Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 150 papers

A single injection of gain-of-function mutant PCSK9 adeno-associated virus vector induces cardiovascular calcification in mice with no genetic modification.

  • Claudia Goettsch‎ et al.
  • Atherosclerosis‎
  • 2016‎

Studying atherosclerotic calcification in vivo requires mouse models with genetic modifications. Previous studies showed that injection of recombinant adeno-associated virus vector (AAV) encoding a gain-of-function mutant PCSK9 into mice promotes atherosclerosis. We aimed to study cardiovascular calcification induced by PCSK9 AAV in C57BL/6J mice.


Mutants of metal binding site M1 in APP E2 show metal specific differences in binding of heparin but not of sorLA.

  • Christian Dienemann‎ et al.
  • Biochemistry‎
  • 2015‎

The amyloid precursor protein (APP) and its neurotoxic cleavage product Aβ are key players in the development of Alzheimer's disease (AD) and appear to be essential for neuronal development and cell homeostasis. Proteolytic processing of APP and its physiological function depend on its interaction with heparin and are influenced by the binding of metal ions and sorLA. We created various mutations of metal binding site M1 residing within the extracellular E2 domain of APP. Using isothermal titration calorimetry and circular dichroism spectroscopy, we analyzed the binding of Cu(2+) and Zn(2+) to APP E2 and identified two mutations that are most suited for functional studies to dissect ion specific effects of metal binding. The H313A mutation abrogates only copper-based effects, whereas the H382A mutation weakens any metal binding at M1 of APP E2. Subsequently, we tested the effect of Cu(2+) and Zn(2+) on the binding of heparin and sorLA to APP E2 using a chromatographic technique and surface plasmon resonance. We show that Zn(2+) and to a larger degree also Cu(2+) enhance the binding of heparin to APP E2, consistent with an extracellular regulation of the function of APP by both metal ions. In contrast, neither ion seemed to affect the interaction between APP E2 and sorLA. This supports an intracellular interaction between the latter two partners that would not sense extracellular variations of metal ions upon synaptic activity.


Postmortem protein stability investigations of the human hepatic drug-metabolizing cytochrome P450 enzymes CYP1A2 and CYP3A4 using mass spectrometry.

  • Jakob Hansen‎ et al.
  • Journal of proteomics‎
  • 2019‎

Variability in expression and activity of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes can play a causal role in fatal intoxication cases and is thus of forensic interest. We investigated the feasibility of LC-MS/MS based quantification and in vitro enzyme activity measurements of two major drug-metabolizing enzymes CYP1A2 and CYP3A4 in postmortem human liver microsomes (HLM). In autopsy cases (postmortem interval 24-36 h) we found CYP1A2 and CYP3A4 protein levels similar to that measured in a non-decayed reference HLM pool, whereas CYP1A2 and CYP3A4 enzyme activities were absent or severely decreased. Stability studies showed that CYP1A2 and CYP3A4 protein abundances were relatively stable in tissue stored in vitro for up to seven days at 4 °C. When tissue was stored for more than one day at 21 °C variable and case-specific decay patterns were observed, and CYP abundances declined especially after 3-4 days storage. Investigations of 50 autopsy cases revealed mean CYP1A2 and CYP3A4 levels of 49 and 47 pmol per mg HLM protein and inter-individual variabilities similar to those reported in other studies. This study supports postmortem quantification of CYP proteins in autopsy hepatic tissue by mass spectrometry. SIGNIFICANCE: This study indicates that MS-based detection of drug-metabolizing cytochrome P450 (CYP) proteins is achievable in postmortem hepatic tissue and that acceptable quantification data are obtainable but dependent on the storage conditions and postmortem sampling time. CYP abundance data could contribute to a conceivable way of assessing individual CYP activity phenotypes in a postmortem context.


Oxidative Burst-Dependent NETosis Is Implicated in the Resolution of Necrosis-Associated Sterile Inflammation.

  • Mona H C Biermann‎ et al.
  • Frontiers in immunology‎
  • 2016‎

Necrosis is associated with a profound inflammatory response. The regulation of necrosis-associated inflammation, particularly the mechanisms responsible for resolution of inflammation is incompletely characterized. Nanoparticles are known to induce plasma membrane damage and necrosis followed by sterile inflammation. We observed that injection of metabolically inert nanodiamonds resulted in paw edema in WT and Ncf1** mice. However, while inflammation quickly resolved in WT mice, it persisted over several weeks in Ncf1** mice indicating failure of resolution of inflammation. Mechanistically, NOX2-dependent reactive oxygen species (ROS) production and formation of neutrophil extracellular traps were essential for the resolution of necrosis-induced inflammation: hence, by evaluating the fate of the particles at the site of inflammation, we observed that Ncf1** mice deficient in NADPH-dependent ROS failed to generate granulation tissue therefore being unable to trap the nanodiamonds. These data suggest that NOX2-dependent NETosis is crucial for preventing the chronification of the inflammatory response to tissue necrosis by forming NETosis-dependent barriers between the necrotic and healthy surrounding tissue.


Progranulin regulates neuronal outgrowth independent of sortilin.

  • Jennifer Gass‎ et al.
  • Molecular neurodegeneration‎
  • 2012‎

Progranulin (PGRN), a widely secreted growth factor, is involved in multiple biological functions, and mutations located within the PGRN gene (GRN) are a major cause of frontotemporal lobar degeneration with TDP-43-positive inclusions (FLTD-TDP). In light of recent reports suggesting PGRN functions as a protective neurotrophic factor and that sortilin (SORT1) is a neuronal receptor for PGRN, we used a Sort1-deficient (Sort1-/-) murine primary hippocampal neuron model to investigate whether PGRN's neurotrophic effects are dependent on SORT1. We sought to elucidate this relationship to determine what role SORT1, as a regulator of PGRN levels, plays in modulating PGRN's neurotrophic effects.


Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2.

  • Lennart Michel Reinke‎ et al.
  • PloS one‎
  • 2017‎

The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated.


Gene Transfer in Rodent Nervous Tissue Following Hindlimb Intramuscular Delivery of Recombinant Adeno-Associated Virus Serotypes AAV2/6, AAV2/8, and AAV2/9.

  • Asad Jan‎ et al.
  • Neuroscience insights‎
  • 2019‎

Recombinant adeno-associated virus (rAAV) vectors have emerged as the safe vehicles of choice for long-term gene transfer in mammalian nervous system. Recombinant adeno-associated virus-mediated localized gene transfer in adult nervous system following direct inoculation, that is, intracerebral or intrathecal, is well documented. However, recombinant adeno-associated virus delivery in defined neuronal populations in adult animals using less-invasive methods as well as avoiding ectopic gene expression following systemic inoculation remain challenging. Harnessing the capability of some recombinant adeno-associated virus serotypes for retrograde transduction may potentially address such limitations (Note: The term retrograde transduction in this manuscript refers to the uptake of injected recombinant adeno-associated virus particles at nerve terminals, retrograde transport, and subsequent transduction of nerve cell soma). In some studies, recombinant adeno-associated virus serotypes 2/6, 2/8, and 2/9 have been shown to exhibit transduction of connected neuroanatomical tracts in adult animals following lower limb intramuscular recombinant adeno-associated virus delivery in a pattern suggestive of retrograde transduction. However, an extensive side-by-side comparison of these serotypes following intramuscular delivery regarding tissue viral load, and the effect of promoter on transgene expression, has not been performed. Hence, we delivered recombinant adeno-associated virus serotypes 2/6, 2/8, or 2/9 encoding enhanced green fluorescent protein (eGFP), under the control of either cytomegalovirus (CMV) or human synapsin (hSyn) promoter, via a single unilateral hindlimb intramuscular injection in the bicep femoris of adult C57BL/6J mice. Four weeks post injection, we quantified viral load and transgene (enhanced green fluorescent protein) expression in muscle and related nervous tissues. Our data show that the select recombinant adeno-associated virus serotypes transduce sciatic nerve and groups of neurons in the dorsal root ganglia on the injected side, indicating that the intramuscular recombinant adeno-associated virus delivery is useful for achieving gene transfer in local neuroanatomical tracts. We also observed sparse recombinant adeno-associated virus viral delivery or eGFP transduction in lumbar spinal cord and a noticeable lack thereof in brain. Therefore, further improvements in recombinant adeno-associated virus design are warranted to achieve efficient widespread retrograde transduction following intramuscular and possibly other peripheral routes of delivery.


Sphingosine prevents binding of SARS-CoV-2 spike to its cellular receptor ACE2.

  • Michael J Edwards‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

Sphingosine has been shown to prevent and eliminate bacterial infections of the respiratory tract, but it is unknown whether sphingosine can be also employed to prevent viral infections. To test this hypothesis, we analyzed whether sphingosine regulates the infection of cultured and freshly isolated ex vivo human epithelial cells with pseudoviral particles expressing SARS-CoV-2 spike (pp-VSV-SARS-CoV-2 spike) that served as a bona fide system mimicking SARS-CoV-2 infection. We demonstrate that exogenously applied sphingosine suspended in 0.9% NaCl prevents cellular infection with pp-SARS-CoV-2 spike. Pretreatment of cultured Vero epithelial cells or freshly isolated human nasal epithelial cells with low concentrations of sphingosine prevented adhesion of and infection with pp-VSV-SARS-CoV-2 spike. Mechanistically, we demonstrate that sphingosine binds to ACE2, the cellular receptor of SARS-CoV-2, and prevents the interaction of the receptor-binding domain of the viral spike protein with ACE2. These data indicate that sphingosine prevents at least some viral infections by interfering with the interaction of the virus with its receptor. Our data also suggest that further preclinical and finally clinical examination of sphingosine is warranted for potential use as a prophylactic or early treatment for coronavirus disease-19.


No association between HPV-status in tonsillar tissue and sexual behavior of the patients in a northern German population - Critical view of the link between HPV natural history and HPV-driven carcinogenesis.

  • Elgar Susanne Quabius‎ et al.
  • Papillomavirus research (Amsterdam, Netherlands)‎
  • 2020‎

HPV-infection in patients with HNSCC is reportedly correlated with sexual behavior, age, and tobacco/alcohol-consumption. HPV-infections of the oral cavity are regarded as sexually transmitted. Comparable data of patient populations outside the U.S. are sparse or missing. Questionnaires regarding sexual behavior, education tobacco- and alcohol-consumption, were given to 28 patients with tonsillar hyperplasia (H) and 128 patients with tonsillar carcinomas (CA), all with tissue-typed HPV-DNA-status performing PCR. Answers were correlated among groups and HPV-status. 106 questionnaires were analyzed. Comparisons between H- (n = 25) and CA- (n = 81) patients showed that CA-patients were older (61.1yrs ± 9.3) than H-patients (45.2yrs ± 11.9; p < 0.0001; Student's t-test); had a lower educational level (p = 0.0095); and lower number of sexual partners (p = 0.0222; Fisher's exact test). All groups showed a significant correlation between smoking and lack of HPV-DNA-positivity (p = 0.001). Further Fisher's exact tests and logistic regression analysis revealed in all 106 patients no significant correlations between tissue-HPV-status and the analyzed parameters. Despite the limited sample size, we were able to confirm the established correlation between smoking and tissue-HPV-status. The correlation between sexual behavior and HPV-infection was not confirmed. No consensus exists in the literature about the latter. Our data does not support the strict classification of oral HPV-infections and HPV-driven HNSCCs as STDs.


SORLA regulates endosomal trafficking and oncogenic fitness of HER2.

  • Mika Pietilä‎ et al.
  • Nature communications‎
  • 2019‎

The human epidermal growth factor receptor 2 (HER2) is an oncogene targeted by several kinase inhibitors and therapeutic antibodies. While the endosomal trafficking of many other receptor tyrosine kinases is known to regulate their oncogenic signalling, the prevailing view on HER2 is that this receptor is predominantly retained on the cell surface. Here, we find that sortilin-related receptor 1 (SORLA; SORL1) co-precipitates with HER2 in cancer cells and regulates HER2 subcellular distribution by promoting recycling of the endosomal receptor back to the plasma membrane. SORLA protein levels in cancer cell lines and bladder cancers correlates with HER2 levels. Depletion of SORLA triggers HER2 targeting to late endosomal/lysosomal compartments and impairs HER2-driven signalling and in vivo tumour growth. SORLA silencing also disrupts normal lysosome function and sensitizes anti-HER2 therapy sensitive and resistant cancer cells to lysosome-targeting cationic amphiphilic drugs. These findings reveal potentially important SORLA-dependent endosomal trafficking-linked vulnerabilities in HER2-driven cancers.


Role of rhesus macaque IFITM3(2) in simian immunodeficiency virus infection of macaques.

  • Michael Winkler‎ et al.
  • PloS one‎
  • 2019‎

The experimental infection of rhesus macaques (rh) with simian immunodeficiency virus (SIV) is an important model for human immunodeficiency virus (HIV) infection of humans. The interferon-induced transmembrane protein 3 (IFITM3) inhibits HIV and SIV infection at the stage of host cell entry. However, it is still unclear to what extent the antiviral activity of IFITM3 observed in cell culture translates into inhibition of HIV/SIV spread in the infected host. We have shown previously that although rhIFITM3 inhibits SIV entry into cultured cells, polymorphisms in the rhIFITM3 gene are not strongly associated with viral load or disease progression in SIV infected macaques. Here, we examined whether rhIFITM3(2), which is closely related to rhIFITM3 at the sequence level, exerts antiviral activity and whether polymorphisms in the rhIFITM3(2) gene impact the course of SIV infection. We show that expression of rhIFITM3(2) is interferon-inducible and inhibits SIV entry into cells, although with reduced efficiency as compared to rhIFITM3. We further report the identification of 19 polymorphisms in the rhIFITM3(2) gene. However, analysis of a well characterized cohort of SIV infected macaques revealed that none of the polymorphisms had a significant impact upon the course of SIV infection. These results and our previous work suggest that polymorphisms in the rhIFITM3 and rhIFITM3(2) genes do not strongly modulate the course of SIV infection in macaques.


Neutralizing antibody responses 300 days after SARS-CoV-2 infection and induction of high antibody titers after vaccination.

  • Doris Urlaub‎ et al.
  • European journal of immunology‎
  • 2022‎

Neutralizing antibodies against SARS-CoV-2 are important to protect against infection and/or disease. Using an assay to detect antibodies directed against the receptor binding domain (RBD) of SARS-CoV-2 Spike, we identified individuals with SARS-CoV-2 infection after an outbreak at a local health institution. All but one COVID-19 patient developed detectable anti-RBD antibodies and 77% had virus neutralizing antibody titers of >1:25. Antibody levels declined slightly over time. However, we still detected virus neutralizing antibody titers in 64% of the COVID-19 patients at >300 days after infection, demonstrating durability of neutralizing antibody levels after infection. Importantly, full COVID-19 vaccination of these individuals resulted in higher antibody titers compared to fully vaccinated individuals in the absence of prior infection. These data demonstrate long-lived antibody-mediated immunity after SARS-CoV-2 infection, and a clear benefit of two vaccine doses for recovered individuals.


MCMV-based vaccine vectors expressing full-length viral proteins provide long-term humoral immune protection upon a single-shot vaccination.

  • Yeonsu Kim‎ et al.
  • Cellular & molecular immunology‎
  • 2022‎

Global pandemics caused by influenza or coronaviruses cause severe disruptions to public health and lead to high morbidity and mortality. There remains a medical need for vaccines against these pathogens. CMV (cytomegalovirus) is a β-herpesvirus that induces uniquely robust immune responses in which remarkably large populations of antigen-specific CD8+ T cells are maintained for a lifetime. Hence, CMV has been proposed and investigated as a novel vaccine vector for expressing antigenic peptides or proteins to elicit protective cellular immune responses against numerous pathogens. We generated two recombinant murine CMV (MCMV) vaccine vectors expressing hemagglutinin (HA) of influenza A virus (MCMVHA) or the spike protein of severe acute respiratory syndrome coronavirus 2 (MCMVS). A single injection of MCMVs expressing either viral protein induced potent neutralizing antibody responses, which strengthened over time. Importantly, MCMVHA-vaccinated mice were protected from illness following challenge with the influenza virus, and we excluded that this protection was due to the effects of memory T cells. Conclusively, we show here that MCMV vectors induce not only long-term cellular immunity but also humoral responses that provide long-term immune protection against clinically relevant respiratory pathogens.


Alzheimer's vulnerable brain region relies on a distinct retromer core dedicated to endosomal recycling.

  • Sabrina Simoes‎ et al.
  • Cell reports‎
  • 2021‎

Whether and how the pathogenic disruptions in endosomal trafficking observed in Alzheimer's disease (AD) are linked to its anatomical vulnerability remain unknown. Here, we began addressing these questions by showing that neurons are enriched with a second retromer core, organized around VPS26b, differentially dedicated to endosomal recycling. Next, by imaging mouse models, we show that the trans-entorhinal cortex, a region most vulnerable to AD, is most susceptible to VPS26b depletion-a finding validated by electrophysiology, immunocytochemistry, and behavior. VPS26b was then found enriched in the trans-entorhinal cortex of human brains, where both VPS26b and the retromer-related receptor SORL1 were found deficient in AD. Finally, by regulating glutamate receptor and SORL1 recycling, we show that VPS26b can mediate regionally selective synaptic dysfunction and SORL1 deficiency. Together with the trans-entorhinal's unique network properties, hypothesized to impose a heavy demand on endosomal recycling, these results suggest a general mechanism that can explain AD's regional vulnerability.


Long-term immune protection against SARS-CoV-2 escape variants upon a single vaccination with murine cytomegalovirus expressing the spike protein.

  • Yeonsu Kim‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2022‎

Vaccines are central to controlling the coronavirus disease 2019 (COVID-19) pandemic but the durability of protection is limited for currently approved COVID-19 vaccines. Further, the emergence of variants of concern (VoCs) that evade immune recognition has reduced vaccine effectiveness, compounding the problem. Here, we show that a single dose of a murine cytomegalovirus (MCMV)-based vaccine, which expresses the spike (S) protein of the virus circulating early in the pandemic (MCMV S ), protects highly susceptible K18-hACE2 mice from clinical symptoms and death upon challenge with a lethal dose of D614G SARS-CoV-2. Moreover, MCMV S vaccination controlled two immune-evading VoCs, the Beta (B.1.135) and the Omicron (BA.1) variants in BALB/c mice, and S-specific immunity was maintained for at least 5 months after immunization, where neutralizing titers against all tested VoCs were higher at 5-months than at 1-month post-vaccination. Thus, cytomegalovirus (CMV)-based vector vaccines might allow for long-term protection against COVID-19.


Peptidomimetic inhibitors of TMPRSS2 block SARS-CoV-2 infection in cell culture.

  • Lukas Wettstein‎ et al.
  • Communications biology‎
  • 2022‎

The transmembrane serine protease 2 (TMPRSS2) primes the SARS-CoV-2 Spike (S) protein for host cell entry and represents a promising target for COVID-19 therapy. Here we describe the in silico development and in vitro characterization of peptidomimetic TMPRSS2 inhibitors. Molecular docking studies identified peptidomimetic binders of the TMPRSS2 catalytic site, which were synthesized and coupled to an electrophilic serine trap. The compounds inhibit TMPRSS2 while demonstrating good off-target selectivity against selected coagulation proteases. Lead candidates are stable in blood serum and plasma for at least ten days. Finally, we show that selected peptidomimetics inhibit SARS-CoV-2 Spike-driven pseudovirus entry and authentic SARS-CoV-2 infection with comparable efficacy as camostat mesylate. The peptidomimetic TMPRSS2 inhibitors also prevent entry of recent SARS-CoV-2 variants of concern Delta and Omicron BA.1. In sum, our study reports antivirally active and stable TMPRSS2 inhibitors with prospects for further preclinical and clinical development as antiviral agents against SARS-CoV-2 and other TMPRSS2-dependent viruses.


Alpha-1 antitrypsin inhibits TMPRSS2 protease activity and SARS-CoV-2 infection.

  • Lukas Wettstein‎ et al.
  • Nature communications‎
  • 2021‎

SARS-CoV-2 is a respiratory pathogen and primarily infects the airway epithelium. As our knowledge about innate immune factors of the respiratory tract against SARS-CoV-2 is limited, we generated and screened a peptide/protein library derived from bronchoalveolar lavage for inhibitors of SARS-CoV-2 spike-driven entry. Analysis of antiviral fractions revealed the presence of α1-antitrypsin (α1AT), a highly abundant circulating serine protease inhibitor. Here, we report that α1AT inhibits SARS-CoV-2 entry at physiological concentrations and suppresses viral replication in cell lines and primary cells including human airway epithelial cultures. We further demonstrate that α1AT binds and inactivates the serine protease TMPRSS2, which enzymatically primes the SARS-CoV-2 spike protein for membrane fusion. Thus, the acute phase protein α1AT is an inhibitor of TMPRSS2 and SARS-CoV-2 entry, and may play an important role in the innate immune defense against the novel coronavirus. Our findings suggest that repurposing of α1AT-containing drugs has prospects for the therapy of COVID-19.


Expression of an alternatively spliced variant of SORL1 in neuronal dendrites is decreased in patients with Alzheimer's disease.

  • Giulia Monti‎ et al.
  • Acta neuropathologica communications‎
  • 2021‎

SORL1 is strongly associated with both sporadic and familial forms of Alzheimer's disease (AD), but a lack of information about alternatively spliced transcripts currently limits our understanding of the role of SORL1 in AD. Here, we describe a SORL1 transcript (SORL1-38b) characterized by inclusion of a novel exon (E38b) that encodes a truncated protein. We identified E38b-containing transcripts in several brain regions, with the highest expression in the cerebellum and showed that SORL1-38b is largely located in neuronal dendrites, which is in contrast to the somatic distribution of transcripts encoding the full-length SORLA protein (SORL1-fl). SORL1-38b transcript levels were significantly reduced in AD cerebellum in three independent cohorts of postmortem brains, whereas no changes were observed for SORL1-fl. A trend of lower 38b transcript level in cerebellum was found for individuals carrying the risk variant at rs2282649 (known as SNP24), although not reaching statistical significance. These findings suggest synaptic functions for SORL1-38b in the brain, uncovering novel aspects of SORL1 that can be further explored in AD research.


Calu-3 cells are largely resistant to entry driven by filovirus glycoproteins and the entry defect can be rescued by directed expression of DC-SIGN or cathepsin L.

  • Mariana González-Hernández‎ et al.
  • Virology‎
  • 2019‎

Priming of the viral glycoprotein (GP) by the cellular proteases cathepsin B and L (CatB, CatL) is believed to be essential for cell entry of filoviruses. However, pseudotyping systems that predominantly produce non-filamentous particles have frequently been used to prove this concept. Here, we report that GP-mediated entry of retroviral-, rhabdoviral and filoviral particles depends on CatB/CatL activity and that this effect is cell line-independent. Moreover, we show that the human cell line Calu-3, which expresses low amounts of CatL, is largely resistant to entry driven by diverse filovirus GPs. Finally, we demonstrate that Calu-3 cell entry mediated by certain filovirus GPs can be rescued upon directed expression of CatL or DC-SIGN. Our results identify Calu-3 cells as largely resistant to filovirus GP-driven entry and demonstrate that entry is limited at the stage of virion attachment and GP priming.


Thiol drugs decrease SARS-CoV-2 lung injury in vivo and disrupt SARS-CoV-2 spike complex binding to ACE2 in vitro.

  • Kritika Khanna‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2021‎

Neutrophil-induced oxidative stress is a mechanism of lung injury in COVID-19, and drugs with a functional thiol group ("thiol drugs"), especially cysteamine, have anti-oxidant and anti-inflammatory properties that could limit this injury. Thiol drugs may also alter the redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) and thereby disrupt ACE2 binding. Using ACE2 binding assay, reporter virus pseudotyped with SARS-CoV-2 spikes (ancestral and variants) and authentic SARS-CoV-2 (Wuhan-1), we find that multiple thiol drugs inhibit SARS-2-S binding to ACE2 and virus entry into cells. Pseudoviruses carrying variant spikes were less efficiently inhibited as compared to pseudotypes bearing an ancestral spike, but the most potent drugs still inhibited the Delta variant in the low millimolar range. IC50 values followed the order of their cystine cleavage rates and lower thiol pKa values. In hamsters infected with SARS-CoV-2, intraperitoneal (IP) cysteamine decreased neutrophilic inflammation and alveolar hemorrhage in the lungs but did not decrease viral infection, most likely because IP delivery could not achieve millimolar concentrations in the airways. These data show that thiol drugs inhibit SARS-CoV-2 infection in vitro and reduce SARS-CoV-2-related lung injury in vivo and provide strong rationale for trials of systemically delivered thiol drugs as COVID-19 treatments. We propose that antiviral effects of thiol drugs in vivo will require delivery directly to the airways to ensure millimolar drug concentrations and that thiol drugs with lower thiol pKa values are most likely to be effective.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: