Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Rare TREM2 variants associated with Alzheimer's disease display reduced cell surface expression.

  • Daniel W Sirkis‎ et al.
  • Acta neuropathologica communications‎
  • 2016‎

Rare variation in TREM2 has been associated with greater risk for Alzheimer's disease (AD). TREM2 encodes a cell surface receptor expressed on microglia and related cells, and the R47H variant associated with AD appears to affect the ability of TREM2 to bind extracellular ligands. In addition, other rare TREM2 mutations causing early-onset neurodegeneration are thought to impair cell surface expression. Using a sequence kernel association (SKAT) analysis in two independent AD cohorts, we found significant enrichment of rare TREM2 variants not previously characterized at the protein level. Heterologous expression of the identified variants showed that novel variants S31F and R47C displayed significantly reduced cell surface expression. In addition, we identified rare variant R136Q in a patient with language-predominant AD that also showed impaired surface expression. The results suggest rare TREM2 variants enriched in AD may be associated with altered TREM2 function and that AD risk may be conferred, in part, from altered TREM2 surface expression.


A novel mutation P112H in the TARDBP gene associated with frontotemporal lobar degeneration without motor neuron disease and abundant neuritic amyloid plaques.

  • Fermin Moreno‎ et al.
  • Acta neuropathologica communications‎
  • 2015‎

Although TDP-43 is the main constituent of the ubiquitinated cytoplasmic inclusions in the most common forms of frontotemporal lobar degeneration, TARDBP mutations are not a common cause of familial frontotemporal dementia, especially in the absence of motor neuron disease.


Activity of translation regulator eukaryotic elongation factor-2 kinase is increased in Parkinson disease brain and its inhibition reduces alpha synuclein toxicity.

  • Asad Jan‎ et al.
  • Acta neuropathologica communications‎
  • 2018‎

Parkinson disease (PD) is the second most common neurodegenerative disorder and the leading neurodegenerative cause of motor disability. Pathologic accumulation of aggregated alpha synuclein (AS) protein in brain, and imbalance in the nigrostriatal system due to the loss of dopaminergic neurons in the substantia nigra- pars compacta, are hallmark features in PD. AS aggregation and propagation are considered to trigger neurotoxic mechanisms in PD, including mitochondrial deficits and oxidative stress. The eukaryotic elongation factor-2 kinase (eEF2K) mediates critical regulation of dendritic mRNA translation and is a crucial molecule in diverse forms of synaptic plasticity. Here we show that eEF2K activity, assessed by immuonohistochemical detection of eEF2 phosphorylation on serine residue 56, is increased in postmortem PD midbrain and hippocampus. Induction of aggressive, AS-related motor phenotypes in a transgenic PD M83 mouse model also increased brain eEF2K expression and activity. In cultures of dopaminergic N2A cells, overexpression of wild-type human AS or the A53T mutant increased eEF2K activity. eEF2K inhibition prevented the cytotoxicity associated with AS overexpression in N2A cells by improving mitochondrial function and reduced oxidative stress. Furthermore, genetic deletion of the eEF2K ortholog efk-1 in C. elegans attenuated human A53T AS induced defects in behavioural assays reliant on dopaminergic neuron function. These data suggest a role for eEF2K activity in AS toxicity, and support eEF2K inhibition as a potential target in reducing AS-induced oxidative stress in PD.


Expression of an alternatively spliced variant of SORL1 in neuronal dendrites is decreased in patients with Alzheimer's disease.

  • Giulia Monti‎ et al.
  • Acta neuropathologica communications‎
  • 2021‎

SORL1 is strongly associated with both sporadic and familial forms of Alzheimer's disease (AD), but a lack of information about alternatively spliced transcripts currently limits our understanding of the role of SORL1 in AD. Here, we describe a SORL1 transcript (SORL1-38b) characterized by inclusion of a novel exon (E38b) that encodes a truncated protein. We identified E38b-containing transcripts in several brain regions, with the highest expression in the cerebellum and showed that SORL1-38b is largely located in neuronal dendrites, which is in contrast to the somatic distribution of transcripts encoding the full-length SORLA protein (SORL1-fl). SORL1-38b transcript levels were significantly reduced in AD cerebellum in three independent cohorts of postmortem brains, whereas no changes were observed for SORL1-fl. A trend of lower 38b transcript level in cerebellum was found for individuals carrying the risk variant at rs2282649 (known as SNP24), although not reaching statistical significance. These findings suggest synaptic functions for SORL1-38b in the brain, uncovering novel aspects of SORL1 that can be further explored in AD research.


Patients with sporadic FTLD exhibit similar increases in lysosomal proteins and storage material as patients with FTD due to GRN mutations.

  • Skylar E Davis‎ et al.
  • Acta neuropathologica communications‎
  • 2023‎

Loss of function progranulin (GRN) mutations are a major autosomal dominant cause of frontotemporal dementia (FTD). Patients with FTD due to GRN mutations (FTD-GRN) develop frontotemporal lobar degeneration with TDP-43 pathology type A (FTLD-TDP type A) and exhibit elevated levels of lysosomal proteins and storage material in frontal cortex, perhaps indicating lysosomal dysfunction as a mechanism of disease. To investigate whether patients with sporadic FTLD exhibit similar signs of lysosomal dysfunction, we compared lysosomal protein levels, transcript levels, and storage material in patients with FTD-GRN or sporadic FTLD-TDP type A. We analyzed samples from frontal cortex, a degenerated brain region, and occipital cortex, a relatively spared brain region. In frontal cortex, patients with sporadic FTLD-TDP type A exhibited similar increases in lysosomal protein levels, transcript levels, and storage material as patients with FTD-GRN. In occipital cortex of both patient groups, most lysosomal measures did not differ from controls. Frontal cortex from a transgenic mouse model of TDP-opathy had similar increases in cathepsin D and lysosomal storage material, showing that TDP-opathy and neurodegeneration can drive these changes independently of progranulin. To investigate these changes in additional FTLD subtypes, we analyzed frontal cortical samples from patients with sporadic FTLD-TDP type C or Pick's disease, an FTLD-tau subtype. All sporadic FTLD groups had similar increases in cathepsin D activity, lysosomal membrane proteins, and storage material as FTD-GRN patients. However, patients with FTLD-TDP type C or Pick's disease did not have similar increases in lysosomal transcripts as patients with FTD-GRN or sporadic FTLD-TDP type A. Based on these data, accumulation of lysosomal proteins and storage material may be a common aspect of end-stage FTLD. However, the unique changes in gene expression in patients with FTD-GRN or sporadic FTLD-TDP type A may indicate distinct underlying lysosomal changes among FTLD subtypes.


Topography of FUS pathology distinguishes late-onset BIBD from aFTLD-U.

  • Edward B Lee‎ et al.
  • Acta neuropathologica communications‎
  • 2013‎

Multiple neurodegenerative diseases are characterized by the abnormal accumulation of FUS protein including various subtypes of frontotemporal lobar degeneration with FUS inclusions (FTLD-FUS). These subtypes include atypical frontotemporal lobar degeneration with ubiquitin-positive inclusions (aFTLD-U), basophilic inclusion body disease (BIBD) and neuronal intermediate filament inclusion disease (NIFID). Despite considerable overlap, certain pathologic features including differences in inclusion morphology, the subcellular localization of inclusions, and the relative paucity of subcortical FUS pathology in aFTLD-U indicate that these three entities represent related but distinct diseases. In this study, we report the clinical and pathologic features of three cases of aFTLD-U and two cases of late-onset BIBD with an emphasis on the anatomic distribution of FUS inclusions.


α-Synuclein pathology in Parkinson disease activates homeostatic NRF2 anti-oxidant response.

  • Alberto Delaidelli‎ et al.
  • Acta neuropathologica communications‎
  • 2021‎

Circumstantial evidence points to a pathological role of alpha-synuclein (aSyn; gene symbol SNCA), conferred by aSyn misfolding and aggregation, in Parkinson disease (PD) and related synucleinopathies. Several findings in experimental models implicate perturbations in the tissue homeostatic mechanisms triggered by pathological aSyn accumulation, including impaired redox homeostasis, as significant contributors in the pathogenesis of PD. The nuclear factor erythroid 2-related factor (NRF2/Nrf2) is recognized as 'the master regulator of cellular anti-oxidant response', both under physiological as well as in pathological conditions. Using immunohistochemical analyses, we show a robust nuclear NRF2 accumulation in post-mortem PD midbrain, detected by NRF2 phosphorylation on the serine residue 40 (nuclear active p-NRF2, S40). Curated gene expression analyses of four independent publicly available microarray datasets revealed considerable alterations in NRF2-responsive genes in the disease affected regions in PD, including substantia nigra, dorsal motor nucleus of vagus, locus coeruleus and globus pallidus. To further examine the putative role of pathological aSyn accumulation on nuclear NRF2 response, we employed a transgenic mouse model of synucleionopathy (M83 line, expressing the mutant human A53T aSyn), which manifests widespread aSyn pathology (phosphorylated aSyn; S129) in the nervous system following intramuscular inoculation of exogenous fibrillar aSyn. We observed strong immunodetection of nuclear NRF2 in neuronal populations harboring p-aSyn (S129), and found an aberrant anti-oxidant and inflammatory gene response in the affected neuraxis. Taken together, our data support the notion that pathological aSyn accumulation impairs the redox homeostasis in nervous system, and boosting neuronal anti-oxidant response is potentially a promising approach to mitigate neurodegeneration in PD and related diseases.


Preferential tau aggregation in von Economo neurons and fork cells in frontotemporal lobar degeneration with specific MAPT variants.

  • Li-Chun Lin‎ et al.
  • Acta neuropathologica communications‎
  • 2019‎

Tau aggregation is a hallmark feature in a subset of patients with frontotemporal dementia (FTD). Early and selective loss of von Economo neurons (VENs) and fork cells within the frontoinsular (FI) and anterior cingulate cortices (ACC) is observed in patients with sporadic behavioral variant FTD (bvFTD) due to frontotemporal lobar degeneration (FTLD), including FTLD with tau inclusions (FTLD-tau). Recently, we further showed that these specialized neurons show preferential aggregation of TDP-43 in FTLD-TDP. Whether VENs and fork cells are prone to tau accumulation in FTLD-tau remains unclear, and no previous studies of these neurons have focused on patients with pathogenic variants in the gene encoding microtubule-associated protein tau (FTLD-tau/MAPT). Here, we examined regional profiles of tau aggregation and neurodegeneration in 40 brain regions in 8 patients with FTLD-tau/MAPT and 7 with Pick's disease (PiD), a sporadic form of FTLD-tau that often presents with bvFTD. We further qualitatively assessed the cellular patterns of frontoinsular tau aggregation in FTLD-tau/MAPT using antibodies specific for tau hyperphosphorylation, acetylation, or conformational change. ACC and mid-insula were among the regions most affected by neurodegeneration and tau aggregation in FTLD-tau/MAPT and PiD. In these two forms of FTLD-tau, severity of regional neurodegeneration and tau protein aggregation were highly correlated across regions. In FTLD-tau/MAPT, VENs and fork cells showed disproportionate tau protein aggregation in patients with V337 M, A152T, and IVS10 + 16 variants, but not in patients with the P301L variant. As seen in FTLD-TDP, our data suggest that VENs and fork cells represent preferentially vulnerable neuron types in most, but not all of the MAPT variants we studied.


Trans-synaptic spreading of alpha-synuclein pathology through sensory afferents leads to sensory nerve degeneration and neuropathic pain.

  • Nelson Ferreira‎ et al.
  • Acta neuropathologica communications‎
  • 2021‎

Pain is a common non-motor symptom of Parkinson's disease (PD), with current limited knowledge of its pathophysiology. Here, we show that peripheral inoculation of mouse alpha-synuclein (α-Syn) pre-formed fibrils, in a transgenic mouse model of PD, elicited retrograde trans-synaptic spreading of α-Syn pathology (pSer129) across sensory neurons and dorsal nerve roots, reaching central pain processing regions, including the spinal dorsal horn and the projections of the anterolateral system in the central nervous system (CNS). Pathological peripheral to CNS propagation of α-Syn aggregates along interconnected neuronal populations within sensory afferents, was concomitant with impaired nociceptive response, reflected by mechanical allodynia, reduced nerve conduction velocities (sensory and motor) and degeneration of small- and medium-sized myelinated fibers. Our findings show a link between the transneuronal propagation of α-Syn pathology with sensory neuron dysfunction and neuropathic impairment, suggesting promising avenues of investigation into the mechanisms underlying pain in PD.


Impaired β-glucocerebrosidase activity and processing in frontotemporal dementia due to progranulin mutations.

  • Andrew E Arrant‎ et al.
  • Acta neuropathologica communications‎
  • 2019‎

Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia. Most pathogenic GRN mutations result in progranulin haploinsufficiency, which is thought to cause frontotemporal dementia in GRN mutation carriers. Progranulin haploinsufficiency may drive frontotemporal dementia pathogenesis by disrupting lysosomal function, as patients with GRN mutations on both alleles develop the lysosomal storage disorder neuronal ceroid lipofuscinosis, and frontotemporal dementia patients with GRN mutations (FTD-GRN) also accumulate lipofuscin. The specific lysosomal deficits caused by progranulin insufficiency remain unclear, but emerging data indicate that progranulin insufficiency may impair lysosomal sphingolipid-metabolizing enzymes. We investigated the effects of progranulin insufficiency on sphingolipid-metabolizing enzymes in the inferior frontal gyrus of FTD-GRN patients using fluorogenic activity assays, biochemical profiling of enzyme levels and posttranslational modifications, and quantitative neuropathology. Of the enzymes studied, only β-glucocerebrosidase exhibited impairment in FTD-GRN patients. Brains from FTD-GRN patients had lower activity than controls, which was associated with lower levels of mature β-glucocerebrosidase protein and accumulation of insoluble, incompletely glycosylated β-glucocerebrosidase. Immunostaining revealed loss of neuronal β-glucocerebrosidase in FTD-GRN patients. To investigate the effects of progranulin insufficiency on β-glucocerebrosidase outside of the context of neurodegeneration, we investigated β-glucocerebrosidase activity in progranulin-insufficient mice. Brains from Grn-/- mice had lower β-glucocerebrosidase activity than wild-type littermates, which was corrected by AAV-progranulin gene therapy. These data show that progranulin insufficiency impairs β-glucocerebrosidase activity in the brain. This effect is strongest in neurons and may be caused by impaired β-glucocerebrosidase processing.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: