Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 70 papers

Mutants of metal binding site M1 in APP E2 show metal specific differences in binding of heparin but not of sorLA.

  • Christian Dienemann‎ et al.
  • Biochemistry‎
  • 2015‎

The amyloid precursor protein (APP) and its neurotoxic cleavage product Aβ are key players in the development of Alzheimer's disease (AD) and appear to be essential for neuronal development and cell homeostasis. Proteolytic processing of APP and its physiological function depend on its interaction with heparin and are influenced by the binding of metal ions and sorLA. We created various mutations of metal binding site M1 residing within the extracellular E2 domain of APP. Using isothermal titration calorimetry and circular dichroism spectroscopy, we analyzed the binding of Cu(2+) and Zn(2+) to APP E2 and identified two mutations that are most suited for functional studies to dissect ion specific effects of metal binding. The H313A mutation abrogates only copper-based effects, whereas the H382A mutation weakens any metal binding at M1 of APP E2. Subsequently, we tested the effect of Cu(2+) and Zn(2+) on the binding of heparin and sorLA to APP E2 using a chromatographic technique and surface plasmon resonance. We show that Zn(2+) and to a larger degree also Cu(2+) enhance the binding of heparin to APP E2, consistent with an extracellular regulation of the function of APP by both metal ions. In contrast, neither ion seemed to affect the interaction between APP E2 and sorLA. This supports an intracellular interaction between the latter two partners that would not sense extracellular variations of metal ions upon synaptic activity.


A single injection of gain-of-function mutant PCSK9 adeno-associated virus vector induces cardiovascular calcification in mice with no genetic modification.

  • Claudia Goettsch‎ et al.
  • Atherosclerosis‎
  • 2016‎

Studying atherosclerotic calcification in vivo requires mouse models with genetic modifications. Previous studies showed that injection of recombinant adeno-associated virus vector (AAV) encoding a gain-of-function mutant PCSK9 into mice promotes atherosclerosis. We aimed to study cardiovascular calcification induced by PCSK9 AAV in C57BL/6J mice.


Progranulin regulates neuronal outgrowth independent of sortilin.

  • Jennifer Gass‎ et al.
  • Molecular neurodegeneration‎
  • 2012‎

Progranulin (PGRN), a widely secreted growth factor, is involved in multiple biological functions, and mutations located within the PGRN gene (GRN) are a major cause of frontotemporal lobar degeneration with TDP-43-positive inclusions (FLTD-TDP). In light of recent reports suggesting PGRN functions as a protective neurotrophic factor and that sortilin (SORT1) is a neuronal receptor for PGRN, we used a Sort1-deficient (Sort1-/-) murine primary hippocampal neuron model to investigate whether PGRN's neurotrophic effects are dependent on SORT1. We sought to elucidate this relationship to determine what role SORT1, as a regulator of PGRN levels, plays in modulating PGRN's neurotrophic effects.


Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2.

  • Lennart Michel Reinke‎ et al.
  • PloS one‎
  • 2017‎

The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated.


SORLA regulates endosomal trafficking and oncogenic fitness of HER2.

  • Mika Pietilä‎ et al.
  • Nature communications‎
  • 2019‎

The human epidermal growth factor receptor 2 (HER2) is an oncogene targeted by several kinase inhibitors and therapeutic antibodies. While the endosomal trafficking of many other receptor tyrosine kinases is known to regulate their oncogenic signalling, the prevailing view on HER2 is that this receptor is predominantly retained on the cell surface. Here, we find that sortilin-related receptor 1 (SORLA; SORL1) co-precipitates with HER2 in cancer cells and regulates HER2 subcellular distribution by promoting recycling of the endosomal receptor back to the plasma membrane. SORLA protein levels in cancer cell lines and bladder cancers correlates with HER2 levels. Depletion of SORLA triggers HER2 targeting to late endosomal/lysosomal compartments and impairs HER2-driven signalling and in vivo tumour growth. SORLA silencing also disrupts normal lysosome function and sensitizes anti-HER2 therapy sensitive and resistant cancer cells to lysosome-targeting cationic amphiphilic drugs. These findings reveal potentially important SORLA-dependent endosomal trafficking-linked vulnerabilities in HER2-driven cancers.


Gene Transfer in Rodent Nervous Tissue Following Hindlimb Intramuscular Delivery of Recombinant Adeno-Associated Virus Serotypes AAV2/6, AAV2/8, and AAV2/9.

  • Asad Jan‎ et al.
  • Neuroscience insights‎
  • 2019‎

Recombinant adeno-associated virus (rAAV) vectors have emerged as the safe vehicles of choice for long-term gene transfer in mammalian nervous system. Recombinant adeno-associated virus-mediated localized gene transfer in adult nervous system following direct inoculation, that is, intracerebral or intrathecal, is well documented. However, recombinant adeno-associated virus delivery in defined neuronal populations in adult animals using less-invasive methods as well as avoiding ectopic gene expression following systemic inoculation remain challenging. Harnessing the capability of some recombinant adeno-associated virus serotypes for retrograde transduction may potentially address such limitations (Note: The term retrograde transduction in this manuscript refers to the uptake of injected recombinant adeno-associated virus particles at nerve terminals, retrograde transport, and subsequent transduction of nerve cell soma). In some studies, recombinant adeno-associated virus serotypes 2/6, 2/8, and 2/9 have been shown to exhibit transduction of connected neuroanatomical tracts in adult animals following lower limb intramuscular recombinant adeno-associated virus delivery in a pattern suggestive of retrograde transduction. However, an extensive side-by-side comparison of these serotypes following intramuscular delivery regarding tissue viral load, and the effect of promoter on transgene expression, has not been performed. Hence, we delivered recombinant adeno-associated virus serotypes 2/6, 2/8, or 2/9 encoding enhanced green fluorescent protein (eGFP), under the control of either cytomegalovirus (CMV) or human synapsin (hSyn) promoter, via a single unilateral hindlimb intramuscular injection in the bicep femoris of adult C57BL/6J mice. Four weeks post injection, we quantified viral load and transgene (enhanced green fluorescent protein) expression in muscle and related nervous tissues. Our data show that the select recombinant adeno-associated virus serotypes transduce sciatic nerve and groups of neurons in the dorsal root ganglia on the injected side, indicating that the intramuscular recombinant adeno-associated virus delivery is useful for achieving gene transfer in local neuroanatomical tracts. We also observed sparse recombinant adeno-associated virus viral delivery or eGFP transduction in lumbar spinal cord and a noticeable lack thereof in brain. Therefore, further improvements in recombinant adeno-associated virus design are warranted to achieve efficient widespread retrograde transduction following intramuscular and possibly other peripheral routes of delivery.


Postmortem protein stability investigations of the human hepatic drug-metabolizing cytochrome P450 enzymes CYP1A2 and CYP3A4 using mass spectrometry.

  • Jakob Hansen‎ et al.
  • Journal of proteomics‎
  • 2019‎

Variability in expression and activity of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes can play a causal role in fatal intoxication cases and is thus of forensic interest. We investigated the feasibility of LC-MS/MS based quantification and in vitro enzyme activity measurements of two major drug-metabolizing enzymes CYP1A2 and CYP3A4 in postmortem human liver microsomes (HLM). In autopsy cases (postmortem interval 24-36 h) we found CYP1A2 and CYP3A4 protein levels similar to that measured in a non-decayed reference HLM pool, whereas CYP1A2 and CYP3A4 enzyme activities were absent or severely decreased. Stability studies showed that CYP1A2 and CYP3A4 protein abundances were relatively stable in tissue stored in vitro for up to seven days at 4 °C. When tissue was stored for more than one day at 21 °C variable and case-specific decay patterns were observed, and CYP abundances declined especially after 3-4 days storage. Investigations of 50 autopsy cases revealed mean CYP1A2 and CYP3A4 levels of 49 and 47 pmol per mg HLM protein and inter-individual variabilities similar to those reported in other studies. This study supports postmortem quantification of CYP proteins in autopsy hepatic tissue by mass spectrometry. SIGNIFICANCE: This study indicates that MS-based detection of drug-metabolizing cytochrome P450 (CYP) proteins is achievable in postmortem hepatic tissue and that acceptable quantification data are obtainable but dependent on the storage conditions and postmortem sampling time. CYP abundance data could contribute to a conceivable way of assessing individual CYP activity phenotypes in a postmortem context.


Urinary Levels of SARS-CoV-2 Nucleocapsid Protein Associate With Risk of AKI and COVID-19 Severity: A Single-Center Observational Study.

  • Désirée Tampe‎ et al.
  • Frontiers in medicine‎
  • 2021‎

Background: Acute kidney injury (AKI) is very common in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disease 2019 (COVID-19) and considered as a risk factor for COVID-19 severity. SARS-CoV-2 renal tropism has been observed in COVID-19 patients, suggesting that direct viral injury of the kidneys may contribute to AKI. We examined 20 adult cases with confirmed SARS-CoV-2 infection requiring ICU supportive care in a single-center prospective observational study and investigated whether urinary markers for viral infection (SARS-CoV-2 N) and shedded cellular membrane proteins (ACE2, TMPRSS2) allow identification of patients at risk for AKI and outcome of COVID-19. Objectives: The objective of the study was to evaluate whether urinary markers for viral infection (SARS-CoV-2 N) and shedded cellular membrane proteins (ACE2, TMPRSS2) allow identification of patients at risk for AKI and outcome of COVID-19. Results: Urinary SARS-CoV-2 N measured at ICU admission identified patients at risk for AKI in COVID-19 (HR 5.9, 95% CI 1.4-26, p = 0.0095). In addition, the combination of urinary SARS-CoV-2 N and plasma albumin measurements further improved the association with AKI (HR 11.4, 95% CI 2.7-48, p = 0.0016). Finally, combining urinary SARS-CoV-2 N and plasma albumin measurements associated with the length of ICU supportive care (HR 3.3, 95% CI 1.1-9.9, p = 0.0273) and premature death (HR 7.6, 95% CI 1.3-44, p = 0.0240). In contrast, urinary ACE2 and TMPRSS2 did not correlate with AKI in COVID-19. Conclusions: In conclusion, urinary SARS-CoV-2 N levels associate with risk for AKI and correlate with COVID-19 severity.


Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity.

  • Markus Hoffmann‎ et al.
  • EBioMedicine‎
  • 2021‎

Antivirals are needed to combat the COVID-19 pandemic, which is caused by SARS-CoV-2. The clinically-proven protease inhibitor Camostat mesylate inhibits SARS-CoV-2 infection by blocking the virus-activating host cell protease TMPRSS2. However, antiviral activity of Camostat mesylate metabolites and potential viral resistance have not been analyzed. Moreover, antiviral activity of Camostat mesylate in human lung tissue remains to be demonstrated.


SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies.

  • Markus Hoffmann‎ et al.
  • Cell‎
  • 2021‎

The global spread of SARS-CoV-2/COVID-19 is devastating health systems and economies worldwide. Recombinant or vaccine-induced neutralizing antibodies are used to combat the COVID-19 pandemic. However, the recently emerged SARS-CoV-2 variants B.1.1.7 (UK), B.1.351 (South Africa), and P.1 (Brazil) harbor mutations in the viral spike (S) protein that may alter virus-host cell interactions and confer resistance to inhibitors and antibodies. Here, using pseudoparticles, we show that entry of all variants into human cells is susceptible to blockade by the entry inhibitors soluble ACE2, Camostat, EK-1, and EK-1-C4. In contrast, entry of the B.1.351 and P.1 variant was partially (Casirivimab) or fully (Bamlanivimab) resistant to antibodies used for COVID-19 treatment. Moreover, entry of these variants was less efficiently inhibited by plasma from convalescent COVID-19 patients and sera from BNT162b2-vaccinated individuals. These results suggest that SARS-CoV-2 may escape neutralizing antibody responses, which has important implications for efforts to contain the pandemic.


Expression of an alternatively spliced variant of SORL1 in neuronal dendrites is decreased in patients with Alzheimer's disease.

  • Giulia Monti‎ et al.
  • Acta neuropathologica communications‎
  • 2021‎

SORL1 is strongly associated with both sporadic and familial forms of Alzheimer's disease (AD), but a lack of information about alternatively spliced transcripts currently limits our understanding of the role of SORL1 in AD. Here, we describe a SORL1 transcript (SORL1-38b) characterized by inclusion of a novel exon (E38b) that encodes a truncated protein. We identified E38b-containing transcripts in several brain regions, with the highest expression in the cerebellum and showed that SORL1-38b is largely located in neuronal dendrites, which is in contrast to the somatic distribution of transcripts encoding the full-length SORLA protein (SORL1-fl). SORL1-38b transcript levels were significantly reduced in AD cerebellum in three independent cohorts of postmortem brains, whereas no changes were observed for SORL1-fl. A trend of lower 38b transcript level in cerebellum was found for individuals carrying the risk variant at rs2282649 (known as SNP24), although not reaching statistical significance. These findings suggest synaptic functions for SORL1-38b in the brain, uncovering novel aspects of SORL1 that can be further explored in AD research.


The Upper Respiratory Tract of Felids Is Highly Susceptible to SARS-CoV-2 Infection.

  • Nadine Krüger‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Natural or experimental infection of domestic cats and virus transmission from humans to captive predatory cats suggest that felids are highly susceptible to SARS-CoV-2 infection. However, it is unclear which cells and compartments of the respiratory tract are infected. To address this question, primary cell cultures derived from the nose, trachea, and lungs of cat and lion were inoculated with SARS-CoV-2. Strong viral replication was observed for nasal mucosa explants and tracheal air-liquid interface cultures, whereas replication in lung slices was less efficient. Infection was mainly restricted to epithelial cells and did not cause major pathological changes. Detection of high ACE2 levels in the nose and trachea but not lung further suggests that susceptibility of feline tissues to SARS-CoV-2 correlates with ACE2 expression. Collectively, this study demonstrates that SARS-CoV-2 can efficiently replicate in the feline upper respiratory tract ex vivo and thus highlights the risk of SARS-CoV-2 spillover from humans to felids.


A genetically modified minipig model for Alzheimer's disease with SORL1 haploinsufficiency.

  • Olav M Andersen‎ et al.
  • Cell reports. Medicine‎
  • 2022‎

The established causal genes in Alzheimer's disease (AD), APP, PSEN1, and PSEN2, are functionally characterized using biomarkers, capturing an in vivo profile reflecting the disease's initial preclinical phase. Mutations in SORL1, encoding the endosome recycling receptor SORLA, are found in 2%-3% of individuals with early-onset AD, and SORL1 haploinsufficiency appears to be causal for AD. To test whether SORL1 can function as an AD causal gene, we use CRISPR-Cas9-based gene editing to develop a model of SORL1 haploinsufficiency in Göttingen minipigs, taking advantage of porcine models for biomarker investigations. SORL1 haploinsufficiency in young adult minipigs is found to phenocopy the preclinical in vivo profile of AD observed with APP, PSEN1, and PSEN2, resulting in elevated levels of β-amyloid (Aβ) and tau preceding amyloid plaque formation and neurodegeneration, as observed in humans. Our study provides functional support for the theory that SORL1 haploinsufficiency leads to endosome cytopathology with biofluid hallmarks of autosomal dominant AD.


Alzheimer's vulnerable brain region relies on a distinct retromer core dedicated to endosomal recycling.

  • Sabrina Simoes‎ et al.
  • Cell reports‎
  • 2021‎

Whether and how the pathogenic disruptions in endosomal trafficking observed in Alzheimer's disease (AD) are linked to its anatomical vulnerability remain unknown. Here, we began addressing these questions by showing that neurons are enriched with a second retromer core, organized around VPS26b, differentially dedicated to endosomal recycling. Next, by imaging mouse models, we show that the trans-entorhinal cortex, a region most vulnerable to AD, is most susceptible to VPS26b depletion-a finding validated by electrophysiology, immunocytochemistry, and behavior. VPS26b was then found enriched in the trans-entorhinal cortex of human brains, where both VPS26b and the retromer-related receptor SORL1 were found deficient in AD. Finally, by regulating glutamate receptor and SORL1 recycling, we show that VPS26b can mediate regionally selective synaptic dysfunction and SORL1 deficiency. Together with the trans-entorhinal's unique network properties, hypothesized to impose a heavy demand on endosomal recycling, these results suggest a general mechanism that can explain AD's regional vulnerability.


SARS-CoV-2 Omicron sublineages show comparable cell entry but differential neutralization by therapeutic antibodies.

  • Prerna Arora‎ et al.
  • Cell host & microbe‎
  • 2022‎

The Omicron variant of SARS-CoV-2 evades antibody-mediated neutralization with unprecedented efficiency. At least three Omicron sublineages have been identified-BA.1, BA.2, and BA.3-and BA.2 exhibits increased transmissibility. However, it is currently unknown whether BA.2 differs from the other sublineages regarding cell entry and antibody-mediated inhibition. Here, we show that BA.1, BA.2, and BA.3 enter and fuse target cells with similar efficiency and in an ACE2-dependent manner. However, BA.2 was not efficiently neutralized by seven of eight antibodies used for COVID-19 therapy, including Sotrovimab, which robustly neutralized BA.1. In contrast, BA.2 and BA.3 (but not BA.1) were appreciably neutralized by Cilgavimab, which could constitute a treatment option. Finally, all sublineages were comparably and efficiently neutralized by antibodies induced by BNT162b2 booster vaccination after previous two-dose homologous or heterologous vaccination. Collectively, the Omicron sublineages show comparable cell entry and neutralization by vaccine-induced antibodies but differ in susceptibility to therapeutic antibodies.


Discovery of Polyphenolic Natural Products as SARS-CoV-2 Mpro Inhibitors for COVID-19.

  • Nadine Krüger‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2023‎

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the development of direct-acting antiviral drugs due to the coronavirus disease 2019 (COVID-19) pandemic. The main protease of SARS-CoV-2 is a crucial enzyme that breaks down polyproteins synthesized from the viral RNA, making it a validated target for the development of SARS-CoV-2 therapeutics. New chemical phenotypes are frequently discovered in natural goods. In the current study, we used a fluorogenic assay to test a variety of natural products for their ability to inhibit SARS-CoV-2 Mpro. Several compounds were discovered to inhibit Mpro at low micromolar concentrations. It was possible to crystallize robinetin together with SARS-CoV-2 Mpro, and the X-ray structure revealed covalent interaction with the protease's catalytic Cys145 site. Selected potent molecules also exhibited antiviral properties without cytotoxicity. Some of these powerful inhibitors might be utilized as lead compounds for future COVID-19 research.


AraC interacts with p75NTR transmembrane domain to induce cell death of mature neurons.

  • Vanessa Lopes-Rodrigues‎ et al.
  • Cell death & disease‎
  • 2023‎

Cytosine arabinoside (AraC) is one of the main therapeutic treatments for several types of cancer, including acute myeloid leukaemia. However, after a high-dose AraC chemotherapy regime, patients develop severe neurotoxicity and cell death in the central nervous system leading to cerebellar ataxia, dysarthria, nystagmus, somnolence and drowsiness. AraC induces apoptosis in dividing cells. However, the mechanism by which it leads to neurite degeneration and cell death in mature neurons remains unclear. We hypothesise that the upregulation of the death receptor p75NTR is responsible for AraC-mediated neurodegeneration and cell death in leukaemia patients undergoing AraC treatment. To determine the role of AraC-p75NTR signalling in the cell death of mature neurons, we used mature cerebellar granule neurons' primary cultures from p75NTR knockout and p75NTRCys259 mice. Evaluation of neurite degeneration, cell death and p75NTR signalling was done by immunohistochemistry and immunoblotting. To assess the interaction between AraC and p75NTR, we performed cellular thermal shift and AraTM assays as well as Homo-FRET anisotropy imaging. We show that AraC induces neurite degeneration and programmed cell death of mature cerebellar granule neurons in a p75NTR-dependent manner. Mechanistically, Proline 252 and Cysteine 256 residues facilitate AraC interaction with the transmembrane domain of p75NTR resulting in uncoupling of p75NTR from the NFκB survival pathway. This, in turn, exacerbates the activation of the cell death/JNK pathway by recruitment of TRAF6 to p75NTR. Our findings identify p75NTR as a novel molecular target to develop treatments for counteract AraC-mediated cell death of mature neurons.


A familial missense variant in the Alzheimer's Disease gene SORL1 impairs its maturation and endosomal sorting.

  • Elnaz Fazeli‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The SORL1 gene has recently emerged as a strong Alzheimer's Disease (AD) risk gene. Over 500 different variants have been identified in the gene and the contribution of individual variants to AD development and progression is still largely unknown. Here, we describe a family consisting of 2 parents and 5 offspring. Both parents were affected with dementia and one had confirmed AD pathology with an age of onset >75 years. All offspring were affected with AD with ages at onset ranging from 53yrs-74yrs. DNA was available from the parent with confirmed AD and 5 offspring. We identified a coding variant, p.(Arg953Cys), in SORL1 in 5 of 6 individuals affected by AD. Notably, variant carriers had severe AD pathology, and the SORL1 variant segregated with TDP-43 pathology (LATE-NC). We further characterized this variant and show that this Arginine substitution occurs at a critical position in the YWTD-domain of the SORL1 translation product, SORL1. Functional studies further show that the p.R953C variant leads to retention of the SORL1 protein in the endoplasmic reticulum which leads to decreased maturation and shedding of the receptor and prevents its normal endosomal trafficking. Together, our analysis suggests that p.R953C is a pathogenic variant of SORL1 and sheds light on mechanisms of how missense SORL1 variants may lead to AD.


Influence of antiresorptive/antiangiogenic therapy on the surgical treatment outcomes of experimentally induced peri-implantitis lesions.

  • Ausra Ramanauskaite‎ et al.
  • Clinical oral investigations‎
  • 2023‎

To investigate the influence of various antiresorptive and antiangiogenic medications on the resolution of experimentally induced peri-implantitis lesions after different surgical treatment approaches.


ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations.

  • Anne-Sofie Graae‎ et al.
  • Diabetes‎
  • 2019‎

The ADAMTS9 rs4607103 C allele is one of the few gene variants proposed to increase the risk of type 2 diabetes through an impairment of insulin sensitivity. We show that the variant is associated with increased expression of the secreted ADAMTS9 and decreased insulin sensitivity and signaling in human skeletal muscle. In line with this, mice lacking Adamts9 selectively in skeletal muscle have improved insulin sensitivity. The molecular link between ADAMTS9 and insulin signaling was characterized further in a model where ADAMTS9 was overexpressed in skeletal muscle. This selective overexpression resulted in decreased insulin signaling presumably mediated through alterations of the integrin β1 signaling pathway and disruption of the intracellular cytoskeletal organization. Furthermore, this led to impaired mitochondrial function in mouse muscle-an observation found to be of translational character because humans carrying the ADAMTS9 risk allele have decreased expression of mitochondrial markers. Finally, we found that the link between ADAMTS9 overexpression and impaired insulin signaling could be due to accumulation of harmful lipid intermediates. Our findings contribute to the understanding of the molecular mechanisms underlying insulin resistance and type 2 diabetes and point to inhibition of ADAMTS9 as a potential novel mode of treating insulin resistance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: