Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

Salt-deficient diet exacerbates cystogenesis in ARPKD via epithelial sodium channel (ENaC).

  • Daria V Ilatovskaya‎ et al.
  • EBioMedicine‎
  • 2019‎

Autosomal Recessive Polycystic Kidney Disease (ARPKD) is marked by cyst formation in the renal tubules, primarily in the collecting duct (CD) system, ultimately leading to end-stage renal disease. Patients with PKD are generally advised to restrict their dietary sodium intake. This study was aimed at testing the outcomes of dietary salt manipulation in ARPKD.


The Role of Angiotensin II in Glomerular Volume Dynamics and Podocyte Calcium Handling.

  • Daria V Ilatovskaya‎ et al.
  • Scientific reports‎
  • 2017‎

Podocytes are becoming a primary focus of research efforts due to their association with progressive glomeruli damage in disease states. Loss of podocytes can occur as a result of excessive intracellular calcium influx, and we have previously shown that angiotensin II (Ang II) via canonical transient receptor potential 6 (TRPC6) channels caused increased intracellular Ca2+ flux in podocytes. We showed here with patch-clamp electrophysiology that Ang II activates TRPC channels; then using confocal calcium imaging we demonstrated that Ang II-dependent stimulation of Ca2+ influx in the podocytes is precluded by blocking either AT1 or AT2 receptors (ATRs). Application of Ang(1-7) had no effect on intracellular calcium. Ang II-induced calcium flux was decreased upon inhibition of TRPC channels with SAR7334, SKF 96365, clemizole hydrochloride and La3+, but not ML204. Using a novel 3D whole-glomerulus imaging ex vivo assay, we revealed the involvement of both ATRs in controlling glomerular permeability; additionally, using specific inhibitors and activators of TRPC6, we showed that these channels are implicated in the regulation of glomerular volume dynamics. Therefore, we provide evidence demonstrating the critical role of Ang II/TRPC6 axis in the control of glomeruli function, which is likely important for the development of glomerular diseases.


Role of βPix in the Kidney.

  • Alexander Staruschenko‎ et al.
  • Frontiers in physiology‎
  • 2012‎

Small GTPases function as molecular switches in cell signaling, alternating between an inactive, GDP-bound state, and active GTP-bound state. βPix is one of guanine nucleotide exchange factors (GEFs) that catalyze the exchange of bound GDP for ambient GTP. The central goal of this review article is to summarize recent findings on βPix and the role it plays in kidney pathology and physiology. Recent studies shed new light on several key questions concerning the signaling mechanisms mediated by βPix. This manuscript provides a review of the various mechanisms whereby βPix has been shown to function within the kidney through a wide range of actions. Both canonical GEF activity and non-canonical signaling pathways mediated by βPix are discussed. Distribution patterns of βPix in the kidney will be also covered. Much has yet to be discerned, but it is clear that βPix plays a significant role in the kidney.


Modulation of P2X4 receptor activity by ivermectin and 5-BDBD has no effect on the development of ARPKD in PCK rats.

  • Biyang Xu‎ et al.
  • Physiological reports‎
  • 2022‎

Autosomal recessive polycystic kidney disease (ARPKD) is an inherited pathology caused mainly by mutations of the polycystic kidney and hepatic disease 1 (PKHD1) gene, which usually leads to end-stage renal disease. Previous studies suggested that the P2X purinoreceptor 4 (P2X4 R) may play an important role in the progression of ARPKD. To test this hypothesis, we assessed the chronic effects of ivermectin (P2X4 R allosteric modulator) and 5-BDBD (P2X4 R antagonist) on the development of ARPKD in PCK/CrljCrl-Pkhd1pck/CRL (PCK) rats. Our data indicated that activation of ATP-mediated P2X4 R signaling with ivermectin for 6 weeks in high dose (50 mg/L; water supplementation) decreased the total body weight of PCK rats while the heart and kidney weight remained unaffected. Smaller doses of ivermectin (0.5 or 5 mg/L, 6 weeks) or the inhibition of P2X4 R signaling with 5-BDBD (18 mg/kg/day, food supplement for 8 weeks) showed no effect on electrolyte balance or the basic physiological parameters. Furthermore, cystic index analysis for kidneys and liver revealed no effect of smaller doses of ivermectin (0.5 or 5 mg/L) and 5-BDBD on the cyst development of PCK rats. We observed a slight increase in the cystic liver index on high ivermectin dose, possibly due to the cytotoxicity of the drug. In conclusion, this study revealed that pharmacological modulation of P2X4 R by ivermectin or 5-BDBD does not affect the development of ARPKD in PCK rats, which may provide insights for future studies on investigating the therapeutic potential of adenosine triphosphate (ATP)-P2 signaling in PKD diseases.


Characterization of purinergic receptor 2 signaling in podocytes from diabetic kidneys.

  • Oleg Palygin‎ et al.
  • iScience‎
  • 2021‎

Growing evidence suggests that renal purinergic signaling undergoes significant remodeling during pathophysiological conditions such as diabetes. This study examined the renal P2 receptor profile and ATP-mediated calcium response from podocytes in glomeruli from kidneys with type 1 or type 2 diabetic kidney disease (DKD), using type 2 diabetic nephropathy (T2DN) rats and streptozotocin-injected Dahl salt-sensitive (type 1 diabetes) rats. A dramatic increase in the ATP-mediated intracellular calcium flux in podocytes was observed in both models. Pharmacological inhibition established that P2X4 and P2X7 are the major receptors contributing to the augmented ATP-mediated intracellular calcium signaling in diabetic podocytes. The transition in purinergic receptor composition from metabotropic to ionotropic may disrupt intracellular calcium homeostasis in podocytes resulting in their dysfunction and potentially further aggravating DKD progression.


Lack of xanthine dehydrogenase leads to a remarkable renal decline in a novel hypouricemic rat model.

  • Lashodya V Dissanayake‎ et al.
  • iScience‎
  • 2022‎

Uric acid (UA) is the final metabolite in purine catabolism in humans. Previous studies have shown that the dysregulation of UA homeostasis is detrimental to cardiovascular and kidney health. The Xdh gene encodes for the Xanthine Oxidoreductase enzyme group, responsible for producing UA. To explore how hypouricemia can lead to kidney damage, we created a rat model with the genetic ablation of the Xdh gene on the Dahl salt-sensitive rat background (SSXdh-/-). SSXdh-/- rats lacked UA and exhibited impairment in growth and survival. This model showed severe kidney injury with increased interstitial fibrosis, glomerular damage, crystal formation, and an inability to control electrolyte balance. Using a multi-omics approach, we highlighted that lack of Xdh leads to increased oxidative stress, renal cell proliferation, and inflammation. Our data reveal that the absence of Xdh leads to kidney damage and functional decline by the accumulation of purine metabolites in the kidney and increased oxidative stress.


Epac1-/- and Epac2-/- mice exhibit deficient epithelial Na+ channel regulation and impaired urinary Na+ conservation.

  • Viktor N Tomilin‎ et al.
  • JCI insight‎
  • 2022‎

Exchange proteins directly activated by cAMP (Epacs) are abundantly expressed in the renal tubules. We used genetic and pharmacological tools in combination with balance, electrophysiological, and biochemical approaches to examine the role of Epac1 and Epac2 in renal sodium handling. We demonstrate that Epac1-/- and Epac2-/- mice exhibit a delayed anti-natriuresis to dietary sodium restriction despite augmented aldosterone levels. This was associated with a significantly lower response to the epithelial Na+ channel (ENaC) blocker amiloride, reduced ENaC activity in split-opened collecting ducts, and defective posttranslational processing of α and γENaC subunits in the KO mice fed with a Na+-deficient diet. Concomitant deletion of both isoforms led to a marginally greater natriuresis but further increased aldosterone levels. Epac2 blocker ESI-05 and Epac1&2 blocker ESI-09 decreased ENaC activity in Epac WT mice kept on the Na+-deficient diet but not on the regular diet. ESI-09 injections led to natriuresis in Epac WT mice on the Na+-deficient diet, which was caused by ENaC inhibition. In summary, our results demonstrate similar but nonredundant actions of Epac1 and Epac2 in stimulation of ENaC activity during variations in dietary salt intake. We speculate that inhibition of Epac signaling could be instrumental in treatment of hypertensive states associated with ENaC overactivation.


SGLT2 inhibition effect on salt-induced hypertension, RAAS, and Na+ transport in Dahl SS rats.

  • Olha Kravtsova‎ et al.
  • American journal of physiology. Renal physiology‎
  • 2022‎

Na+-glucose cotransporter-2 (SGLT2) inhibitors are the new mainstay of treatment for diabetes mellitus and cardiovascular diseases. Despite the remarkable benefits, the molecular mechanisms mediating the effects of SGLT2 inhibitors on water and electrolyte balance are incompletely understood. The goal of this study was to determine whether SGLT2 inhibition alters blood pressure and kidney function via affecting the renin-angiotensin-aldosterone system (RAAS) and Na+ channels/transporters along the nephron in Dahl salt-sensitive rats, a model of salt-induced hypertension. Administration of dapagliflozin (Dapa) at 2 mg/kg/day via drinking water for 3 wk blunted the development of salt-induced hypertension as evidenced by lower blood pressure and a left shift of the pressure natriuresis curve. Urinary flow rate, glucose excretion, and Na+- and Cl--to-creatinine ratios increased in Dapa-treated compared with vehicle-treated rats. To define the contribution of the RAAS, we measured various hormones. Despite apparent effects on Na+- and Cl--to-creatinine ratios, Dapa treatment did not affect RAAS metabolites. Subsequently, we assessed the effects of Dapa on renal Na+ channels and transporters using RT-PCR, Western blot analysis, and patch clamp. Neither mRNA nor protein expression levels of renal transporters (SGLT2, Na+/H+ exchanger isoform 3, Na+-K+-2Cl- cotransporter 2, Na+-Cl- cotransporter, and α-, β-, and γ-epithelial Na+ channel subunits) changed significantly between groups. Furthermore, electrophysiological experiments did not reveal any difference in Dapa treatment on the conductance and activity of epithelial Na+ channels. Our data suggest that SGLT2 inhibition in a nondiabetic model of salt-sensitive hypertension blunts the development of salt-induced hypertension by causing glucosuria and natriuresis without changes in the RAAS or the expression or activity of the main Na+ channels and transporters.NEW & NOTEWORTHY The present study indicates that Na+-glucose cotransporter-2 (SGLT2) inhibition in a nondiabetic model of salt-sensitive hypertension blunts the development and magnitude of salt-induced hypertension. Chronic inhibition of SGLT2 increases glucose and Na+ excretion without secondary effects on the expression and function of other Na+ transporters and channels along the nephron and hormone levels in the renin-angiotensin-aldosterone system. These data provide novel insights into the effects of SGLT2 inhibitors and their potential use in hypertension.


α7 Nicotinic acetylcholine receptor mediates right ventricular fibrosis and diastolic dysfunction in pulmonary hypertension.

  • Alexander Vang‎ et al.
  • JCI insight‎
  • 2021‎

Right ventricular (RV) fibrosis is a key feature of maladaptive RV hypertrophy and dysfunction and is associated with poor outcomes in pulmonary hypertension (PH). However, mechanisms and therapeutic strategies to mitigate RV fibrosis remain unrealized. Previously, we identified that cardiac fibroblast α7 nicotinic acetylcholine receptor (α7 nAChR) drives smoking-induced RV fibrosis. Here, we sought to define the role of α7 nAChR in RV dysfunction and fibrosis in the settings of RV pressure overload as seen in PH. We show that RV tissue from PH patients has increased collagen content and ACh expression. Using an experimental rat model of PH, we demonstrate that RV fibrosis and dysfunction are associated with increases in ACh and α7 nAChR expression in the RV but not in the left ventricle (LV). In vitro studies show that α7 nAChR activation leads to an increase in adult ventricular fibroblast proliferation and collagen content mediated by a Ca2+/epidermal growth factor receptor (EGFR) signaling mechanism. Pharmacological antagonism of nAChR decreases RV collagen content and improves RV function in the PH model. Furthermore, mice lacking α7 nAChR exhibit improved RV diastolic function and have lower RV collagen content in response to persistently increased RV afterload, compared with WT controls. These finding indicate that enhanced α7 nAChR signaling is an important mechanism underlying RV fibrosis and dysfunction, and targeted inhibition of α7 nAChR is a potentially novel therapeutic strategy in the setting of increased RV afterload.


Acute In Vivo Analysis of ATP Release in Rat Kidneys in Response to Changes of Renal Perfusion Pressure.

  • Oleg Palygin‎ et al.
  • Journal of the American Heart Association‎
  • 2017‎

ATP and derivatives are recognized to be essential agents of paracrine signaling. It was reported that ATP is an important regulator of the pressure-natriuresis mechanism. Information on the sources of ATP, the mechanisms of its release, and its relationship to blood pressure has been limited by the inability to precisely measure dynamic changes in intrarenal ATP levels in vivo.


Lack of Effects of Metformin and AICAR Chronic Infusion on the Development of Hypertension in Dahl Salt-Sensitive Rats.

  • Tengis S Pavlov‎ et al.
  • Frontiers in physiology‎
  • 2017‎

In the kidney, reabsorption via the epithelial sodium channel (ENaC) is involved in long-term blood pressure control. Previously we demonstrated that ENaC hyperactivity is associated with development of salt-sensitive (SS) hypertension in Dahl SS rats. AMP-activated kinase (AMPK), playing a role in cellular energy homeostasis, has been shown to decrease ENaC activity. Here, we tested whether metformin and AICAR, two drugs that activate AMPK, affect the development of salt-induced hypertension. High salt diet significantly increased mean arterial pressure (MAP) in Dahl SS rats. Blood pressure elevation was accompanied by a short-term decline of heart rate and increased circadian arterial pressure dipping. Metformin and AICAR were delivered intravenously at doses of 200 and 20 mg/kg/day, respectively. However, both control and drug-treated groups had similar development of high blood pressure within 3 weeks of 8% NaCl dietary salt intake. In the metformin-treated animals MAP reached 164.9 ± 9.1 mmHg, which was not significantly different from the control group (171.8 ± 5.6 mmHg). Patch clamp analysis revealed that the metformin-treated rats had no difference in the activity of ENaC. AICAR treatment also did not affect the development of hypertension and kidney injury. MAP reached 182.8 ± 4.8 and 178.0 ± 2.8 mmHg in AICAR and vehicle treated groups, respectively. Of note, we found that high-salt diet activated AMPK in the Dahl SS rats, and treatment with these AMPK activators had no significant further effect on AMPK activity. We conclude that AMPK activators, at least under these conditions, do not affect development of hypertension during high-salt diet in the Dahl SS rat model.


A mutation affecting polycystin-1 mediated heterotrimeric G-protein signaling causes PKD.

  • Stephen C Parnell‎ et al.
  • Human molecular genetics‎
  • 2018‎

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the growth of renal cysts that ultimately destroy kidney function. Mutations in the PKD1 and PKD2 genes cause ADPKD. Their protein products, polycystin-1 (PC1) and polycystin-2 (PC2) have been proposed to form a calcium-permeable receptor-channel complex; however the mechanisms by which they function are almost completely unknown. Most mutations in PKD1 are truncating loss-of-function mutations or affect protein biogenesis, trafficking or stability and reveal very little about the intrinsic biochemical properties or cellular functions of PC1. An ADPKD patient mutation (L4132Δ or ΔL), resulting in a single amino acid deletion in a putative G-protein binding region of the PC1 C-terminal cytosolic tail, was found to significantly decrease PC1-stimulated, G-protein-dependent signaling in transient transfection assays. Pkd1ΔL/ΔL mice were embryo-lethal suggesting that ΔL is a functionally null mutation. Kidney-specific Pkd1ΔL/cond mice were born but developed severe, postnatal cystic disease. PC1ΔL protein expression levels and maturation were comparable to those of wild type PC1, and PC1ΔL protein showed cell surface localization. Expression of PC1ΔL and PC2 complexes in transfected CHO cells failed to support PC2 channel activity, suggesting that the role of PC1 is to activate G-protein signaling to regulate the PC1/PC2 calcium channel.


Inactivation of p66Shc Decreases Afferent Arteriolar KATP Channel Activity and Decreases Renal Damage in Diabetic Dahl SS Rats.

  • Bradley S Miller‎ et al.
  • Diabetes‎
  • 2018‎

Increased expression of adaptor protein p66Shc has been associated with progression of diabetic nephropathy. Afferent arteriolar dilation and glomerular hyperfiltration in diabetes are due to increased KATP channel availability and activity. Hyperglycemia was induced in Dahl salt-sensitive (SS) rats in a model of diabetes induced by streptozotocin (STZ). Renal injury was evaluated in SS rats and genetically modified SS rats either lacking p66Shc (p66Shc knockout [p66ShcKO]) or expressing p66Shc mutant (p66Shc-S36A). Afferent arteriolar diameter responses during STZ-induced hyperfiltration were determined by using the juxtamedullary nephron technique. Albuminuria and glomerular injury were mitigated in p66ShcKO and p66Shc-S36A rats with STZ-induced diabetes. SS rats with STZ-induced diabetes had significantly increased afferent arteriolar diameter, whereas p66ShcKO and p66Shc-S36A rats did not. SS rats with STZ-induced diabetes, but not p66ShcKO or p66Shc-S36A rats with STZ-induced diabetes, had an increased vasodilator response to the KATP channel activator pinacidil. Likewise, the KATP inhibitor glibenclamide resulted in a greater decrease in afferent arteriolar diameter in SS rats with STZ-induced diabetes than in STZ-treated SS p66ShcKO and p66Shc-S36A rats. Using patch-clamp electrophysiology, we demonstrated that p66ShcKO decreases KATP channel activity. These results indicate that inactivation of the adaptor protein p66Shc decreases afferent arteriolar KATP channel activity and decreases renal damage in diabetic SS rats.


Role of collecting duct principal cell NOS1β in sodium and potassium homeostasis.

  • Kelly A Hyndman‎ et al.
  • Physiological reports‎
  • 2021‎

The nitric oxide (NO)-generating enzyme, NO synthase-1β (NOS1β), is essential for sodium (Na+ ) homeostasis and blood pressure control. We previously showed that collecting duct principal cell NOS1β is critical for inhibition of the epithelial sodium channel (ENaC) during high Na+ intake. Previous studies on freshly isolated cortical collecting ducts (CCD) demonstrated that exogenous NO promotes basolateral potassium (K+ ) conductance through basolateral channels, presumably Kir 4.1 (Kcnj10) and Kir 5.1 (Kcnj16). We, therefore, investigated the effects of NOS1β knockout on Kir 4.1/Kir 5.1 channel activity. Indeed, in CHO cells overexpressing NOS1β and Kir 4.1/Kir 5.1, the inhibition of NO signaling decreased channel activity. Male littermate control and principal cell NOS1β knockout mice (CDNOS1KO) on a 7-day, 4% NaCl diet (HSD) were used to detect changes in basolateral K+ conductance. We previously demonstrated that CDNOS1KO mice have high circulating aldosterone despite a high-salt diet and appropriately suppressed renin. We observed greater Kir 4.1 cortical abundance and significantly greater Kir 4.1/Kir 5.1 single-channel activity in the principal cells from CDNOS1KO mice. Moreover, blocking aldosterone action with in vivo spironolactone treatment resulted in lower Kir 4.1 abundance and greater plasma K+ in the CDNOS1KO mice compared to controls. Lowering K+ content in the HSD prevented the high aldosterone and greater plasma Na+ of CDNOS1KO mice and normalized Kir 4.1 abundance. We conclude that during chronic HSD, lack of NOS1β leads to increased plasma K+ , enhanced circulating aldosterone, and activation of ENaC and Kir 4.1/Kir 5.1 channels. Thus, principal cell NOS1β is required for the regulation of both Na+ and K+ by the kidney.


Renal sodium transport in renin-deficient Dahl salt-sensitive rats.

  • Tengis S Pavlov‎ et al.
  • Journal of the renin-angiotensin-aldosterone system : JRAAS‎
  • 2016‎

The Dahl salt-sensitive rat is a well-established model of salt-sensitive hypertension. The goal of this study was to assess the expression and activity of renal sodium channels and transporters in the renin-deficient salt-sensitive rat.


Cytoskeleton Rearrangements Modulate TRPC6 Channel Activity in Podocytes.

  • Alexey Shalygin‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The actin cytoskeleton of podocytes plays a central role in the functioning of the filtration barrier in the kidney. Calcium entry into podocytes via TRPC6 (Transient Receptor Potential Canonical 6) channels leads to actin cytoskeleton rearrangement, thereby affecting the filtration barrier. We hypothesized that there is feedback from the cytoskeleton that modulates the activity of TRPC6 channels. Experiments using scanning ion-conductance microscopy demonstrated a change in migration properties in podocyte cell cultures treated with cytochalasin D, a pharmacological agent that disrupts the actin cytoskeleton. Cell-attached patch-clamp experiments revealed that cytochalasin D increases the activity of TRPC6 channels in CHO (Chinese Hamster Ovary) cells overexpressing the channel and in podocytes from freshly isolated glomeruli. Furthermore, it was previously reported that mutation in ACTN4, which encodes α-actinin-4, causes focal segmental glomerulosclerosis and solidifies the actin network in podocytes. Therefore, we tested whether α-actinin-4 regulates the activity of TRPC6 channels. We found that co-expression of mutant α-actinin-4 K255E with TRPC6 in CHO cells decreases TRPC6 channel activity. Therefore, our data demonstrate a direct interaction between the structure of the actin cytoskeleton and TRPC6 activity.


Crosstalk between epithelial sodium channels (ENaC) and basolateral potassium channels (Kir 4.1/Kir 5.1) in the cortical collecting duct.

  • Elena Isaeva‎ et al.
  • British journal of pharmacology‎
  • 2022‎

Inwardly rectifying K+ (Kir ) channels located on the basolateral membrane of epithelial cells of the distal nephron play a crucial role in K+ handling and BP control, making these channels an attractive target for the treatment of hypertension. The purpose of the present study was to determine how the inhibition of basolateral Kir 4.1/Kir 5.1 heteromeric K+ channel affects epithelial sodium channel (ENaC)-mediated Na+ transport in the principal cells of cortical collecting duct (CCD).


Impaired epithelial Na+ channel activity contributes to cystogenesis and development of autosomal recessive polycystic kidney disease in PCK rats.

  • Tengis S Pavlov‎ et al.
  • Pediatric research‎
  • 2015‎

Autosomal recessive polycystic kidney disease is a genetic disorder characterized by the development of renal cysts of tubular epithelial cell origin. Epithelial Na(+) channel (ENaC) is responsible for sodium reabsorption in the aldosterone-sensitive distal nephron. Here, we investigated the ENaC expression and activity in cystic tissue taken from rats with autosomal recessive polycystic kidney disease.


Impaired sinoatrial node function and increased susceptibility to atrial fibrillation in mice lacking natriuretic peptide receptor C.

  • Emmanuel E Egom‎ et al.
  • The Journal of physiology‎
  • 2015‎

Natriuretic peptides (NPs) are critical regulators of the cardiovascular system that are currently viewed as possible therapeutic targets for the treatment of heart disease. Recent work demonstrates potent NP effects on cardiac electrophysiology, including in the sinoatrial node (SAN) and atria. NPs elicit their effects via three NP receptors (NPR-A, NPR-B and NPR-C). Among these receptors, NPR-C is poorly understood. Accordingly, the goal of this study was to determine the effects of NPR-C ablation on cardiac structure and arrhythmogenesis. Cardiac structure and function were assessed in wild-type (NPR-C(+/+)) and NPR-C knockout (NPR-C(-/-)) mice using echocardiography, intracardiac programmed stimulation, patch clamping, high-resolution optical mapping, quantitative polymerase chain reaction and histology. These studies demonstrate that NPR-C(-/-) mice display SAN dysfunction, as indicated by a prolongation (30%) of corrected SAN recovery time, as well as an increased susceptibility to atrial fibrillation (6% in NPR-C(+/+) vs. 47% in NPR-C(-/-)). There were no differences in SAN or atrial action potential morphology in NPR-C(-/-) mice; however, increased atrial arrhythmogenesis in NPR-C(-/-) mice was associated with reductions in SAN (20%) and atrial (15%) conduction velocity, as well as increases in expression and deposition of collagen in the atrial myocardium. No differences were seen in ventricular arrhythmogenesis or fibrosis in NPR-C(-/-) mice. This study demonstrates that loss of NPR-C results in SAN dysfunction and increased susceptibility to atrial arrhythmias in association with structural remodelling and fibrosis in the atrial myocardium. These findings indicate a critical protective role for NPR-C in the heart.


Regulation of Polycystin-1 Function by Calmodulin Binding.

  • Nicholas Doerr‎ et al.
  • PloS one‎
  • 2016‎

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common genetic disease that leads to progressive renal cyst growth and loss of renal function, and is caused by mutations in the genes encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively. The PC1/PC2 complex localizes to primary cilia and can act as a flow-dependent calcium channel in addition to numerous other signaling functions. The exact functions of the polycystins, their regulation and the purpose of the PC1/PC2 channel are still poorly understood. PC1 is an integral membrane protein with a large extracytoplasmic N-terminal domain and a short, ~200 amino acid C-terminal cytoplasmic tail. Most proteins that interact with PC1 have been found to bind via the cytoplasmic tail. Here we report that the PC1 tail has homology to the regulatory domain of myosin heavy chain including a conserved calmodulin-binding motif. This motif binds to CaM in a calcium-dependent manner. Disruption of the CaM-binding motif in PC1 does not affect PC2 binding, cilia targeting, or signaling via heterotrimeric G-proteins or STAT3. However, disruption of CaM binding inhibits the PC1/PC2 calcium channel activity and the flow-dependent calcium response in kidney epithelial cells. Furthermore, expression of CaM-binding mutant PC1 disrupts cellular energy metabolism. These results suggest that critical functions of PC1 are regulated by its ability to sense cytosolic calcium levels via binding to CaM.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: