Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Functional identification of optimized RNAi triggers using a massively parallel sensor assay.

  • Christof Fellmann‎ et al.
  • Molecular cell‎
  • 2011‎

Short hairpin RNAs (shRNAs) provide powerful experimental tools by enabling stable and regulated gene silencing through programming of endogenous microRNA pathways. Since requirements for efficient shRNA biogenesis and target suppression are largely unknown, many predicted shRNAs fail to efficiently suppress their target. To overcome this barrier, we developed a "Sensor assay" that enables the biological identification of effective shRNAs at large scale. By constructing and evaluating 20,000 RNAi reporters covering every possible target site in nine mammalian transcripts, we show that our assay reliably identifies potent shRNAs that are surprisingly rare and predominantly missed by existing algorithms. Our unbiased analyses reveal that potent shRNAs share various predicted and previously unknown features associated with specific microRNA processing steps, and suggest a model for competitive strand selection. Together, our study establishes a powerful tool for large-scale identification of highly potent shRNAs and provides insights into sequence requirements of effective RNAi.


MYC Drives Pten/Trp53-Deficient Proliferation and Metastasis due to IL6 Secretion and AKT Suppression via PHLPP2.

  • Dawid G Nowak‎ et al.
  • Cancer discovery‎
  • 2015‎

We have recently recapitulated metastasis of human PTEN/TP53-mutant prostate cancer in the mouse using the RapidCaP system. Surprisingly, we found that this metastasis is driven by MYC, and not AKT, activation. Here, we show that cell-cell communication by IL6 drives the AKT-MYC switch through activation of the AKT-suppressing phosphatase PHLPP2, when PTEN and p53 are lost together, but not separately. IL6 then communicates a downstream program of STAT3-mediated MYC activation, which drives cell proliferation. Similarly, in tissues, peak proliferation in Pten/Trp53-mutant primary and metastatic prostate cancer does not correlate with activated AKT, but with STAT3/MYC activation instead. Mechanistically, MYC strongly activates the AKT phosphatase PHLPP2 in primary cells and prostate cancer metastasis. We show genetically that Phlpp2 is essential for dictating the proliferation of MYC-mediated AKT suppression. Collectively, our data reveal competition between two proto-oncogenes, MYC and AKT, which ensnarls the Phlpp2 gene to facilitate MYC-driven prostate cancer metastasis after loss of Pten and Trp53.


Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a.

  • Gavin J Knott‎ et al.
  • eLife‎
  • 2019‎

CRISPR-Cas systems provide bacteria and archaea with programmable immunity against mobile genetic elements. Evolutionary pressure by CRISPR-Cas has driven bacteriophage to evolve small protein inhibitors, anti-CRISPRs (Acrs), that block Cas enzyme function by wide-ranging mechanisms. We show here that the inhibitor AcrVA4 uses a previously undescribed strategy to recognize the L. bacterium Cas12a (LbCas12a) pre-crRNA processing nuclease, forming a Cas12a dimer, and allosterically inhibiting DNA binding. The Ac. species Cas12a (AsCas12a) enzyme, widely used for genome editing applications, contains an ancestral helical bundle that blocks AcrVA4 binding and allows it to escape anti-CRISPR recognition. Using biochemical, microbiological, and human cell editing experiments, we show that Cas12a orthologs can be rendered either sensitive or resistant to AcrVA4 through rational structural engineering informed by evolution. Together, these findings explain a new mode of CRISPR-Cas inhibition and illustrate how structural variability in Cas effectors can drive opportunistic co-evolution of inhibitors by bacteriophage.


PI5P4Ks drive metabolic homeostasis through peroxisome-mitochondria interplay.

  • Archna Ravi‎ et al.
  • Developmental cell‎
  • 2021‎

PI5P4Ks are a class of phosphoinositide kinases that phosphorylate PI-5-P to PI-4,5-P2. Distinct localization of phosphoinositides is fundamental for a multitude of cellular functions. Here, we identify a role for peroxisomal PI-4,5-P2 generated by the PI5P4Ks in maintaining energy balance. We demonstrate that PI-4,5-P2 regulates peroxisomal fatty acid oxidation by mediating trafficking of lipid droplets to peroxisomes, which is essential for sustaining mitochondrial metabolism. Using fluorescent-tagged lipids and metabolite tracing, we show that loss of the PI5P4Ks significantly impairs lipid uptake and β-oxidation in the mitochondria. Further, loss of PI5P4Ks results in dramatic alterations in mitochondrial structural and functional integrity, which under nutrient deprivation is further exacerbated, causing cell death. Notably, inhibition of the PI5P4Ks in cancer cells and mouse tumor models leads to decreased cell viability and tumor growth, respectively. Together, these studies reveal an unexplored role for PI5P4Ks in preserving metabolic homeostasis, which is necessary for tumorigenesis.


A computational algorithm to predict shRNA potency.

  • Simon R V Knott‎ et al.
  • Molecular cell‎
  • 2014‎

The strength of conclusions drawn from RNAi-based studies is heavily influenced by the quality of tools used to elicit knockdown. Prior studies have developed algorithms to design siRNAs. However, to date, no established method has emerged to identify effective shRNAs, which have lower intracellular abundance than transfected siRNAs and undergo additional processing steps. We recently developed a multiplexed assay for identifying potent shRNAs and used this method to generate ∼250,000 shRNA efficacy data points. Using these data, we developed shERWOOD, an algorithm capable of predicting, for any shRNA, the likelihood that it will elicit potent target knockdown. Combined with additional shRNA design strategies, shERWOOD allows the ab initio identification of potent shRNAs that specifically target the majority of each gene's multiple transcripts. We validated the performance of our shRNA designs using several orthogonal strategies and constructed genome-wide collections of shRNAs for humans and mice based on our approach.


Disruption of the β1L Isoform of GABP Reverses Glioblastoma Replicative Immortality in a TERT Promoter Mutation-Dependent Manner.

  • Andrew Mancini‎ et al.
  • Cancer cell‎
  • 2018‎

TERT promoter mutations reactivate telomerase, allowing for indefinite telomere maintenance and enabling cellular immortalization. These mutations specifically recruit the multimeric ETS factor GABP, which can form two functionally independent transcription factor species: a dimer or a tetramer. We show that genetic disruption of GABPβ1L (β1L), a tetramer-forming isoform of GABP that is dispensable for normal development, results in TERT silencing in a TERT promoter mutation-dependent manner. Reducing TERT expression by disrupting β1L culminates in telomere loss and cell death exclusively in TERT promoter mutant cells. Orthotopic xenografting of β1L-reduced, TERT promoter mutant glioblastoma cells rendered lower tumor burden and longer overall survival in mice. These results highlight the critical role of GABPβ1L in enabling immortality in TERT promoter mutant glioblastoma.


A Rapid Induction Mechanism for Lin28a in Trophic Responses.

  • Alexandra M Amen‎ et al.
  • Molecular cell‎
  • 2017‎

Environmental cues provoke rapid transitions in gene expression to support growth and cellular plasticity through incompletely understood mechanisms. Lin28 RNA-binding proteins have evolutionarily conserved roles in post-transcriptional coordination of pro-growth gene expression, but signaling pathways allowing trophic stimuli to induce Lin28 have remained uncharacterized. We find that Lin28a protein exhibits rapid basal turnover in neurons and that mitogen-activated protein kinase (MAPK)-dependent phosphorylation of the RNA-silencing factor HIV TAR-RNA-binding protein (TRBP) promotes binding and stabilization of Lin28a, but not Lin28b, with an accompanying reduction in Lin28-regulated miRNAs, downstream of brain-derived neurotrophic factor (BDNF). Binding of Lin28a to TRBP in vitro is also enhanced by phospho-mimic TRBP. Further, phospho-TRBP recapitulates BDNF-induced neuronal dendritic spine growth in a Lin28a-dependent manner. Finally, we demonstrate MAPK-dependent TRBP and Lin28a induction, with physiological function in growth and survival, downstream of diverse growth factors in multiple primary cell types, supporting a broad role for this pathway in trophic responses.


PI5P4Kα supports prostate cancer metabolism and exposes a survival vulnerability during androgen receptor inhibition.

  • Joanna Triscott‎ et al.
  • Science advances‎
  • 2023‎

Phosphatidylinositol (PI)regulating enzymes are frequently altered in cancer and have become a focus for drug development. Here, we explore the phosphatidylinositol-5-phosphate 4-kinases (PI5P4K), a family of lipid kinases that regulate pools of intracellular PI, and demonstrate that the PI5P4Kα isoform influences androgen receptor (AR) signaling, which supports prostate cancer (PCa) cell survival. The regulation of PI becomes increasingly important in the setting of metabolic stress adaptation of PCa during androgen deprivation (AD), as we show that AD influences PI abundance and enhances intracellular pools of PI-4,5-P2. We suggest that this PI5P4Kα-AR relationship is mitigated through mTORC1 dysregulation and show that PI5P4Kα colocalizes to the lysosome, the intracellular site of mTORC1 complex activation. Notably, this relationship becomes prominent in mouse prostate tissue following surgical castration. Finally, multiple PCa cell models demonstrate marked survival vulnerability following stable PI5P4Kα inhibition. These results nominate PI5P4Kα as a target to disrupt PCa metabolic adaptation to castrate resistance.


Endogenous spacing enables co-processing of microRNAs and efficient combinatorial RNAi.

  • Alexandra M Amen‎ et al.
  • Cell reports methods‎
  • 2022‎

We present Multi-miR, a microRNA-embedded shRNA system modeled after endogenous microRNA clusters that enables simultaneous expression of up to three or four short hairpin RNAs (shRNAs) from a single promoter without loss of activity, enabling robust combinatorial RNA interference (RNAi). We further developed complementary all-in-one vectors that are over one log-scale more sensitive to doxycycline-mediated activation in vitro than previous methods and resistant to shRNA inactivation in vivo. We demonstrate the utility of this system for intracranial expression of shRNAs in a glioblastoma model. Additionally, we leverage this platform to target the redundant RAF signaling node in a mouse model of KRAS-mutant cancer and show that robust combinatorial synthetic lethality efficiently abolishes tumor growth.


Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors.

  • Piro Lito‎ et al.
  • Cancer cell‎
  • 2014‎

MEK inhibitors are clinically active in BRAF(V600E) melanomas but only marginally so in KRAS mutant tumors. Here, we found that MEK inhibitors suppress ERK signaling more potently in BRAF(V600E), than in KRAS mutant tumors. To understand this, we performed an RNAi screen in a KRAS mutant model and found that CRAF knockdown enhanced MEK inhibition. MEK activated by CRAF was less susceptible to MEK inhibitors than when activated by BRAF(V600E). MEK inhibitors induced RAF-MEK complexes in KRAS mutant models, and disrupting such complexes enhanced inhibition of CRAF-dependent ERK signaling. Newer MEK inhibitors target MEK catalytic activity and also impair its reactivation by CRAF, either by disrupting RAF-MEK complexes or by interacting with Ser 222 to prevent MEK phosphorylation by RAF.


Comprehensive deletion landscape of CRISPR-Cas9 identifies minimal RNA-guided DNA-binding modules.

  • Arik Shams‎ et al.
  • Nature communications‎
  • 2021‎

Proteins evolve through the modular rearrangement of elements known as domains. Extant, multidomain proteins are hypothesized to be the result of domain accretion, but there has been limited experimental validation of this idea. Here, we introduce a technique for genetic minimization by iterative size-exclusion and recombination (MISER) for comprehensively making all possible deletions of a protein. Using MISER, we generate a deletion landscape for the CRISPR protein Cas9. We find that the catalytically-dead Streptococcus pyogenes Cas9 can tolerate large single deletions in the REC2, REC3, HNH, and RuvC domains, while still functioning in vitro and in vivo, and that these deletions can be stacked together to engineer minimal, DNA-binding effector proteins. In total, our results demonstrate that extant proteins retain significant modularity from the accretion process and, as genetic size is a major limitation for viral delivery systems, establish a general technique to improve genome editing and gene therapy-based therapeutics.


Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs.

  • Kale Kundert‎ et al.
  • Nature communications‎
  • 2019‎

The CRISPR-Cas9 system provides the ability to edit, repress, activate, or mark any gene (or DNA element) by pairing of a programmable single guide RNA (sgRNA) with a complementary sequence on the DNA target. Here we present a new method for small-molecule control of CRISPR-Cas9 function through insertion of RNA aptamers into the sgRNA. We show that CRISPR-Cas9-based gene repression (CRISPRi) can be either activated or deactivated in a dose-dependent fashion over a >10-fold dynamic range in response to two different small-molecule ligands. Since our system acts directly on each target-specific sgRNA, it enables new applications that require differential and opposing temporal control of multiple genes.


Phosphatidylinositol-5-Phosphate 4-Kinases Regulate Cellular Lipid Metabolism By Facilitating Autophagy.

  • Mark R Lundquist‎ et al.
  • Molecular cell‎
  • 2018‎

While the majority of phosphatidylinositol-4, 5-bisphosphate (PI-4, 5-P2) in mammalian cells is generated by the conversion of phosphatidylinositol-4-phosphate (PI-4-P) to PI-4, 5-P2, a small fraction can be made by phosphorylating phosphatidylinositol-5-phosphate (PI-5-P). The physiological relevance of this second pathway is not clear. Here, we show that deletion of the genes encoding the two most active enzymes in this pathway, Pip4k2a and Pip4k2b, in the liver of mice causes a large enrichment in lipid droplets and in autophagic vesicles during fasting. These changes are due to a defect in the clearance of autophagosomes that halts autophagy and reduces the supply of nutrients salvaged through this pathway. Similar defects in autophagy are seen in nutrient-starved Pip4k2a-/-Pip4k2b-/- mouse embryonic fibroblasts and in C. elegans lacking the PI5P4K ortholog. These results suggest that this alternative pathway for PI-4, 5-P2 synthesis evolved, in part, to enhance the ability of multicellular organisms to survive starvation.


An optimized microRNA backbone for effective single-copy RNAi.

  • Christof Fellmann‎ et al.
  • Cell reports‎
  • 2013‎

Short hairpin RNA (shRNA) technology enables stable and regulated gene repression. For establishing experimentally versatile RNAi tools and minimizing toxicities, synthetic shRNAs can be embedded into endogenous microRNA contexts. However, due to our incomplete understanding of microRNA biogenesis, such "shRNAmirs" often fail to trigger potent knockdown, especially when expressed from a single genomic copy. Following recent advances in design of synthetic shRNAmir stems, here we take a systematic approach to optimize the experimental miR-30 backbone. Among several favorable features, we identify a conserved element 3' of the basal stem as critically required for optimal shRNAmir processing and implement it in an optimized backbone termed "miR-E", which strongly increases mature shRNA levels and knockdown efficacy. Existing miR-30 reagents can be easily converted to miR-E, and its combination with up-to-date design rules establishes a validated and accessible platform for generating effective single-copy shRNA libraries that will facilitate the functional annotation of the genome.


Cancer-specific loss of TERT activation sensitizes glioblastoma to DNA damage.

  • Alexandra M Amen‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

Most glioblastomas (GBMs) achieve cellular immortality by acquiring a mutation in the telomerase reverse transcriptase (TERT) promoter. TERT promoter mutations create a binding site for a GA binding protein (GABP) transcription factor complex, whose assembly at the promoter is associated with TERT reactivation and telomere maintenance. Here, we demonstrate increased binding of a specific GABPB1L-isoform-containing complex to the mutant TERT promoter. Furthermore, we find that TERT promoter mutant GBM cells, unlike wild-type cells, exhibit a critical near-term dependence on GABPB1L for proliferation, notably also posttumor establishment in vivo. Up-regulation of the protein paralogue GABPB2, which is normally expressed at very low levels, can rescue this dependence. More importantly, when combined with frontline temozolomide (TMZ) chemotherapy, inducible GABPB1L knockdown and the associated TERT reduction led to an impaired DNA damage response that resulted in profoundly reduced growth of intracranial GBM tumors. Together, these findings provide insights into the mechanism of cancer-specific TERT regulation, uncover rapid effects of GABPB1L-mediated TERT suppression in GBM maintenance, and establish GABPB1L inhibition in combination with chemotherapy as a therapeutic strategy for TERT promoter mutant GBM.


Targeting the non-coding genome and temozolomide signature enables CRISPR-mediated glioma oncolysis.

  • I-Li Tan‎ et al.
  • Cell reports‎
  • 2023‎

Glioblastoma (GBM) is the most common lethal primary brain cancer in adults. Despite treatment regimens including surgical resection, radiotherapy, and temozolomide (TMZ) chemotherapy, growth of residual tumor leads to therapy resistance and death. At recurrence, a quarter to a third of all gliomas have hypermutated genomes, with mutational burdens orders of magnitude greater than in normal tissue. Here, we quantified the mutational landscape progression in a patient's primary and recurrent GBM, and we uncovered Cas9-targetable repeat elements. We show that CRISPR-mediated targeting of highly repetitive loci enables rapid elimination of GBM cells, an approach we term "genome shredding." Importantly, in the patient's recurrent GBM, we identified unique repeat sequences with TMZ mutational signature and demonstrated that their CRISPR targeting enables cancer-specific cell ablation. "Cancer shredding" leverages the non-coding genome and therapy-induced mutational signatures for targeted GBM cell depletion and provides an innovative paradigm to develop treatments for hypermutated glioma.


Extension of the crRNA enhances Cpf1 gene editing in vitro and in vivo.

  • Hyo Min Park‎ et al.
  • Nature communications‎
  • 2018‎

Engineering of the Cpf1 crRNA has the potential to enhance its gene editing efficiency and non-viral delivery to cells. Here, we demonstrate that extending the length of its crRNA at the 5' end can enhance the gene editing efficiency of Cpf1 both in cells and in vivo. Extending the 5' end of the crRNA enhances the gene editing efficiency of the Cpf1 RNP to induce non-homologous end-joining and homology-directed repair using electroporation in cells. Additionally, chemical modifications on the extended 5' end of the crRNA result in enhanced serum stability. Also, extending the 5' end of the crRNA by 59 nucleotides increases the delivery efficiency of Cpf1 RNP in cells and in vivo cationic delivery vehicles including polymer nanoparticle. Thus, 5' extension and chemical modification of the Cpf1 crRNA is an effective method for enhancing the gene editing efficiency of Cpf1 and its delivery in vivo.


Potent CRISPR-Cas9 inhibitors from Staphylococcus genomes.

  • Kyle E Watters‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Anti-CRISPRs (Acrs) are small proteins that inhibit the RNA-guided DNA targeting activity of CRISPR-Cas enzymes. Encoded by bacteriophage and phage-derived bacterial genes, Acrs prevent CRISPR-mediated inhibition of phage infection and can also block CRISPR-Cas-mediated genome editing in eukaryotic cells. To identify Acrs capable of inhibiting Staphylococcus aureus Cas9 (SauCas9), an alternative to the most commonly used genome editing protein Streptococcus pyogenes Cas9 (SpyCas9), we used both self-targeting CRISPR screening and guilt-by-association genomic search strategies. Here we describe three potent inhibitors of SauCas9 that we name AcrIIA13, AcrIIA14, and AcrIIA15. These inhibitors share a conserved N-terminal sequence that is dispensable for DNA cleavage inhibition and have divergent C termini that are required in each case for inhibition of SauCas9-catalyzed DNA cleavage. In human cells, we observe robust inhibition of SauCas9-induced genome editing by AcrIIA13 and moderate inhibition by AcrIIA14 and AcrIIA15. We also find that the conserved N-terminal domain of AcrIIA13-AcrIIA15 binds to an inverted repeat sequence in the promoter of these Acr genes, consistent with its predicted helix-turn-helix DNA binding structure. These data demonstrate an effective strategy for Acr discovery and establish AcrIIA13-AcrIIA15 as unique bifunctional inhibitors of SauCas9.


Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors.

  • Tony P Huang‎ et al.
  • Nature biotechnology‎
  • 2019‎

Base editing requires that the target sequence satisfy the protospacer adjacent motif requirement of the Cas9 domain and that the target nucleotide be located within the editing window of the base editor. To increase the targeting scope of base editors, we engineered six optimized adenine base editors (ABEmax variants) that use SpCas9 variants compatible with non-NGG protospacer adjacent motifs. To increase the range of target bases that can be modified within the protospacer, we use circularly permuted Cas9 variants to produce four cytosine and four adenine base editors with an editing window expanded from ~4-5 nucleotides to up to ~8-9 nucleotides and reduced byproduct formation. This set of base editors improves the targeting scope of cytosine and adenine base editing.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: