Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Influence of probe flexibility and gelatin embedding on neuronal density and glial responses to brain implants.

  • Per Köhler‎ et al.
  • PloS one‎
  • 2015‎

To develop long-term high quality communication between brain and computer, a key issue is how to reduce the adverse foreign body responses. Here, the impact of probe flexibility and gelatine embedding on long-term (6w) tissue responses, was analyzed. Probes of same polymer material, size and shape, flexible mainly in one direction, were implanted in rat cerebral cortex (nimplants = 3 x 8) in two orientations with respect to the major movement direction of the brain relative to the skull: parallel to (flex mode) or transverse to (rigid mode). Flex mode implants were either embedded in gelatin or non-embedded. Neurons, activated microglia and astrocytes were visualized using immunohistochemistry. The astrocytic reactivity, but not microglial response, was significantly lower to probes implanted in flex mode as compared to rigid mode. The microglial response, but not astrocytic reactivity, was significantly smaller to gelatin embedded probes (flex mode) than non-embedded. Interestingly, the neuronal density was preserved in the inner zone surrounding gelatin embedded probes. This contrasts to the common reports of reduced neuronal density close to implanted probes. In conclusion, sheer stress appears to be an important factor for astrocytic reactivity to implanted probes. Moreover, gelatin embedding can improve the neuronal density and reduce the microglial response close to the probe.


Size-dependent long-term tissue response to biostable nanowires in the brain.

  • Lina Gällentoft‎ et al.
  • Biomaterials‎
  • 2015‎

Nanostructured neural interfaces, comprising nanotubes or nanowires, have the potential to overcome the present hurdles of achieving stable communication with neuronal networks for long periods of time. This would have a strong impact on brain research. However, little information is available on the brain response to implanted high-aspect-ratio nanoparticles, which share morphological similarities with asbestos fibres. Here, we investigated the glial response and neuronal loss in the rat brain after implantation of biostable and structurally controlled nanowires of different lengths for a period up to one year post-surgery. Our results show that, as for lung and abdominal tissue, the brain is subject to a sustained, local inflammation when biostable and high-aspect-ratio nanoparticles of 5 μm or longer are present in the brain tissue. In addition, a significant loss of neurons was observed adjacent to the 10 μm nanowires after one year. Notably, the inflammatory response was restricted to a narrow zone around the nanowires and did not escalate between 12 weeks and one year. Furthermore, 2 μm nanowires did not cause significant inflammatory response nor significant loss of neurons nearby. The present results provide key information for the design of future neural implants based on nanomaterials.


A Bit-Encoding Based New Data Structure for Time and Memory Efficient Handling of Spike Times in an Electrophysiological Setup.

  • Bengt Ljungquist‎ et al.
  • Neuroinformatics‎
  • 2018‎

Recent neuroscientific and technical developments of brain machine interfaces have put increasing demands on neuroinformatic databases and data handling software, especially when managing data in real time from large numbers of neurons. Extrapolating these developments we here set out to construct a scalable software architecture that would enable near-future massive parallel recording, organization and analysis of neurophysiological data on a standard computer. To this end we combined, for the first time in the present context, bit-encoding of spike data with a specific communication format for real time transfer and storage of neuronal data, synchronized by a common time base across all unit sources. We demonstrate that our architecture can simultaneously handle data from more than one million neurons and provide, in real time (< 25 ms), feedback based on analysis of previously recorded data. In addition to managing recordings from very large numbers of neurons in real time, it also has the capacity to handle the extensive periods of recording time necessary in certain scientific and clinical applications. Furthermore, the bit-encoding proposed has the additional advantage of allowing an extremely fast analysis of spatiotemporal spike patterns in a large number of neurons. Thus, we conclude that this architecture is well suited to support current and near-future Brain Machine Interface requirements.


Monosynaptic retrograde tracing of neurons expressing the G-protein coupled receptor Gpr151 in the mouse brain.

  • Jonas Broms‎ et al.
  • The Journal of comparative neurology‎
  • 2017‎

GPR151 is a G-protein coupled receptor for which the endogenous ligand remains unknown. In the nervous system of vertebrates, its expression is enriched in specific diencephalic structures, where the highest levels are observed in the habenular area. The habenula has been implicated in a range of different functions including behavioral flexibility, decision making, inhibitory control, and pain processing, which makes it a promising target for treating psychiatric and neurological disease. This study aimed to further characterize neurons expressing the Gpr151 gene, by tracing the afferent connectivity of this diencephalic cell population. Using pseudotyped rabies virus in a transgenic Gpr151-Cre mouse line, monosynaptic afferents of habenular and thalamic Gpr151-expressing neuronal populations could be visualized. The habenular and thalamic Gpr151 systems displayed both shared and distinct connectivity patterns. The habenular neurons primarily received input from basal forebrain structures, the bed nucleus of stria terminalis, the lateral preoptic area, the entopeduncular nucleus, and the lateral hypothalamic area. The Gpr151-expressing neurons in the paraventricular nucleus of the thalamus was primarily contacted by medial hypothalamic areas as well as the zona incerta and projected to specific forebrain areas such as the prelimbic cortex and the accumbens nucleus. Gpr151 mRNA was also detected at low levels in the lateral posterior thalamic nucleus which received input from areas associated with visual processing, including the superior colliculus, zona incerta, and the visual and retrosplenial cortices. Knowledge about the connectivity of Gpr151-expressing neurons will facilitate the interpretation of future functional studies of this receptor.


Nanowire-based electrode for acute in vivo neural recordings in the brain.

  • Dmitry B Suyatin‎ et al.
  • PloS one‎
  • 2013‎

We present an electrode, based on structurally controlled nanowires, as a first step towards developing a useful nanostructured device for neurophysiological measurements in vivo. The sensing part of the electrode is made of a metal film deposited on top of an array of epitaxially grown gallium phosphide nanowires. We achieved the first functional testing of the nanowire-based electrode by performing acute in vivo recordings in the rat cerebral cortex and withstanding multiple brain implantations. Due to the controllable geometry of the nanowires, this type of electrode can be used as a model system for further analysis of the functional properties of nanostructured neuronal interfaces in vivo.


Use of dielectrophoresis for directing T cells to microwells before nanostraw transfection: modelling and experiments.

  • Mercy Lard‎ et al.
  • RSC advances‎
  • 2022‎

Nanostraw substrates have great potential for achieving minimally invasive cell transfection. Cells located on the nanostraw substrate are subjected to mild DC electric pulses applied across the nanostraw substrate, which open pores in the cell membrane on top of the nanostraws and drives charged cargo through these pores via electrophoresis. However, with this method, the current may leak through uncovered nanostraws, thereby decreasing the desired effect in the cell-covered nanostraws. A minimization of the number of uncovered nanostraws could be achieved by high cell coverage, but this is challenging when working with small cell populations. Nanostraw substrates of smaller area could be covered by smaller cell populations but are hard to integrate into fluidics systems. Here, we use simulations and experiments to show that this issue can be addressed by covering the nanostraw substrate with an insulating layer containing pores of similar size to cells. The pores act as traps into which cells can be guided using dielectrophoresis, ensuring a high degree of occupancy while maintaining a high cell viability, even if the total number of cells is low.


Local delivery of minocycline-loaded PLGA nanoparticles from gelatin-coated neural implants attenuates acute brain tissue responses in mice.

  • Alexander Dontsios Holmkvist‎ et al.
  • Journal of nanobiotechnology‎
  • 2020‎

Neural interfaces often elicit inflammatory responses and neuronal loss in the surrounding tissue which adversely affect the function and longevity of the implanted device. Minocycline, an anti-inflammatory pharmaceutics with neuroprotective properties, may be used for reducing the acute brain tissue responses after implantation. However, conventional administration routes require high doses which can cause adverse systemic side effects. Therefore, the aim of this study was to develop and evaluate a new drug-delivery-system for local and sustained administration of minocycline in the brain.


Profound alterations in brain tissue linked to hypoxic episode after device implantation.

  • Lucas S Kumosa‎ et al.
  • Biomaterials‎
  • 2021‎

To enable authentic interfacing with neuronal structures in the brain, preventing alterations of tissue during implantation of devices is critical. By transiently implanting oxygen microsensors into rat cortex cerebri for 2 h, substantial and long lasting (>1 h) hypoxia is routinely generated in surrounding tissues; this hypoxia is linked to implantation generated compressive forces. Preferential loss of larger neurons and reduced metabolic components in surviving neurons indicates decreased viability one week after such hypoxic, compressive implantations. By devising an implantation method that relaxes compressive forces; magnitude and duration of hypoxia generated following such an implantation are ameliorated and neurons appear similar to naïve tissues. In line with these observations, astrocyte proliferation was significantly more pronounced for more hypoxic, compressive implantations. Surprisingly, astrocyte processes were frequently found to traverse cellular boundaries into nearby neuronal nuclei, indicating injury induction of a previously not described astrocyte-neuron interaction. Found more frequently in less hypoxic, force-relaxed insertions and thus correlating to a more beneficial outcome, this finding may suggest a novel protective mechanism. In conclusion, substantial and long lasting insertion induced hypoxia around brain implants, a previously overlooked factor, is linked to significant adverse alterations in nervous tissue.


Polydimethylsiloxane as a more biocompatible alternative to glass in optogenetics.

  • Michael Aagaard Andersen‎ et al.
  • Scientific reports‎
  • 2023‎

Optogenetics is highly useful to stimulate or inhibit defined neuronal populations and is often used together with electrophysiological recordings. Due to poor penetration of light in tissue, there is a need for biocompatible wave guides. Glass wave guides are relatively stiff and known to cause glia reaction that likely influence the activity in the remaining neurons. We developed highly flexible micro wave guides for optogenetics that can be used in combination with long-lasting electrophysiological recordings. We designed and evaluated polydimethylsiloxane (PDMS) mono-fibers, which use the tissue as cladding, with a diameter of 71 ± 10 µm and 126 ± 5 µm. We showed that micro PDMS fibers transmitted 9-33 mW/mm2 light energy enough to activate channelrhodopsin. This was confirmed in acute extracellular recordings in vivo in which optogenetic stimulation through the PDMS fibers generated action potentials in rat hippocampus with a short onset latency. PDMS fibers had significantly less microglia and astrocytic activation in the zone nearest to the implant as compared to glass. There was no obvious difference in number of adjacent neurons between size matched wave guides. Micro PDMS wave guide demonstrates in vivo functionality and improved biocompatibility as compared to glass. This enables the delivery of light with less tissue damage.


Translocation of 40 nm diameter nanowires through the intestinal epithelium of Daphnia magna.

  • Karin Mattsson‎ et al.
  • Nanotoxicology‎
  • 2016‎

Nanowires (NWs) have unique electrical and optical properties of value for many applications including lighting, sensing, and energy harnessing. Consumer products containing NWs increase the risk of NWs being released in the environment, especially into aquatic ecosystems through sewage systems. Daphnia magna is a common, cosmopolitan freshwater organism sensitive to toxicity tests and represents a likely entry point for nanoparticles into food webs of aquatic ecosystems. Here we have evaluated the effect of NW diameter on the gut penetrance of NWs in Daphnia magna. The animals were exposed to NWs of two diameters (40 and 80 nm) and similar length (3.6 and 3.8 μm, respectively) suspended in water. In order to locate the NWs in Daphnia, the NWs were designed to comprise one inherently fluorescent segment of gallium indium phosphide (GaInP) flanked by a gallium phosphide (GaP) segment. Daphnia mortality was assessed directly after 24 h of exposure and 7 days after exposure. Translocation of NWs across the intestinal epithelium was investigated using confocal fluorescence microscopy directly after 24 h of exposure and was observed in 89% of Daphnia exposed to 40 nm NWs and in 11% of Daphnia exposed to 80 nm NWs. A high degree of fragmentation was observed for NWs of both diameters after ingestion by the Daphnia, although 40 nm NWs were fragmented to a greater extent, which could possibly facilitate translocation across the intestinal epithelium. Our results show that the feeding behavior of animals may enhance the ability of NWs to penetrate biological barriers and that penetrance is governed by the NW diameter.


Orchestrated regulation of Nogo receptors, LOTUS, AMPA receptors and BDNF in an ECT model suggests opening and closure of a window of synaptic plasticity.

  • Max Nordgren‎ et al.
  • PloS one‎
  • 2013‎

Electroconvulsive therapy (ECT) is an efficient and relatively fast acting treatment for depression. However, one severe side effect of the treatment is retrograde amnesia, which in certain cases can be long-term. The mechanisms behind the antidepressant effect and the amnesia are not well understood. We hypothesized that ECT causes transient downregulation of key molecules needed to stabilize synaptic structure and to prevent Ca2+ influx, and a simultaneous increase in neurotrophic factors, thus providing a short time window of increased structural synaptic plasticity. Here we followed regulation of NgR1, NgR3, LOTUS, BDNF, and AMPA subunits GluR1 and GluR2 flip and flop mRNA levels in hippocampus at 2, 4, 12, 24, and 72 hours after a single episode of induced electroconvulsive seizures (ECS) in rats. NgR1 and LOTUS mRNA levels were transiently downregulated in the dentate gyrus 2, 4, 12 and 4, 12, 24 h after ECS treatment, respectively. GluR2 flip, flop and GluR1 flop were downregulated at 4 h. GluR2 flip remained downregulated at 12 h. In contrast, BDNF, NgR3 and GluR1 flip mRNA levels were upregulated. Thus, ECS treatment induces a transient regulation of factors important for neuronal plasticity. Our data provide correlations between ECS treatment and molecular events compatible with the hypothesis that both effects and side effects of ECT may be caused by structural synaptic rearrangements.


Nociceptive transmission to rat primary somatosensory cortex--comparison of sedative and analgesic effects.

  • Marcus Granmo‎ et al.
  • PloS one‎
  • 2013‎

CO(2)-laser C-fibre evoked cortical potentials (LCEPs) is a potentially useful animal model for studies of pain mechanisms. A potential confounding factor when assessing analgesic effects of systemically administered drugs using LCEP is sedation. This study aims to clarify: 1) the relation between level of anaesthesia and magnitude of LCEP, 2) the effects of a sedative and an analgesic on LCEP and dominant EEG frequency 3) the effects of a sedative and analgesic on LCEP when dominant EEG frequency is kept stable. LCEP and EEG were recorded in isoflurane/nitrous-oxide anaesthetized rats. Increasing isoflurane level gradually reduced LCEPs and lowered dominant EEG frequencies. Systemic midazolam (10 μmol/kg) profoundly reduced LCEP (19% of control) and lowered dominant EEG frequency. Similarly, morphine 1 and 3 mg/kg reduced LCEP (39%, 12% of control, respectively) and decreased EEG frequency. When keeping the dominant EEG frequency stable, midazolam caused no significant change of LCEP. Under these premises, morphine at 3 mg/kg, but not 1 mg/kg, caused a significant LCEP reduction (26% of control). In conclusion, the present data indicate that the sedative effects should be accounted for when assessing the analgesic effects of drug. Furthermore, it is suggested that LCEP, given that changes in EEG induced by sedation are compensated for, can provide information about the analgesic properties of systemically administrated drugs.


Unilateral traumatic brain injury of the left and right hemisphere produces the left hindlimb response in rats.

  • Georgy Bakalkin‎ et al.
  • Experimental brain research‎
  • 2021‎

Traumatic brain injury and stroke result in hemiplegia, hemiparesis, and asymmetry in posture. The effects are mostly contralateral; however, ipsilesional deficits may also develop. We here examined whether ablation brain injury and controlled cortical impact (CCI), a rat model of clinical focal traumatic brain injury, both centered over the left or right sensorimotor cortex, induced hindlimb postural asymmetry (HL-PA) with contralesional or ipsilesional limb flexion. The contralesional hindlimb was flexed after left or right side ablation injury. In contrast, both the left and right CCI unexpectedly produced HL-PA with flexion on left side. The flexion persisted after complete spinal cord transection suggesting that CCI triggered neuroplastic processes in lumbar neural circuits enabling asymmetric muscle contraction. Left limb flexion was exhibited under pentobarbital anesthesia. However, under ketamine anesthesia, the body of the left and right CCI rats bent laterally in the coronal plane to the ipsilesional side suggesting that the left and right injury engaged mirror-symmetrical motor pathways. Thus, the effects of the left and right CCI on HL-PA were not mirror-symmetrical in contrast to those of the ablation brain injury, and to the left and right CCI produced body bending. Ipsilateral effects of the left CCI on HL-PA may be mediated by a lateralized motor pathway that is not affected by the left ablation injury. Alternatively, the left-side-specific neurohormonal mechanism that signals from injured brain to spinal cord may be activated by both the left and right CCI but not by ablation injury.


Fluorescence Signal Enhancement in Antibody Microarrays Using Lightguiding Nanowires.

  • Damiano Verardo‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2021‎

Fluorescence-based detection assays play an essential role in the life sciences and medicine. To offer better detection sensitivity and lower limits of detection (LOD), there is a growing need for novel platforms with an improved readout capacity. In this context, substrates containing semiconductor nanowires may offer significant advantages, due to their proven light-emission enhancing, waveguiding properties, and increased surface area. To demonstrate and evaluate the potential of such nanowires in the context of diagnostic assays, we have in this work adopted a well-established single-chain fragment antibody-based assay, based on a protocol previously designed for biomarker detection using planar microarrays, to freestanding, SiO2-coated gallium phosphide nanowires. The assay was used for the detection of protein biomarkers in highly complex human serum at high dilution. The signal quality was quantified and compared with results obtained on conventional flat silicon and plastic substrates used in the established microarray applications. Our results show that using the nanowire-sensor platform in combination with conventional readout methods, improves the signal intensity, contrast, and signal-to-noise by more than one order of magnitude compared to flat surfaces. The results confirm the potential of lightguiding nanowires for signal enhancement and their capacity to improve the LOD of standard diagnostic assays.


3D microelectrode cluster and stimulation paradigm yield powerful analgesia without noticeable adverse effects.

  • Matilde Forni‎ et al.
  • Science advances‎
  • 2021‎

The lack of satisfactory treatment for persistent pain profoundly impairs the quality of life for many patients. Stimulation of brainstem pain control systems can trigger powerful analgesia, but their complex network organization frequently prevents separation of analgesia from side effects. To overcome this long-standing challenge, we developed a biocompatible gelatin-embedded cluster of ultrathin microelectrodes that enables fine-tuned, high-definition three-dimensional stimulation in periaqueductal gray/dorsal raphe nucleus in awake rats. Analgesia was assessed from both motor reactions and intracortical signals, corresponding to pain-related signals in humans. We could select an individual-specific subset of microelectrodes in each animal that reliably provided strong pain inhibition during normal and hyperalgesia conditions, without noticeable behavioral side effects. Gait, spontaneous cortical activity at rest, and cortical tactile responses were minimally affected, indicating a highly selective action. In conclusion, our developed biocompatible microelectrode cluster and stimulation paradigm reliably enabled powerful, fine-tuned, and selective analgesia without noticeable side effects.


Conserved expression of the GPR151 receptor in habenular axonal projections of vertebrates.

  • Jonas Broms‎ et al.
  • The Journal of comparative neurology‎
  • 2015‎

The habenula is a phylogenetically conserved brain structure in the epithalamus. It is a major node in the information flow between fronto-limbic brain regions and monoaminergic brainstem nuclei, and is thus anatomically and functionally ideally positioned to regulate emotional, motivational, and cognitive behaviors. Consequently, the habenula may be critically important in the pathophysiology of psychiatric disorders such as addiction and depression. Here we investigated the expression pattern of GPR151, a G protein-coupled receptor (GPCR), whose mRNA has been identified as highly and specifically enriched in habenular neurons by in situ hybridization and translating ribosome affinity purification (TRAP). In the present immunohistochemical study we demonstrate a pronounced and highly specific expression of the GPR151 protein in the medial and lateral habenula of rodent brain. Specific expression was also seen in efferent habenular fibers projecting to the interpeduncular nucleus, the rostromedial tegmental area, the rhabdoid nucleus, the mesencephalic raphe nuclei, and the dorsal tegmental nucleus. Using confocal microscopy and quantitative colocalization analysis, we found that GPR151-expressing axons and terminals overlap with cholinergic, substance P-ergic, and glutamatergic markers. Virtually identical expression patterns were observed in rat, mouse, and zebrafish brains. Our data demonstrate that GPR151 is highly conserved, specific for a subdivision of the habenular neurocircuitry, and constitutes a promising novel target for psychiatric drug development.


An array of highly flexible electrodes with a tailored configuration locked by gelatin during implantation-initial evaluation in cortex cerebri of awake rats.

  • Johan Agorelius‎ et al.
  • Frontiers in neuroscience‎
  • 2015‎

A major challenge in the field of neural interfaces is to overcome the problem of poor stability of neuronal recordings, which impedes long-term studies of individual neurons in the brain. Conceivably, unstable recordings reflect relative movements between electrode and tissue. To address this challenge, we have developed a new ultra-flexible electrode array and evaluated its performance in awake non-restrained animals.


Efficient and nontoxic biomolecule delivery to primary human hematopoietic stem cells using nanostraws.

  • Ludwig Schmiderer‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Introduction of exogenous genetic material into primary stem cells is essential for studying biological function and for clinical applications. Traditional delivery methods for nucleic acids, such as electroporation, have advanced the field, but have negative effects on stem cell function and viability. We introduce nanostraw-assisted transfection as an alternative method for RNA delivery to human hematopoietic stem and progenitor cells (HSPCs). Nanostraws are hollow alumina nanotubes that can be used to deliver biomolecules to living cells. We use nanostraws to target human primary HSPCs and show efficient delivery of mRNA, short interfering RNAs (siRNAs), DNA oligonucleotides, and dextrans of sizes ranging from 6 kDa to 2,000 kDa. Nanostraw-treated cells were fully functional and viable, with no impairment in their proliferative or colony-forming capacity, and showed similar long-term engraftment potential in vivo as untreated cells. Additionally, we found that gene expression of the cells was not perturbed by nanostraw treatment, while conventional electroporation changed the expression of more than 2,000 genes. Our results show that nanostraw-mediated transfection is a gentle alternative to established gene delivery methods, and uniquely suited for nonperturbative treatment of sensitive primary stem cells.


Uptake of nanowires by human lung adenocarcinoma cells.

  • Laura Abariute‎ et al.
  • PloS one‎
  • 2019‎

Semiconductor nanowires are increasingly used in optoelectronic devices. However, their effects on human health have not been assessed fully. Here, we investigate the effects of gallium phosphide nanowires on human lung adenocarcinoma cells. Four different geometries of nanowires were suspended in the cell culture for 48 hours. We show that cells internalize the nanowires and that the nanowires have no effect on cell proliferation rate, motility, viability and intracellular ROS levels. By blocking specific internalization pathways, we demonstrate that the nanowire uptake is the result of a combination of processes, requiring dynamin and actin polymerization, which suggests an internalization through macropinocytosis and phagocytosis.


Left-right side-specific endocrine signaling complements neural pathways to mediate acute asymmetric effects of brain injury.

  • Nikolay Lukoyanov‎ et al.
  • eLife‎
  • 2021‎

Brain injuries can interrupt descending neural pathways that convey motor commands from the cortex to spinal motoneurons. Here, we demonstrate that a unilateral injury of the hindlimb sensorimotor cortex of rats with completely transected thoracic spinal cord produces hindlimb postural asymmetry with contralateral flexion and asymmetric hindlimb withdrawal reflexes within 3 hr, as well as asymmetry in gene expression patterns in the lumbar spinal cord. The injury-induced postural effects were abolished by hypophysectomy and were mimicked by transfusion of serum from animals with brain injury. Administration of the pituitary neurohormones β-endorphin or Arg-vasopressin-induced side-specific hindlimb responses in naive animals, while antagonists of the opioid and vasopressin receptors blocked hindlimb postural asymmetry in rats with brain injury. Thus, in addition to the well-established involvement of motor pathways descending from the brain to spinal circuits, the side-specific humoral signaling may also add to postural and reflex asymmetries seen after brain injury.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: