuse osteopenia and sarcopenia in rats.

  • Mikkel Bo Brent‎ et al.
  • Bone‎
  • 2018‎

Osteopenia and sarcopenia develops rapidly during disuse. The study investigated whether intermittent parathyroid hormone (1-34) (PTH) and growth hormone (GH) administered alone or in combination could prevent or mitigate disuse osteopenia and sarcopenia in rats. Disuse was achieved by injecting 4IU botulinum toxin A (BTX) into the right hindlimb musculature of 12-14-week-old female Wistar rats. Seventy-two rats were divided into six groups: 1. Baseline; 2. Ctrl; 3. BTX; 4. BTX+GH; 5. BTX+PTH; 6. BTX+PTH+GH. PTH (1-34) (60μg/kg/day) and GH (5mg/kg/day). The animals were sacrificed after 6weeks of treatment. Sarcopenia was established by histomorphometry, while the skeletal properties were determined using DXA, μCT, mechanical testing, and dynamic bone histomorphometry. Disuse resulted in lower muscle mass (-63%, p<0.05), trabecular BV/TV (-28%, p<0.05), Tb.Th (-11%, p<0.05), lower diaphyseal cortical thickness (-10%, p<0.001), and lower bone strength at the distal femoral metaphysis (-27%, p<0.001) compared to Ctrl animals. PTH fully counteracted the immobilization-induced lower BV/TV, Tb.Th, and distal femoral metaphyseal strength. GH increased muscle mass (+17%, p<0.05) compared to BTX, but did not prevent the immobilization-induced loss of bone strength, BV/TV, and cortical trabecular thickness. Combination of PTH and GH increased distal femoral metaphyseal bone strength (+45%, p<0.001), BV/TV (+50%, p<0.05), Tb.Th (+40%, p<0.05), and whole femoral aBMD (+15%, p<0.001) compared to BTX and muscle mass (+21%, p<0.05) compared to BTX+PTH. In conclusion, PTH and GH in combination is more efficient at preventing the disuse-related deterioration of bone strength, density, and micro-architecture than either PTH or GH given as monotherapy. Furthermore, GH, either alone or in combination with PTH, attenuated disuse-induced loss of muscle mass. The combination of PTH and GH resulted in a more effective treatment than PTH and GH as monotherapy.


Activin type IIA decoy receptor and intermittent parathyroid hormone in combination overturns the bone loss in disuse-osteopenic mice.

  • Mikkel Bo Brent‎ et al.
  • Bone‎
  • 2021‎

Damage of the lower motor neuron cell bodies or their axons results in reduced or abolished voluntary movement accompanied by a substantial loss of bone and muscle mass. Intermittent parathyroid hormone 1-34 (PTH) (teriparatide) is one of the most potent bone-anabolic treatment regimens. ActRIIA-mFc is an activin type IIA decoy receptor that increases bone mass mediated by inhibition of the activin receptor signaling pathway. We investigated whether PTH or ActRIIA-mFc alone or in combination could prevent loss of bone and muscle mass induced by injecting botulinum toxin A (BTX) into the right hind limb in mice. Seventy-two 16-week-old female C57BL/6 mice were allocated to the following groups: Baseline, Control, BTX, BTX + ActRIIA-mFc (10 mg/kg), BTX + PTH (100 μg/kg), and BTX + ActRIIA-mFc + PTH. The mice were sacrificed after three weeks of disuse and treatment. In contrast to monotherapy with PTH, ActRIIA-mFc alone or in combination with PTH was able partly or completely to prevent disuse-induced loss of whole femoral bone mass, trabecular thickness, and bone strength. Moreover, an additive effect of ActRIIA-mFc and PTH on areal bone mineral density and trabecular bone volume was found. In summary, ActRIIA-mFc and PTH in combination were more effective in preventing disuse-induced bone loss and deterioration of trabecular micro-architecture than either treatment alone.


Hypobaric hypoxia deteriorates bone mass and strength in mice.

  • Mikkel Bo Brent‎ et al.
  • Bone‎
  • 2022‎

Mountaineers at high altitude are at increased risk of acute mountain sickness as well as high altitude pulmonary and cerebral edema. A densitometric study in mountaineers has suggested that expeditions at high altitude decrease bone mineral density. Surprisingly, the in vivo skeletal effects of hypobaric hypoxia are largely unknown, and have not been studied using advanced contemporary methods to assess bone microstructure. Eighty-four 22-week-old female mice were divided into seven groups with 12 mice in each group: 1. Baseline; 2. Normobaric, 4 weeks; 3. Hypobaric hypoxia, 4 weeks; 4. Normobaric, 8 weeks; 5. Hypobaric hypoxia, 8 weeks; 6. Normobaric, 12 weeks; and 7. Hypobaric hypoxia, 12 weeks. Hypobaric hypoxia mice were housed in hypobaric chambers at an ambient pressure of 500 mbar (5500 m altitude), while normobaric mice were housed at sea level atmospheric pressure for 4, 8, or 12 weeks, respectively. Hypobaric hypoxia had a profound impact on femoral cortical bone and L4 trabecular bone, while the effect on femoral trabecular bone was less pronounced. Hypobaric hypoxia reduced the bone strength of the femoral mid-diaphysis and L4 at all time-points. At femoral cortical bone, hypobaric hypoxia reduced bone formation through fewer mineralizing surfaces and lower bone formation rate after 2 weeks. In addition, bone strength decreased, and C-terminal telopeptide of type I collagen (CTX-I) increased independently of the duration of exposure to simulated high altitude. At L4, hypobaric hypoxia resulted in a substantial reduction in bone volume fraction, trabecular thickness, and trabecular number after 4 weeks of exposure. Hypobaric hypoxia reduced bone strength and femoral bone mass, while femoral trabecular bone was much less affected, indicating the skeletal response to hypobaric hypoxia differ between cortical and trabecular bone. These findings provide initial preclinical support for future clinical studies in mountaineers to assess bone status and bone strength after exposure to prolonged high altitude exposure.


Zoledronate prevents lactation induced bone loss and results in additional post-lactation bone mass in mice.

  • Mette Høegh Wendelboe‎ et al.
  • Bone‎
  • 2016‎

In rodents, lactation is associated with a considerable and very rapid bone loss, which almost completely recovers after weaning. The aim of the present study was to investigate whether the bisphosphonate Zoledronate (Zln) can inhibit lactation induced bone loss, and if Zln interferes with recovery of bone mass after lactation has ceased. Seventy-six 10-weeks-old NMRI mice were divided into the following groups: Baseline, Pregnant, Lactation, Lactation+Zln, Recovery, Recovery+Zln, and Virgin Control (age-matched). The lactation period was 12days, then the pups were removed, and thereafter recovery took place for 28days. Zln, 100μg/kg, was given s.c. on the day of delivery, and again 4 and 8days later. Mechanical testing, μCT, and dynamic histomorphometry were performed. At L4, lactation resulted in a substantial loss of bone strength (-55% vs. Pregnant, p<0.01), BV/TV (-40% vs. Pregnant, p<0.01), and trabecular thickness (Tb.Th) (-29% vs. Pregnant, p<0.001). Treatment with Zln completely prevented lactation induced loss of bone strength, BV/TV, and Tb.Th at L4. Full recovery of micro-architectural and mechanical properties was found 28days after weaning in vehicle-treated mice. Interestingly, the recovery group treated with Zln during the lactation period had higher BV/TV (+45%, p<0.01) and Tb.Th (+16%, p<0.05) compared with virgin controls. Similar results were found at the proximal tibia and femur. This indicates that Zln did not interfere with the bone formation taking place after weaning. On this background, we conclude that post-lactation bone formation is not dependent on a preceding lactation induced bone loss.


Genetic diversity of PRRS virus collected from air samples in four different regions of concentrated swine production during a high incidence season.

  • Barbara Brito‎ et al.
  • Viruses‎
  • 2014‎

Porcine Reproductive and Respiratory Syndrome (PRRS) is one of the most relevant swine diseases in the US, costing the industry millions of dollars per year. Unfortunately, disease control is difficult because of the virus dynamics, as PRRS virus (PRRSV) can be transmitted by air between farms, especially, in regions with high density of swine operations. While long distance airborne transport of PRRSV has been reported, there is little information regarding the dynamics of PRRSV airborne challenge in concentrated regions. The objective of this study was to describe the frequency of detection, dose and diversity of PRRSV in air samples collected across four concentrated production regions during the PRRS-high risk season in the Midwestern US (October-December) in 2012. Between 29% and 42% of the air samples were positive in all four sampling sites. Sequencing of the recovered virus showed a wide diversity of field and vaccine variants. Higher frequency, dose, and diversity of PRRSV were observed in air at locations with higher pig density. These findings suggest that regional spread of PRRSV due to aerosol transmission of PRRSV represents a significant risk to susceptible herds in concentrated regions of domestic pig production where PRRSV is endemic.


Immobilization induced osteopenia is strain specific in mice.

  • Andreas Lodberg‎ et al.
  • Bone reports‎
  • 2015‎

Immobilization causes rapid and massive bone loss. By comparing Botulinum Toxin A (BTX)-induced bone loss in mouse strains with different genetic backgrounds we investigated whether the genetic background had an influence on the severity of the osteopenia. Secondly, we investigated whether BTX had systemic effects on bone. Female mice from four inbred mouse strains (BALB/cJ, C57BL/6 J, DBA/2 J, and C3H/HeN) were injected unilaterally with BTX (n = 10/group) or unilaterally with saline (n = 10/group). Mice were euthanized after 21 days, and the bone properties evaluated using μCT, DXA, bone histomorphometry, and mechanical testing. BTX resulted in substantially lower trabecular bone volume fraction (BV/TV) and trabecular thickness in all mouse strains. The deterioration of BV/TV was significantly greater in C57BL/6 J (- 57%) and DBA/2 J (- 60%) than in BALB/cJ (- 45%) and C3H/HeN (- 34%) mice. The loss of femoral neck fracture strength was significantly greater in C57BL/6 J (- 47%) and DBA/2 J (- 45%) than in C3H (- 25%) mice and likewise the loss of mid-femoral fracture strength was greater in C57BL/6 J (- 17%), DBA/2 J (- 12%), and BALB/cJ (- 9%) than in C3H/HeN (- 1%) mice, which were unaffected. Using high resolution μCT we found no evidence of a systemic effect on any of the microstructural parameters of the contralateral limb. Likewise, there was no evidence of a systemic effect on the bone strength in any mouse strain. We did, however, find a small systemic effect on aBMD in DBA/2 J and C3H/HeN mice. The present study shows that BTX-induced immobilization causes the greatest loss of cortical and trabecular bone in C57BL/6 J and DBA/2 J mice. A smaller loss of bone microstructure and fracture strength was seen in BALB/cJ mice, while the bone microstructure and fracture strength of C3H/HeN mice were markedly less affected. This indicates that BTX-induced loss of bone is mouse strain dependent. We found only minimal systemic effects of BTX.


The effect of casein glycomacropeptide versus free synthetic amino acids for early treatment of phenylketonuria in a mice model.

  • Kirsten K Ahring‎ et al.
  • PloS one‎
  • 2022‎

Management of phenylketonuria (PKU) is mainly achieved through dietary control with limited intake of phenylalanine (Phe) from food, supplemented with low protein (LP) food and a mixture of free synthetic (FS) amino acids (AA) (FSAA). Casein glycomacropeptide (CGMP) is a natural peptide released in whey during cheese making by the action of the enzyme chymosin. Because CGMP in its pure form does not contain Phe, it is nutritionally suitable as a supplement in the diet for PKU when enriched with specific AAs. Lacprodan® CGMP-20 (= CGMP) used in this study contained only trace amounts of Phe due to minor presence of other proteins/peptides.


Sex-Specific Effect of High-Fat Diet on Glycerol Metabolism in Murine Adipose Tissue and Liver.

  • Francesco Maria Iena‎ et al.
  • Frontiers in endocrinology‎
  • 2020‎

Obesity is associated with increased plasma glycerol levels. The coordinated regulation of glycerol channels in adipose tissue (AQP7) and the liver (AQP9) has been suggested as an important contributor to the pathophysiology of type-2-diabetes mellitus, as it would provide glycerol for hepatic synthesis of glucose and triglycerides. The regulation of AQP7 and AQP9 is influenced by sex. This study investigates the effect of a high-fat diet (HFD) on glycerol metabolism in mice and the influence of sex and GLP-1-receptor agonist treatment. Female and male C57BL/6JRj mice were fed either a control diet or a HFD for 12 or 24 weeks. Liraglutide was administered (1 mg/kg/day) to a subset of female mice. After 12 weeks of HFD, females had gained less weight than males. In adipose tissue, only females demonstrated an increased abundance of AQP7, whereas only males demonstrated a significant increase in glycerol kinase abundance and adipocyte size. 24 weeks of HFD resulted in a more comparable effect on weight gain and adipose tissue in females and males. HFD resulted in marked hepatic steatosis in males only and had no significant effect on the hepatic abundance of AQP9. Liraglutide treatment generally attenuated the effects of HFD on glycerol metabolism. In conclusion, no coordinated upregulation of glycerol channels in adipose tissue and liver was observed in response to HFD. The effect of HFD on glycerol metabolism is sex-specific in mice, and we propose that the increased AQP7 abundance in female adipose tissue could contribute to their less severe response to HFD.


Additive effect of PTH (1-34) and zoledronate in the prevention of disuse osteopenia in rats.

  • Jens Bay Vegger‎ et al.
  • Bone‎
  • 2014‎

Immobilization is known to cause a rapid bone loss due to increased osteoclastic bone resorption and decreased osteoblastic bone formation. Zoledronate (Zln) is a potent anti-resorptive pharmaceutical, while intermittent PTH is a potent bone anabolic agent. The aim of the present study was to investigate whether PTH or Zln alone or in combination could prevent immobilization-induced osteopenia. Immobilization was achieved by injecting 4IU Botox (BTX) into the right hind limb musculature. Seventy-two 16-week-old female Wistar rats were randomized into 6 groups; baseline (Base), control (Ctrl), BTX, BTX+PTH, BTX+Zln, and BTX+PTH+Zln. PTH (1-34) (80μg/kg) was given 5days/week and Zln (100μg/kg) was given once at study start. The animals were killed after 4weeks of treatment. The bone properties were evaluated using DEXA, μCT, dynamic bone histomorphometry, and mechanical testing. BTX resulted in lower femoral trabecular bone volume fraction (BV/TV) (-25%, p<0.05), lower tibial trabecular bone formation rate (BFR/BS) (-29%, p<0.05), and lower bone strength (Fmax) at the distal femur (-19%, p<0.001) compared with Ctrl. BTX+PTH resulted in higher femoral BV/TV (+31%, p<0.05), higher tibial trabecular BFR/BS (+297%, p<0.05), and higher Fmax at the distal femur (+11%, p<0.05) compared with BTX. BTX+Zln resulted in higher femoral BV/TV (+36%, p<0.05), lower tibial trabecular BFR/BS (-93%, p<0.05), and higher Fmax at the distal femur (+10%, p<0.05) compared with BTX. BTX+PTH+Zln resulted in higher femoral BV/TV (+70%, p<0.001), higher tibial trabecular BFR/BS (+59%, p<0.05), and higher Fmax at the distal femur (+32%, p<0.001) compared with BTX. In conclusion, BTX-induced immobilization led to lower BV/TV, BFR/BS, and Fmax. In general, PTH or Zln alone prevented the BTX-induced osteopenia, whereas PTH and Zln given in combination not only prevented, but also increased BV/TV and BFR/BS, and maintained Fmax at the distal femoral metaphysis compared with Ctrl.


Anti-sclerostin antibodies and abaloparatide have additive effects when used as a countermeasure against disuse osteopenia in female rats.

  • Mikkel Bo Brent‎ et al.
  • Bone‎
  • 2022‎

Prolonged disuse and substantial mechanical unloading are particularly damaging to skeletal integrity. Preclinical studies in rodents and clinical studies have highlighted the need for potent bone anabolic drugs to counteract disuse-induced osteopenia. The aim of present study was to compare the efficacy of romosozumab (Scl-Ab) and abaloparatide (ABL), alone or in combination, to prevent botulinum toxin (BTX) induced bone loss in a rat model. Eighty female Wistar rats were divided into the following six groups: 1. Baseline (n = 12); 2. Control (Ctrl) (n = 12); 3. BTX (n = 12); 4. BTX + Scl-Ab (n = 16); 5. BTX + ABL (n = 12); and 6. BTX + Scl-Ab + ABL (n = 16). Disuse was achieved by injecting 4 IU BTX into the hind limb musculature at study start. Scl-Ab (25 mg/kg) was injected s.c. twice weekly, while ABL (80 μg/kg) was injected s.c. five days a week for four weeks. Hind limb disuse dramatically decreased muscle mass and skeletal integrity and deteriorated the cortical morphology and trabecular microstructure. Treatment with Scl-Ab alone prevented most of the adverse cortical and trabecular effects of disuse, while ABL monotherapy mainly attenuated the disuse-induced loss of femoral areal bone mineral density (aBMD). Moreover, the combination of Scl-Ab and ABL not only counteracted most of the negative skeletal effects of unloading, but also increased aBMD (+10% and +20%), epiphyseal trabecular bone volume fraction (BV/TV) (+25% and +73%), and metaphyseal bone strength (+18% and +30%) significantly above that of Scl-Ab or ABL monotherapy, respectively. The potent and additive osteoanabolic effect of Scl-Ab and ABL, when given in combination, is highly intriguing and underlines that an osteoanabolic bone gain can be maximized by utilizing two pharmaceuticals targeting different cellular signaling pathways. From a clinical perspective, a combination treatment may be warranted in patients where the osteoanabolic effect of either monotherapy is not sufficient, or if a dose-reduction is required due to adverse effects.


The low-density lipoprotein receptor-related protein 1 (LRP1) interactome in the human cornea.

  • Emilie Hage Mogensen‎ et al.
  • Experimental eye research‎
  • 2022‎

The human cornea is responsible for approximately 70% of the eye's optical power and, together with the lens, constitutes the only transparent tissue in the human body. Low-density lipoprotein receptor-related protein 1 (LRP1), a large, multitalented endocytic receptor, is expressed throughout the human cornea, yet its role in the cornea remains unknown. More than 30 years ago, LRP1 was purified by exploiting its affinity for the activated form of the protease inhibitor alpha-2-macroblulin (A2M), and the original purification protocol is generally referred to in studies involving full-length LRP1. Here, we provide a novel and simplified LRP1 purification protocol based on LRP1's affinity for receptor-related protein (RAP) that produces significantly higher yields of authentic LRP1. Purified LRP1 was used to map its unknown interactome in the human cornea. Corneal proteins extracted under physiologically relevant conditions were subjected to LRP1 affinity pull-down, and LRP1 ligand candidates were identified by LC-MS/MS. A total of 28 LRP1 ligand candidates were found, including 22 novel ligands. The LRP1 corneal interactome suggests a novel role for LRP1 as a regulator of the corneal immune response, structure, and ultimately corneal transparency.


Drill-Hole Bone Defects in Animal Models of Bone Healing: Protocol for a Systematic Review.

  • Frederik Duch Bromer‎ et al.
  • JMIR research protocols‎
  • 2022‎

Bone fractures are common conditions of the musculoskeletal system. Several animal models of bone fractures have been established to help elucidate the complex process of bone healing. In the last decades, drill-hole bone defects have emerged as a method to study bone healing. Animal models of drill-hole defects are easy to standardize and do not require external fixation of the bone. However, current studies of drill-hole bone defects lack detailed descriptions of techniques and interstudy standardization.


Artificial intelligence-assisted identification and quantification of osteoclasts.

  • Thomas Emmanuel‎ et al.
  • MethodsX‎
  • 2021‎

Quantification of osteoclasts to assess bone resorption is a time-consuming and tedious process. Since the inception of bone histomorphometry and manual counting of osteoclasts using bright-field microscopy, several approaches have been proposed to accelerate the counting process using both free and commercially available software. However, most of the present alternatives depend on manual or semi-automatic color segmentation and do not take advantage of artificial intelligence (AI). The present study directly compare estimates of osteoclast-covered surfaces (Oc.S/BS) obtained by the conventional manual method using a bright-field microscope to that obtained by a new AI-assisted method. We present a detailed step-by-step guide for the AI-based method. Tibiae from Wistar rats were either enzymatically stained for TRAP or immunostained for cathepsin K to identify osteoclasts. We found that estimation of Oc.S/BS by the new AI-assisted method was considerably less time-consuming, while still providing similar results to the conventional manual method. In addition, the retrainable AI-module used in the present study allows for fully automated overnight batch processing of multiple annotated sections.•Bone histomorphometry•AI-assisted osteoclast identification•TRAP and cathepsin K.


A traditional evolutionary history of foot-and-mouth disease viruses in Southeast Asia challenged by analyses of non-structural protein coding sequences.

  • Barbara Brito‎ et al.
  • Scientific reports‎
  • 2018‎

Recombination of rapidly evolving RNA-viruses provides an important mechanism for diversification, spread, and emergence of new variants with enhanced fitness. Foot-and-mouth disease virus (FMDV) causes an important transboundary disease of livestock that is endemic to most countries in Asia and Africa. Maintenance and spread of FMDV are driven by periods of dominance of specific viral lineages. Current understanding of the molecular epidemiology of FMDV lineages is generally based on the phylogenetic relationship of the capsid-encoding genes, with less attention to the process of recombination and evolution of non-structural proteins. In this study, the putative recombination breakpoints of FMDVs endemic to Southeast Asia were determined using full-open reading frame sequences. Subsequently, the lineages' divergence times of recombination-free genome regions were estimated. These analyses revealed a close relationship between two of the earliest endemic viral lineages that appear unrelated when only considering the phylogeny of their capsid proteins. Contrastingly, one lineage, named O/CATHAY, known for having a particular host predilection (pigs) has evolved independently. Additionally, intra-lineage recombination occurred at different breakpoints compared to the inter-lineage process. These results provide new insights about FMDV recombination patterns and the evolutionary interdependence of FMDV serotypes and lineages.


First detection of foot-and-mouth disease virus O/Ind-2001d in Vietnam.

  • Le T Vu‎ et al.
  • PloS one‎
  • 2017‎

In recent years, foot-and-mouth disease virus (FMDV) serotype O, topotype Middle East-South Asia (ME-SA), lineage Ind-2001d has spread from the Indian subcontinent to the Middle East, North Africa, and Southeast Asia. In the current report, we describe the first detection of this lineage in Vietnam in May, 2015 in Đắk Nông province. Three subsequent outbreaks caused by genetically related viruses occurred between May-October, 2015 after which the virus was not detected in clinical outbreaks for at least 15 subsequent months. The observed outbreaks affected (in chronological order): cattle in Đắk Nông province, pigs in Đắk Lắk province and Đắk Nông province, and cattle in Ninh Thuận province. The clinical syndromes associated with these outbreaks were consistent with typical FMD in the affected species. Overall attack rate on affected premises was 0.85 in pigs and 0.93 in cattle over the course of the outbreak. Amongst 378 pigs at risk on affected premises, 85 pigs died during the outbreaks; there were no deaths among cattle. The manner in which FMDV/O/ME-SA/Ind-2001d was introduced into Vietnam remains undetermined; however, movement of live cattle is the suspected route. This incursion has substantial implications for epidemiology and control of FMD in Southeast Asia.


Epidemiological investigations of the introduction of porcine reproductive and respiratory syndrome virus in Chile, 2013-2015.

  • Víctor Neira‎ et al.
  • PloS one‎
  • 2017‎

Porcine reproductive and respiratory syndrome (PRRS) is endemic in most pork producing countries. In Chile, eradication of PRRS virus (PRRSV) was successfully achieved in 2009 as a result of the combined efforts of producers and the animal health authorities. In October 2013, after several years without detecting PRRSV under surveillance activities, suspected cases were confirmed on a commercial swine farm. Here, we describe the PRRS epidemic in Chile between October 2013 and April 2015, and we studied the origins and spread of PRRSV throughout the country using official surveillance data and Bayesian phylogenetic analysis. Our results indicate that the outbreaks were caused by a PRRSV closely related to viruses present in swine farms in North America, and different from the strain that circulated in the country before 2009. Using divergence time estimation analysis, we found that the 2013-2015 PRRSV may have been circulating in Chile for at least one month before the first detection. A single strain of PRRSV spread into a limited number of commercial and backyard swine farms. New infections in commercial systems have not been reported since October 2014, and eradication is underway by clearing the disease from the few commercial and backyard farms that remain positive. This is one of the few documented experiences of PRRSV introduction into a disease-free country.


Superoxide dismutase 3 is expressed in bone tissue and required for normal bone homeostasis and mineralization.

  • Cecilie L Matthiesen‎ et al.
  • Free radical biology & medicine‎
  • 2021‎

Superoxide dismutase 3 (SOD3) is an extracellular protein with the capacity to convert superoxide into hydrogen peroxide, an important secondary messenger in redox regulation. To investigate the utility of zebrafish in functional studies of SOD3 and its relevance for redox regulation, we have characterized the zebrafish orthologues; Sod3a and Sod3b. Our analyses show that both recombinant Sod3a and Sod3b express SOD activity, however, only Sod3b is able to bind heparin. Furthermore, RT-PCR analyses reveal that sod3a and sod3b are expressed in zebrafish embryos and are present primarily in separate organs in adult zebrafish, suggesting distinct functions in vivo. Surprisingly, both RT-PCR and whole mount in situ hybridization showed specific expression of sod3b in skeletal tissue. To further investigate this observation, we compared femoral bone obtained from wild-type and SOD3-/- mice to determine whether a functional difference was apparent in healthy adult mice. Here we report, that bone from SOD3-/- mice is less mineralized and characterized by significant reduction of cortical and trabecular thickness in addition to reduced mechanical strength. These analyses show that SOD3 plays a hitherto unappreciated role in bone development and homeostasis.


The Efficacy of PTH and Abaloparatide to Counteract Immobilization-Induced Osteopenia Is in General Similar.

  • Mikkel Bo Brent‎ et al.
  • Frontiers in endocrinology‎
  • 2020‎

Immobilization results in a substantial bone loss and increased fracture risk. Powerful bone anabolic therapies are necessary to counteract the bone loss and reduce fracture risk during periods with immobilization. Intermittent parathyroid hormone 1-34 (PTH) (teriparatide) and PTH related peptide analog abaloparatide (ABL) are potent bone anabolic therapies acting through the same receptor, but induce different durations of signaling response. We investigated the efficacy of PTH or ABL in preventing immobilization-induced bone loss in rats in a direct mole-to-mole comparison. Immobilization was achieved by injecting botulinum toxin type A (BTX) into the right hindlimb musculature. Sixty 14-week-old female Wistar rats were allocated to the following groups: Baseline, Control, BTX, BTX + PTH (80 μg/kg/day), and BTX + ABL (77 μg/kg/day). Immobilization resulted in a substantial and significant reduction in bone mineral density (aBMD), metaphyseal and epiphyseal trabecular bone volume fraction (BV/TV) and trabecular thickness (Tb.Th), metaphyseal trabecular number (Tb.N), and femoral neck bone strength. Both PTH and ABL prevented the immobilization-induced decrease in aBMD, metaphyseal and epiphyseal Tb.Th, and metaphyseal Tb.N. In addition, PTH rescued the reduction in metaphyseal BV/TV and femoral neck strength, while ABL did not. However, the effect of PTH and ABL did not differ significantly for serum calcium, aBMD, metaphyseal, and epiphyseal BV/TV, Tb.Th, or Tb.N. In conclusion, in a mole-to-mole comparison the efficacy of PTH and ABL is similar in counteracting immobilization-induced reduction in bone mineral density, deterioration in trabecular microarchitecture, and decrease in bone strength.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: