Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 253 papers

Copy Number Profiling of Brazilian Astrocytomas.

  • Lucas Tadeu Bidinotto‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2016‎

Copy number alterations (CNA) are one of the driving mechanisms of glioma tumorigenesis, and are currently used as important biomarkers in the routine setting. Therefore, we performed CNA profiling of 65 astrocytomas of distinct malignant grades (WHO grade I-IV) of Brazilian origin, using array-CGH and microsatellite instability analysis (MSI), and investigated their correlation with TERT and IDH1 mutational status and clinico-pathological features. Furthermore, in silico analysis using the Oncomine database was performed to validate our findings and extend the findings to gene expression level. We found that the number of genomic alterations increases in accordance with glioma grade. In glioblastomas (GBM), the most common alterations were gene amplifications (PDGFRA, KIT, KDR, EGFR, and MET) and deletions (CDKN2A and PTEN) Log-rank analysis correlated EGFR amplification and/or chr7 gain with better survival of the patients. MSI was observed in 11% of GBMs. A total of 69% of GBMs presented TERT mutation, whereas IDH1 mutation was most frequent in diffuse (85.7%) and anaplastic (100%) astrocytomas. The combination of 1p19q deletion and TERT and IDH1 mutational status separated tumor groups that showed distinct age of diagnosis and outcome. In silico validation pointed to less explored genes that may be worthy of future investigation, such as CDK2, DMRTA1, and MTAP Herein, using an extensive integrated analysis, we indicated potentially important genes, not extensively studied in gliomas, that could be further explored to assess their biological and clinical impact in astrocytomas.


MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties.

  • Sebastian Dietl‎ et al.
  • BMC cancer‎
  • 2016‎

Medulloblastoma is the most common malignant brain tumor in children and can be divided in different molecular subgroups. Patients whose tumor is classified as a Group 3 tumor have a dismal prognosis. However only very few tumor models are available for this subgroup.


Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis.

  • Vijay Ramaswamy‎ et al.
  • Journal of clinical oncology : official journal of the American Society of Clinical Oncology‎
  • 2016‎

Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known.


Printed peptide arrays identify prognostic TNC serumantibodies in glioblastoma patients.

  • Andreas Mock‎ et al.
  • Oncotarget‎
  • 2015‎

Liquid biopsies come of age offering unexploited potential to monitor and react to tumor evolution. We developed a cost-effective assay to non-invasively determine the immune status of glioblastoma (GBM) patients. Employing newly developed printed peptide microarrays we assessed the B-cell response against tumor-associated antigens (TAAs) in 214 patients. Firstly, sera of long-term (36+ months, LTS, n=10) and short-term (6-10 months, STS, n=14) surviving patients were screened for prognostic antibodies against 1745 13-mer peptides covering known TAAs (TNC, EGFR, GLEA2, PHF3, FABP5, MAGEA3). Next, survival associations were investigated in two retrospective independent multicenter validation sets (n=61, n=129, all IDH1-wildtype). Reliability of measurements was tested using a second array technology (spotted arrays). LTS/STS screening analyses identified 106 differential antibody responses. Evaluating the Top30 peptides in validation set 1 revealed three prognostic peptides. Prediction of TNC peptide VCEDGFTGPDCAE was confirmed in a second set (p=0.043, HR=0.66 [0.44-0.99]) and was unrelated to TNC protein expression. Median signals of printed arrays correlated with pre-synthesized spotted microarrays (p<0.0002, R=0.33). Multiple survival analysis revealed independence of age, gender, KPI and MGMT status. We present a novel peptide microarray immune assay that identified increased anti-TNC VCEDGFTGPDCAE serum antibody titer as a promising non-invasive biomarker for prolonged survival.


An animal model of MYC-driven medulloblastoma.

  • Yanxin Pei‎ et al.
  • Cancer cell‎
  • 2012‎

Medulloblastoma (MB) is the most common malignant brain tumor in children. Patients whose tumors exhibit overexpression or amplification of the MYC oncogene (c-MYC) usually have an extremely poor prognosis, but there are no animal models of this subtype of the disease. Here, we show that cerebellar stem cells expressing Myc and mutant Trp53 (p53) generate aggressive tumors following orthotopic transplantation. These tumors consist of large, pleiomorphic cells and resemble human MYC-driven MB at a molecular level. Notably, antagonists of PI3K/mTOR signaling, but not Hedgehog signaling, inhibit growth of tumor cells. These findings suggest that cerebellar stem cells can give rise to MYC-driven MB and identify a novel model that can be used to test therapies for this devastating disease.


Potential canonical wnt pathway activation in high-grade astrocytomas.

  • Rebecca Schüle‎ et al.
  • TheScientificWorldJournal‎
  • 2012‎

Aberrant wnt pathway activation through cytoplasmic stabilization of β-catenin is crucial for the development of various human malignancies. In gliomagenesis, the role of canonical (i.e., β-catenin-dependent) signalling is largely unknown. Here, we studied canonical wnt pathway activation in 15 short-term cultures from high-grade gliomas and potential pathomechanisms leading to cytoplasmic β-catenin accumulation. Furthermore, we assessed the prognostic relevance of β-catenin expression in a tissue microarray comprising 283 astrocytomas. Expression of β-catenin, its transcriptional cofactors TCF-1 and TCF-4 as well as GSK-3β and APC, constituents of the β-catenin degradation complex was confirmed by RT-PCR in all cultures. A cytoplasmic β-catenin pool was detectable in 13/15 cultures leading to some transcriptional activity assessed by luciferase reporter gene assay in 8/13. Unlike other malignancies, characteristic mutations of β-catenin and APC leading to cytoplasmic stabilization of β-catenin were excluded by direct sequencing or protein truncation test. In patient tissues, β-catenin expression was directly and its degradation product's (β-catenin-P654) expression was inversely correlated with WHO grade. Increased β-catenin expression and low β-catenin-P654 expression were associated with shorter survival. Altogether, we report on potential canonical wnt pathway activation in high-grade gliomas and demonstrate that β-catenin expression in astrocytomas is associated with increased malignancy and adverse outcome.


Transcriptomic and epigenetic profiling of 'diffuse midline gliomas, H3 K27M-mutant' discriminate two subgroups based on the type of histone H3 mutated and not supratentorial or infratentorial location.

  • David Castel‎ et al.
  • Acta neuropathologica communications‎
  • 2018‎

Diffuse midline glioma (DMG), H3 K27M-mutant, is a new entity in the updated WHO classification grouping together diffuse intrinsic pontine gliomas and infiltrating glial neoplasms of the midline harboring the same canonical mutation at the Lysine 27 of the histones H3 tail.Two hundred and fifteen patients younger than 18 years old with centrally-reviewed pediatric high-grade gliomas (pHGG) were included in this study. Comprehensive transcriptomic (n = 140) and methylation (n = 80) profiling was performed depending on the material available, in order to assess the biological uniqueness of this new entity compared to other midline and hemispheric pHGG.Tumor classification based on gene expression (GE) data highlighted the similarity of K27M DMG independently of their location along the midline. T-distributed Stochastic Neighbor Embedding (tSNE) analysis of methylation profiling confirms the discrimination of DMG from other well defined supratentorial tumor subgroups. Patients with diffuse intrinsic pontine gliomas (DIPG) and thalamic DMG exhibited a similarly poor prognosis (11.1 and 10.8 months median overall survival, respectively). Interestingly, H3.1-K27M and H3.3-K27M primary tumor samples could be distinguished based both on their GE and DNA methylation profiles, suggesting that they might arise from a different precursor or from a different epigenetic reorganization.These differences in DNA methylation profiles were conserved in glioma stem-like cell culture models of DIPG which mimicked their corresponding primary tumor. ChIP-seq profiling of H3K27me3 in these models indicate that H3.3-K27M mutated DIPG stem cells exhibit higher levels of H3K27 trimethylation which are correlated with fewer genes expressed by RNAseq. When considering the global distribution of the H3K27me3 mark, we observed that intergenic regions were more trimethylated in the H3.3-K27M mutated cells compared to the H3.1-K27M mutated ones.H3 K27M-mutant DMG represent a homogenous group of neoplasms compared to other pediatric gliomas that could be further separated based on the type of histone H3 variant mutated and their respective epigenetic landscapes. As these characteristics drive different phenotypes, these findings may have important implication for the design of future trials in these specific types of neoplasms.


Identification of a Prognostic Hypoxia-Associated Gene Set in IDH-Mutant Glioma.

  • Philip Dao Trong‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Glioma growth is often accompanied by a hypoxic microenvironment favorable for the induction and maintenance of the glioma stem cell (GSC) phenotype. Due to the paucity of cell models of Isocitrate Dehydrogenase 1 mutant (IDH1mut) GSCs, biology under hypoxic conditions has not been sufficiently studied as compared to IDH1 wildtype (IDH1wt) GSCs. We therefore grew well-characterized IDH1mut (n = 4) and IDH1wt (n = 4) GSC lines under normoxic (20%) and hypoxic (1.5%) culture conditions and harvested mRNA after 72 h. Transcriptome analyses were performed and hypoxia regulated genes were further analyzed using the expression and clinical data of the lower grade glioma cohort of The Cancer Genome Atlas (LGG TCGA) in a confirmatory approach and to test for possible survival associations. Results show that global expression changes were more pronounced in IDH1wt than in IDH1mut GSCs. However, when focusing on known hypoxia-regulated gene sets, enrichment analyses showed a comparable regulation in both IDH1mut and IDH1wt GSCs. Of 272 significantly up-regulated genes under hypoxic conditions in IDH1mut GSCs a hypoxia-related survival score (HRS-score) of five genes (LYVE1, FAM162A, WNT6, OTP, PLOD1) was identified by the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm which was able to predict survival independent of age, 1p19q co-deletion status and WHO grade (II vs. III) in the LGG TCGA cohort and in the Rembrandt dataset. Altogether, we were able to identify and validate a novel hypoxia-related survival score in IDH1mut GSCs consisting of five hypoxia-regulated genes which was significantly associated with patient survival independent of known prognostic confounders.


Aberrant ERBB4-SRC Signaling as a Hallmark of Group 4 Medulloblastoma Revealed by Integrative Phosphoproteomic Profiling.

  • Antoine Forget‎ et al.
  • Cancer cell‎
  • 2018‎

The current consensus recognizes four main medulloblastoma subgroups (wingless, Sonic hedgehog, group 3 and group 4). While medulloblastoma subgroups have been characterized extensively at the (epi-)genomic and transcriptomic levels, the proteome and phosphoproteome landscape remain to be comprehensively elucidated. Using quantitative (phospho)-proteomics in primary human medulloblastomas, we unravel distinct posttranscriptional regulation leading to highly divergent oncogenic signaling and kinase activity profiles in groups 3 and 4 medulloblastomas. Specifically, proteomic and phosphoproteomic analyses identify aberrant ERBB4-SRC signaling in group 4. Hence, enforced expression of an activated SRC combined with p53 inactivation induces murine tumors that resemble group 4 medulloblastoma. Therefore, our integrative proteogenomics approach unveils an oncogenic pathway and potential therapeutic vulnerability in the most common medulloblastoma subgroup.


DNA methylation-based classification of central nervous system tumours.

  • David Capper‎ et al.
  • Nature‎
  • 2018‎

Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.


The RNA-binding protein Musashi1 affects medulloblastoma growth via a network of cancer-related genes and is an indicator of poor prognosis.

  • Dat T Vo‎ et al.
  • The American journal of pathology‎
  • 2012‎

Musashi1 (Msi1) is a highly conserved RNA-binding protein that is required during the development of the nervous system. Msi1 has been characterized as a stem cell marker, controlling the balance between self-renewal and differentiation, and has also been implicated in tumorigenesis, being highly expressed in multiple tumor types. We analyzed Msi1 expression in a large cohort of medulloblastoma samples and found that Msi1 is highly expressed in tumor tissue compared with normal cerebellum. Notably, high Msi1 expression levels proved to be a sign of poor prognosis. Msi1 expression was determined to be particularly high in molecular subgroups 3 and 4 of medulloblastoma. We determined that Msi1 is required for tumorigenesis because inhibition of Msi1 expression by small-interfering RNAs reduced the growth of Daoy medulloblastoma cells in xenografts. To characterize the participation of Msi1 in medulloblastoma, we conducted different high-throughput analyses. Ribonucleoprotein immunoprecipitation followed by microarray analysis (RIP-chip) was used to identify mRNA species preferentially associated with Msi1 protein in Daoy cells. We also used cluster analysis to identify genes with similar or opposite expression patterns to Msi1 in our medulloblastoma cohort. A network study identified RAC1, CTGF, SDCBP, SRC, PRL, and SHC1 as major nodes of an Msi1-associated network. Our results suggest that Msi1 functions as a regulator of multiple processes in medulloblastoma formation and could become an important therapeutic target.


TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma.

  • Marc Remke‎ et al.
  • Acta neuropathologica‎
  • 2013‎

Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association with increased patient age. The prognostic implications of these mutations were highly subgroup-specific. TERT mutations identified a subset with good and poor prognosis in SHH and Group 4 tumors, respectively. Monosomy 6 was mostly restricted to WNT tumors without TERT mutations. Hallmark SHH focal copy number aberrations and chromosome 10q deletion were mutually exclusive with TERT mutations within SHH tumors. TERT promoter mutations are the most common recurrent somatic point mutation in medulloblastoma, and are very highly enriched in adult SHH and WNT tumors. TERT mutations define a subset of SHH medulloblastoma with distinct demographics, cytogenetics, and outcomes.


Hypermutation of the inactive X chromosome is a frequent event in cancer.

  • Natalie Jäger‎ et al.
  • Cell‎
  • 2013‎

Mutation is a fundamental process in tumorigenesis. However, the degree to which the rate of somatic mutation varies across the human genome and the mechanistic basis underlying this variation remain to be fully elucidated. Here, we performed a cross-cancer comparison of 402 whole genomes comprising a diverse set of childhood and adult tumors, including both solid and hematopoietic malignancies. Surprisingly, we found that the inactive X chromosome of many female cancer genomes accumulates on average twice and up to four times as many somatic mutations per megabase, as compared to the individual autosomes. Whole-genome sequencing of clonally expanded hematopoietic stem/progenitor cells (HSPCs) from healthy individuals and a premalignant myelodysplastic syndrome (MDS) sample revealed no X chromosome hypermutation. Our data suggest that hypermutation of the inactive X chromosome is an early and frequent feature of tumorigenesis resulting from DNA replication stress in aberrantly proliferating cells.


CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity.

  • Tara Spence‎ et al.
  • Acta neuropathologica‎
  • 2014‎

Amplification of the C19MC oncogenic miRNA cluster and high LIN28 expression has been linked to a distinctly aggressive group of cerebral CNS-PNETs (group 1 CNS-PNETs) arising in young children. In this study, we sought to evaluate the diagnostic specificity of C19MC and LIN28, and the clinical and biological spectra of C19MC amplified and/or LIN28+ CNS-PNETs. We interrogated 450 pediatric brain tumors using FISH and IHC analyses and demonstrate that C19MC alteration is restricted to a sub-group of CNS-PNETs with high LIN28 expression; however, LIN28 immunopositivity was not exclusive to CNS-PNETs but was also detected in a proportion of other malignant pediatric brain tumors including rhabdoid brain tumors and malignant gliomas. C19MC amplified/LIN28+ group 1 CNS-PNETs arose predominantly in children <4 years old; a majority arose in the cerebrum but 24 % (13/54) of tumors had extra-cerebral origins. Notably, group 1 CNS-PNETs encompassed several histologic classes including embryonal tumor with abundant neuropil and true rosettes (ETANTR), medulloepithelioma, ependymoblastoma and CNS-PNETs with variable differentiation. Strikingly, gene expression and methylation profiling analyses revealed a common molecular signature enriched for primitive neural features, high LIN28/LIN28B and DNMT3B expression for all group 1 CNS-PNETs regardless of location or tumor histology. Our collective findings suggest that current known histologic categories of CNS-PNETs which include ETANTRs, medulloepitheliomas, ependymoblastomas in various CNS locations, comprise a common molecular and diagnostic entity and identify inhibitors of the LIN28/let7/PI3K/mTOR axis and DNMT3B as promising therapeutics for this distinct histogenetic entity.


Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis.

  • Vijay Ramaswamy‎ et al.
  • The Lancet. Oncology‎
  • 2013‎

Recurrent medulloblastoma is a therapeutic challenge because it is almost always fatal. Studies have confirmed that medulloblastoma consists of at least four distinct subgroups. We sought to delineate subgroup-specific differences in medulloblastoma recurrence patterns.


Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas.

  • Sebastian Bender‎ et al.
  • Cancer cell‎
  • 2013‎

Two recurrent mutations, K27M and G34R/V, within histone variant H3.3 were recently identified in ∼50% of pHGGs. Both mutations define clinically and biologically distinct subgroups of pHGGs. Here, we provide further insight about the dominant-negative effect of K27M mutant H3.3, leading to a global reduction of the repressive histone mark H3K27me3. We demonstrate that this is caused by aberrant recruitment of the PRC2 complex to K27M mutant H3.3 and enzymatic inhibition of the H3K27me3-establishing methyltransferase EZH2. By performing chromatin immunoprecipitation followed by next-generation sequencing and whole-genome bisulfite sequencing in primary pHGGs, we show that reduced H3K27me3 levels and DNA hypomethylation act in concert to activate gene expression in K27M mutant pHGGs.


Intertumoral Heterogeneity within Medulloblastoma Subgroups.

  • Florence M G Cavalli‎ et al.
  • Cancer cell‎
  • 2017‎

While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogeneity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alterations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma. Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma subtypes identified through integrative clustering have important implications for stratification of future clinical trials.


Asymmetric Centriole Numbers at Spindle Poles Cause Chromosome Missegregation in Cancer.

  • Marco R Cosenza‎ et al.
  • Cell reports‎
  • 2017‎

Chromosomal instability is a hallmark of cancer and correlates with the presence of extra centrosomes, which originate from centriole overduplication. Overduplicated centrioles lead to the formation of centriole rosettes, which mature into supernumerary centrosomes in the subsequent cell cycle. While extra centrosomes promote chromosome missegregation by clustering into pseudo-bipolar spindles, the contribution of centriole rosettes to chromosome missegregation is unknown. We used multi-modal imaging of cells with conditional centriole overduplication to show that mitotic rosettes in bipolar spindles frequently harbor unequal centriole numbers, leading to biased chromosome capture that favors binding to the prominent pole. This results in chromosome missegregation and aneuploidy. Rosette mitoses lead to viable offspring and significantly contribute to progeny production. We further show that centrosome abnormalities in primary human malignancies frequently consist of centriole rosettes. As asymmetric centriole rosettes generate mitotic errors that can be propagated, rosette mitoses are sufficient to cause chromosome missegregation in cancer.


Microsatellite instability in pediatric high grade glioma is associated with genomic profile and differential target gene inactivation.

  • Marta Viana-Pereira‎ et al.
  • PloS one‎
  • 2011‎

High grade gliomas (HGG) are one of the leading causes of cancer-related deaths in children, and there is increasing evidence that pediatric HGG may harbor distinct molecular characteristics compared to adult tumors. We have sought to clarify the role of microsatellite instability (MSI) in pediatric versus adult HGG. MSI status was determined in 144 patients (71 pediatric and 73 adults) using a well established panel of five quasimonomorphic mononucleotide repeat markers. Expression of MLH1, MSH2, MSH6 and PMS2 was determined by immunohistochemistry, MLH1 was assessed for mutations by direct sequencing and promoter methylation using MS-PCR. DNA copy number profiles were derived using array CGH, and mutations in eighteen MSI target genes studied by multiplex PCR and genotyping. MSI was found in 14/71 (19.7%) pediatric cases, significantly more than observed in adults (5/73, 6.8%; p = 0.02, Chi-square test). MLH1 expression was downregulated in 10/13 cases, however no mutations or promoter methylation were found. MSH6 was absent in one pediatric MSI-High tumor, consistent with an inherited mismatch repair deficiency associated with germline MSH6 mutation. MSI was classed as Type A, and associated with a remarkably stable genomic profile. Of the eighteen classic MSI target genes, we identified mutations only in MSH6 and DNAPKcs and described a polymorphism in MRE11 without apparent functional consequences in DNA double strand break detection and repair. This study thus provides evidence for a potential novel molecular pathway in a proportion of gliomas associated with the presence of MSI.


Frequent long-range epigenetic silencing of protocadherin gene clusters on chromosome 5q31 in Wilms' tumor.

  • Anthony R Dallosso‎ et al.
  • PLoS genetics‎
  • 2009‎

Wilms' tumour (WT) is a pediatric tumor of the kidney that arises via failure of the fetal developmental program. The absence of identifiable mutations in the majority of WTs suggests the frequent involvement of epigenetic aberrations in WT. We therefore conducted a genome-wide analysis of promoter hypermethylation in WTs and identified hypermethylation at chromosome 5q31 spanning 800 kilobases (kb) and more than 50 genes. The methylated genes all belong to alpha-, beta-, and gamma-protocadherin (PCDH) gene clusters (Human Genome Organization nomenclature PCDHA@, PCDHB@, and PCDHG@, respectively). This demonstrates that long-range epigenetic silencing (LRES) occurs in developmental tumors as well as in adult tumors. Bisulfite polymerase chain reaction analysis showed that PCDH hypermethylation is a frequent event found in all Wilms' tumor subtypes. Hypermethylation is concordant with reduced PCDH expression in tumors. WT precursor lesions showed no PCDH hypermethylation, suggesting that de novo PCDH hypermethylation occurs during malignant progression. Discrete boundaries of the PCDH domain are delimited by abrupt changes in histone modifications; unmethylated genes flanking the LRES are associated with permissive marks which are absent from methylated genes within the domain. Silenced genes are marked with non-permissive histone 3 lysine 9 dimethylation. Expression analysis of embryonic murine kidney and differentiating rat metanephric mesenchymal cells demonstrates that Pcdh expression is developmentally regulated and that Pcdhg@ genes are expressed in blastemal cells. Importantly, we show that PCDHs negatively regulate canonical Wnt signalling, as short-interfering RNA-induced reduction of PCDHG@ encoded proteins leads to elevated beta-catenin protein, increased beta-catenin/T-cell factor (TCF) reporter activity, and induction of Wnt target genes. Conversely, over-expression of PCDHs suppresses beta-catenin/TCF-reporter activity and also inhibits colony formation and growth of cancer cells in soft agar. Thus PCDHs are candidate tumor suppressors that modulate regulatory pathways critical in development and disease, such as canonical Wnt signaling.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: