Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 205 papers

X-linked primary immunodeficiency associated with hemizygous mutations in the moesin (MSN) gene.

  • Chantal Lagresle-Peyrou‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2016‎

We investigated 7 male patients (from 5 different families) presenting with profound lymphopenia, hypogammaglobulinemia, fluctuating monocytopenia and neutropenia, a poor immune response to vaccine antigens, and increased susceptibility to bacterial and varicella zoster virus infections.


Protein arginine methyltransferase 1 is a novel regulator of MYCN in neuroblastoma.

  • Allison Eberhardt‎ et al.
  • Oncotarget‎
  • 2016‎

Amplification or overexpression of MYCN is associated with poor prognosis of human neuroblastoma. We have recently defined a MYCN-dependent transcriptional signature, including protein arginine methyltransferase 1 (PRMT1), which identifies a subgroup of patients with high-risk disease. Here we provide several lines of evidence demonstrating PRMT1 as a novel regulator of MYCN and implicating PRMT1 as a potential therapeutic target in neuroblastoma pathogenesis. First, we observed a strong correlation between MYCN and PRMT1 protein levels in primary neuroblastoma tumors. Second, MYCN physically associates with PRMT1 by direct protein-protein interaction. Third, depletion of PRMT1 through siRNA knockdown reduced neuroblastoma cell viability and MYCN expression. Fourth, we showed that PRMT1 regulates MYCN stability and identified MYCN as a novel substrate of PRMT1. Finally, we demonstrated that mutation of putatively methylated arginine R65 to alanine decreased MYCN stability by altering phosphorylation at residues serine 62 and threonine 58. These results provide mechanistic insights into the modulation of MYCN oncoprotein by PRMT1, and suggest that targeting PRMT1 may have a therapeutic impact on MYCN-driven oncogenesis.


Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis.

  • Vijay Ramaswamy‎ et al.
  • Journal of clinical oncology : official journal of the American Society of Clinical Oncology‎
  • 2016‎

Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known.


An animal model of MYC-driven medulloblastoma.

  • Yanxin Pei‎ et al.
  • Cancer cell‎
  • 2012‎

Medulloblastoma (MB) is the most common malignant brain tumor in children. Patients whose tumors exhibit overexpression or amplification of the MYC oncogene (c-MYC) usually have an extremely poor prognosis, but there are no animal models of this subtype of the disease. Here, we show that cerebellar stem cells expressing Myc and mutant Trp53 (p53) generate aggressive tumors following orthotopic transplantation. These tumors consist of large, pleiomorphic cells and resemble human MYC-driven MB at a molecular level. Notably, antagonists of PI3K/mTOR signaling, but not Hedgehog signaling, inhibit growth of tumor cells. These findings suggest that cerebellar stem cells can give rise to MYC-driven MB and identify a novel model that can be used to test therapies for this devastating disease.


Aberrant ERBB4-SRC Signaling as a Hallmark of Group 4 Medulloblastoma Revealed by Integrative Phosphoproteomic Profiling.

  • Antoine Forget‎ et al.
  • Cancer cell‎
  • 2018‎

The current consensus recognizes four main medulloblastoma subgroups (wingless, Sonic hedgehog, group 3 and group 4). While medulloblastoma subgroups have been characterized extensively at the (epi-)genomic and transcriptomic levels, the proteome and phosphoproteome landscape remain to be comprehensively elucidated. Using quantitative (phospho)-proteomics in primary human medulloblastomas, we unravel distinct posttranscriptional regulation leading to highly divergent oncogenic signaling and kinase activity profiles in groups 3 and 4 medulloblastomas. Specifically, proteomic and phosphoproteomic analyses identify aberrant ERBB4-SRC signaling in group 4. Hence, enforced expression of an activated SRC combined with p53 inactivation induces murine tumors that resemble group 4 medulloblastoma. Therefore, our integrative proteogenomics approach unveils an oncogenic pathway and potential therapeutic vulnerability in the most common medulloblastoma subgroup.


DNA methylation-based classification of central nervous system tumours.

  • David Capper‎ et al.
  • Nature‎
  • 2018‎

Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.


The RNA-binding protein Musashi1 affects medulloblastoma growth via a network of cancer-related genes and is an indicator of poor prognosis.

  • Dat T Vo‎ et al.
  • The American journal of pathology‎
  • 2012‎

Musashi1 (Msi1) is a highly conserved RNA-binding protein that is required during the development of the nervous system. Msi1 has been characterized as a stem cell marker, controlling the balance between self-renewal and differentiation, and has also been implicated in tumorigenesis, being highly expressed in multiple tumor types. We analyzed Msi1 expression in a large cohort of medulloblastoma samples and found that Msi1 is highly expressed in tumor tissue compared with normal cerebellum. Notably, high Msi1 expression levels proved to be a sign of poor prognosis. Msi1 expression was determined to be particularly high in molecular subgroups 3 and 4 of medulloblastoma. We determined that Msi1 is required for tumorigenesis because inhibition of Msi1 expression by small-interfering RNAs reduced the growth of Daoy medulloblastoma cells in xenografts. To characterize the participation of Msi1 in medulloblastoma, we conducted different high-throughput analyses. Ribonucleoprotein immunoprecipitation followed by microarray analysis (RIP-chip) was used to identify mRNA species preferentially associated with Msi1 protein in Daoy cells. We also used cluster analysis to identify genes with similar or opposite expression patterns to Msi1 in our medulloblastoma cohort. A network study identified RAC1, CTGF, SDCBP, SRC, PRL, and SHC1 as major nodes of an Msi1-associated network. Our results suggest that Msi1 functions as a regulator of multiple processes in medulloblastoma formation and could become an important therapeutic target.


TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma.

  • Marc Remke‎ et al.
  • Acta neuropathologica‎
  • 2013‎

Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association with increased patient age. The prognostic implications of these mutations were highly subgroup-specific. TERT mutations identified a subset with good and poor prognosis in SHH and Group 4 tumors, respectively. Monosomy 6 was mostly restricted to WNT tumors without TERT mutations. Hallmark SHH focal copy number aberrations and chromosome 10q deletion were mutually exclusive with TERT mutations within SHH tumors. TERT promoter mutations are the most common recurrent somatic point mutation in medulloblastoma, and are very highly enriched in adult SHH and WNT tumors. TERT mutations define a subset of SHH medulloblastoma with distinct demographics, cytogenetics, and outcomes.


Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium.

  • Daniel E Stange‎ et al.
  • Cell‎
  • 2013‎

Proliferation of the self-renewing epithelium of the gastric corpus occurs almost exclusively in the isthmus of the glands, from where cells migrate bidirectionally toward pit and base. The isthmus is therefore generally viewed as the stem cell zone. We find that the stem cell marker Troy is expressed at the gland base by a small subpopulation of fully differentiated chief cells. By lineage tracing with a Troy-eGFP-ires-CreERT2 allele, single marked chief cells are shown to generate entirely labeled gastric units over periods of months. This phenomenon accelerates upon tissue damage. Troy(+) chief cells can be cultured to generate long-lived gastric organoids. Troy marks a specific subset of chief cells that display plasticity in that they are capable of replenishing entire gastric units, essentially serving as quiescent "reserve" stem cells. These observations challenge the notion that stem cell hierarchies represent a "one-way street."


Hypermutation of the inactive X chromosome is a frequent event in cancer.

  • Natalie Jäger‎ et al.
  • Cell‎
  • 2013‎

Mutation is a fundamental process in tumorigenesis. However, the degree to which the rate of somatic mutation varies across the human genome and the mechanistic basis underlying this variation remain to be fully elucidated. Here, we performed a cross-cancer comparison of 402 whole genomes comprising a diverse set of childhood and adult tumors, including both solid and hematopoietic malignancies. Surprisingly, we found that the inactive X chromosome of many female cancer genomes accumulates on average twice and up to four times as many somatic mutations per megabase, as compared to the individual autosomes. Whole-genome sequencing of clonally expanded hematopoietic stem/progenitor cells (HSPCs) from healthy individuals and a premalignant myelodysplastic syndrome (MDS) sample revealed no X chromosome hypermutation. Our data suggest that hypermutation of the inactive X chromosome is an early and frequent feature of tumorigenesis resulting from DNA replication stress in aberrantly proliferating cells.


Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis.

  • Vijay Ramaswamy‎ et al.
  • The Lancet. Oncology‎
  • 2013‎

Recurrent medulloblastoma is a therapeutic challenge because it is almost always fatal. Studies have confirmed that medulloblastoma consists of at least four distinct subgroups. We sought to delineate subgroup-specific differences in medulloblastoma recurrence patterns.


Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas.

  • Sebastian Bender‎ et al.
  • Cancer cell‎
  • 2013‎

Two recurrent mutations, K27M and G34R/V, within histone variant H3.3 were recently identified in ∼50% of pHGGs. Both mutations define clinically and biologically distinct subgroups of pHGGs. Here, we provide further insight about the dominant-negative effect of K27M mutant H3.3, leading to a global reduction of the repressive histone mark H3K27me3. We demonstrate that this is caused by aberrant recruitment of the PRC2 complex to K27M mutant H3.3 and enzymatic inhibition of the H3K27me3-establishing methyltransferase EZH2. By performing chromatin immunoprecipitation followed by next-generation sequencing and whole-genome bisulfite sequencing in primary pHGGs, we show that reduced H3K27me3 levels and DNA hypomethylation act in concert to activate gene expression in K27M mutant pHGGs.


Intertumoral Heterogeneity within Medulloblastoma Subgroups.

  • Florence M G Cavalli‎ et al.
  • Cancer cell‎
  • 2017‎

While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogeneity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alterations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma. Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma subtypes identified through integrative clustering have important implications for stratification of future clinical trials.


DFMO/eflornithine inhibits migration and invasion downstream of MYCN and involves p27Kip1 activity in neuroblastoma.

  • Dana-Lynn T Koomoa‎ et al.
  • International journal of oncology‎
  • 2013‎

Neuroblastoma (NB) is the most common extracranial pediatric tumor. NB patients over 18 months of age at the time of diagnosis are often in the later stages of the disease, present with widespread dissemination, and often possess MYCN tumor gene amplification. MYCN is a transcription factor that regulates the expression of a number of genes including ornithine decarboxylase (ODC), a rate-limiting enzyme in the biosynthesis of polyamines. Inhibiting ODC in NB cells produces many deleterious effects including G(1) cell cycle arrest, inhibition of cell proliferation, and decreased tumor growth, making ODC a promising target for drug interference. DFMO treatment leads to the accumulation of the cyclin-dependent kinase inhibitor p27(Kip1) protein and causes p27(Kip1)/Rb-coupled G(1) cell cycle arrest in MYCN-amplified NB tumor cells through a process that involves p27(Kip1) phosphorylation at residues Ser10 and Thr198. While p27(Kip1) is well known for its role as a cyclin-dependent kinase inhibitor, recent studies have revealed a novel function of p27(Kip1) as a regulator of cell migration and invasion. In the present study we found that p27(Kip1) regulates the migration and invasion in NB and that these events are dependent on the state of phosphorylation of p27(Kip1). DFMO treatments induced MYCN protein downregulation and phosphorylation of Akt/PKB (Ser473) and GSK3-β (Ser9), and polyamine supplementation alleviated the DFMO-induced effects. Importantly, we provide strong evidence that p27(Kip1) mRNA correlates with clinical features and the survival probability of NB patients.


Reduced recruitment of 53BP1 during interstrand crosslink repair is associated with genetically inherited attenuation of mitomycin C sensitivity in a family with Fanconi anemia.

  • Emilie Lesport‎ et al.
  • Oncotarget‎
  • 2018‎

The Fanconi anemia (FA) pathway is implicated in the repair of DNA interstrand crosslinks (ICL). In this process, it has been shown that FA factors regulate the choice for DNA double strand break repair towards homologous recombination (HR). As this mechanism is impaired in FA deficient cells exposed to crosslinking agents, an inappropriate usage of non-homologous end joining (NHEJ) leads to the accumulation of toxic chromosomal abnormalities. We studied a family with two FANCG patients and found a genetically inherited attenuation of mitomycin C sensitivity resulting in-vitro in an attenuated phenotype for one patient or in increased resistance for two healthy relatives. A heterozygous mutation in ATM was identified in these 3 subjects but was not directly linked to the observed phenotype. However, the attenuation of ICL sensitivity was associated with a reduced recruitment of 53BP1 during the course of ICL repair, and increased HR levels. These results further demonstrate the importance of favoring HR over NHEJ for the survival of cells challenged with ICLs.


Hey1- and p53-dependent TrkC proapoptotic activity controls neuroblastoma growth.

  • Marie Ménard‎ et al.
  • PLoS biology‎
  • 2018‎

The neurotrophin-3 (NT-3) receptor tropomyosin receptor kinase C (TrkC/NTRK3) has been described as a dependence receptor and, as such, triggers apoptosis in the absence of its ligand NT-3. This proapoptotic activity has been proposed to confer a tumor suppressor activity to this classic tyrosine kinase receptor (RTK). By investigating interacting partners that might facilitate TrkC-induced cell death, we have identified the basic helix-loop-helix (bHLH) transcription factor Hey1 and importin-α3 (karyopherin alpha 4 [KPNA4]) as direct interactors of TrkC intracellular domain, and we show that Hey1 is required for TrkC-induced apoptosis. We propose here that the cleaved proapoptotic portion of TrkC intracellular domain (called TrkC killer-fragment [TrkC-KF]) is translocated to the nucleus by importins and interacts there with Hey1. We also demonstrate that Hey1 and TrkC-KF transcriptionally silence mouse double minute 2 homolog (MDM2), thus contributing to p53 stabilization. p53 transcriptionally regulates the expression of TrkC-KF cytoplasmic and mitochondrial interactors cofactor of breast cancer 1 (COBRA1) and B cell lymphoma 2-associated X (BAX), which will subsequently trigger the intrinsic pathway of apoptosis. Of interest, TrkC was proposed to constrain tumor progression in neuroblastoma (NB), and we demonstrate in an avian model that TrkC tumor suppressor activity requires Hey1 and p53.


Establishment and application of a novel patient-derived KIAA1549:BRAF-driven pediatric pilocytic astrocytoma model for preclinical drug testing.

  • Florian Selt‎ et al.
  • Oncotarget‎
  • 2017‎

Pilocytic astrocytoma (PA) is the most frequent pediatric brain tumor. Activation of the MAPK pathway is well established as the oncogenic driver of the disease. It is most frequently caused by KIAA1549:BRAF fusions, and leads to oncogene induced senescence (OIS). OIS is thought to be a major reason for growth arrest of PA cells in vitro and in vivo, preventing establishment of PA cultures. Hence, valid preclinical models are currently very limited, but preclinical testing of new compounds is urgently needed. We transduced the PA short-term culture DKFZ-BT66 derived from the PA of a 2-year old patient with a doxycycline-inducible system coding for Simian Vacuolating Virus 40 Large T Antigen (SV40-TAg). SV40-TAg inhibits TP53/CDKN1A and CDKN2A/RB1, two pathways critical for OIS induction and maintenance. DNA methylation array and KIAA1549:BRAF fusion analysis confirmed pilocytic astrocytoma identity of DKFZ-BT66 cells after establishment. Readouts were analyzed in proliferating as well as senescent states, including cell counts, viability, cell cycle analysis, expression of SV40-Tag, CDKN2A (p16), CDKN1A (p21), and TP53 (p53) protein, and gene-expression profiling. Selected MAPK inhibitors (MAPKi) including clinically available MEK inhibitors (MEKi) were tested in vitro. Expression of SV40-TAg enabled the cells to bypass OIS and to resume proliferation with a mean doubling time of 45h allowing for propagation and long-term culture. Withdrawal of doxycycline led to an immediate decrease of SV40-TAg expression, appearance of senescent morphology, upregulation of CDKI proteins and a subsequent G1 growth arrest in line with the re-induction of senescence. DKFZ-BT66 cells still underwent replicative senescence that was overcome by TERT expression. Testing of a set of MAPKi revealed differential responses in DKFZ-BT66. MEKi efficiently inhibited MAPK signaling at clinically achievable concentrations, while BRAF V600E- and RAF Type II inhibitors showed paradoxical activation. Taken together, we have established the first patient-derived long term expandable PA cell line expressing the KIAA1549:BRAF-fusion suitable for preclinical drug testing.


Senescence Induced by BMI1 Inhibition Is a Therapeutic Vulnerability in H3K27M-Mutant DIPG.

  • Ilango Balakrishnan‎ et al.
  • Cell reports‎
  • 2020‎

Diffuse intrinsic pontine glioma (DIPG) is an incurable brain tumor of childhood characterized by histone mutations at lysine 27, which results in epigenomic dysregulation. There has been a failure to develop effective treatment for this tumor. Using a combined RNAi and chemical screen targeting epigenomic regulators, we identify the polycomb repressive complex 1 (PRC1) component BMI1 as a critical factor for DIPG tumor maintenance in vivo. BMI1 chromatin occupancy is enriched at genes associated with differentiation and tumor suppressors in DIPG cells. Inhibition of BMI1 decreases cell self-renewal and attenuates tumor growth due to induction of senescence. Prolonged BMI1 inhibition induces a senescence-associated secretory phenotype, which promotes tumor recurrence. Clearance of senescent cells using BH3 protein mimetics co-operates with BMI1 inhibition to enhance tumor cell killing in vivo.


Pervasive H3K27 Acetylation Leads to ERV Expression and a Therapeutic Vulnerability in H3K27M Gliomas.

  • Brian Krug‎ et al.
  • Cancer cell‎
  • 2019‎

High-grade gliomas defined by histone 3 K27M driver mutations exhibit global loss of H3K27 trimethylation and reciprocal gain of H3K27 acetylation, respectively shaping repressive and active chromatin landscapes. We generated tumor-derived isogenic models bearing this mutation and show that it leads to pervasive H3K27ac deposition across the genome. In turn, active enhancers and promoters are not created de novo and instead reflect the epigenomic landscape of the cell of origin. H3K27ac is enriched at repeat elements, resulting in their increased expression, which in turn can be further amplified by DNA demethylation and histone deacetylase inhibitors providing an exquisite therapeutic vulnerability. These agents may therefore modulate anti-tumor immune responses as a therapeutic modality for this untreatable disease.


PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M-like mechanism.

  • Siddhant U Jain‎ et al.
  • Nature communications‎
  • 2019‎

Posterior fossa type A (PFA) ependymomas exhibit very low H3K27 methylation and express high levels of EZHIP (Enhancer of Zeste Homologs Inhibitory Protein, also termed CXORF67). Here we find that a conserved sequence in EZHIP is necessary and sufficient to inhibit PRC2 catalytic activity in vitro and in vivo. EZHIP directly contacts the active site of the EZH2 subunit in a mechanism similar to the H3 K27M oncohistone. Furthermore, expression of H3 K27M or EZHIP in cells promotes similar chromatin profiles: loss of broad H3K27me3 domains, but retention of H3K27me3 at CpG islands. We find that H3K27me3-mediated allosteric activation of PRC2 substantially increases the inhibition potential of EZHIP and H3 K27M, providing a mechanism to explain the observed loss of H3K27me3 spreading in tumors. Our data indicate that PFA ependymoma and DIPG are driven in part by the action of peptidyl PRC2 inhibitors, the K27M oncohistone and the EZHIP 'oncohistone-mimic', that dysregulate gene silencing to promote tumorigenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: