Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 192 papers

The genetic architecture of type 2 diabetes.

  • Christian Fuchsberger‎ et al.
  • Nature‎
  • 2016‎

The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.


General Framework for Meta-Analysis of Haplotype Association Tests.

  • Shuai Wang‎ et al.
  • Genetic epidemiology‎
  • 2016‎

For complex traits, most associated single nucleotide variants (SNV) discovered to date have a small effect, and detection of association is only possible with large sample sizes. Because of patient confidentiality concerns, it is often not possible to pool genetic data from multiple cohorts, and meta-analysis has emerged as the method of choice to combine results from multiple studies. Many meta-analysis methods are available for single SNV analyses. As new approaches allow the capture of low frequency and rare genetic variation, it is of interest to jointly consider multiple variants to improve power. However, for the analysis of haplotypes formed by multiple SNVs, meta-analysis remains a challenge, because different haplotypes may be observed across studies. We propose a two-stage meta-analysis approach to combine haplotype analysis results. In the first stage, each cohort estimate haplotype effect sizes in a regression framework, accounting for relatedness among observations if appropriate. For the second stage, we use a multivariate generalized least square meta-analysis approach to combine haplotype effect estimates from multiple cohorts. Haplotype-specific association tests and a global test of independence between haplotypes and traits are obtained within our framework. We demonstrate through simulation studies that we control the type-I error rate, and our approach is more powerful than inverse variance weighted meta-analysis of single SNV analysis when haplotype effects are present. We replicate a published haplotype association between fasting glucose-associated locus (G6PC2) and fasting glucose in seven studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and we provide more precise haplotype effect estimates.


Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus.

  • Anubha Mahajan‎ et al.
  • PLoS genetics‎
  • 2015‎

Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.


Insights into the genetic susceptibility to type 2 diabetes from genome-wide association studies of glycaemic traits.

  • Letizia Marullo‎ et al.
  • Current diabetes reports‎
  • 2014‎

Over the past 8 years, the genetics of complex traits have benefited from an unprecedented advancement in the identification of common variant loci for diseases such as type 2 diabetes (T2D). The ability to undertake genome-wide association studies in large population-based samples for quantitative glycaemic traits has permitted us to explore the hypothesis that models arising from studies in non-diabetic individuals may reflect mechanisms involved in the pathogenesis of diabetes. Amongst 88 T2D risk and 72 glycaemic trait loci, only 29 are shared and show disproportionate magnitudes of phenotypic effects. Important mechanistic insights have been gained regarding the physiological role of T2D loci in disease predisposition through the elucidation of their contribution to glycaemic trait variability. Further investigation is warranted to define causal variants within these loci, including functional characterisation of associated variants, to dissect their role in disease mechanisms and to enable clinical translation.


Comparison of methods for multivariate gene-based association tests for complex diseases using common variants.

  • Jaeyoon Chung‎ et al.
  • European journal of human genetics : EJHG‎
  • 2019‎

Complex diseases are usually associated with multiple correlated phenotypes, and the analysis of composite scores or disease status may not fully capture the complexity (or multidimensionality). Joint analysis of multiple disease-related phenotypes in genetic tests could potentially increase power to detect association of a disease with common SNPs (or genes). Gene-based tests are designed to identify genes containing multiple risk variants that individually are weakly associated with a univariate trait. We combined three multivariate association tests (O'Brien method, TATES, and MultiPhen) with two gene-based association tests (GATES and VEGAS) and compared performance (type I error and power) of six multivariate gene-based methods using simulated data. Data (n = 2000) for genetic sequence and correlated phenotypes were simulated by varying causal variant proportions and phenotype correlations for various scenarios. These simulations showed that two multivariate association tests (TATES and MultiPhen, but not O'Brien) paired with VEGAS have inflated type I error in all scenarios, while the three multivariate association tests paired with GATES have correct type I error. MultiPhen paired with GATES has higher power than competing methods if the correlations among phenotypes are low (r < 0.57). We applied these gene-based association methods to a GWAS dataset from the Alzheimer's Disease Genetics Consortium containing three neuropathological traits related to Alzheimer disease (neuritic plaque, neurofibrillary tangles, and cerebral amyloid angiopathy) measured in 3500 autopsied brains. Gene-level significant evidence (P < 2.7 × 10-6) was identified in a region containing three contiguous genes (TRAPPC12, TRAPPC12-AS1, ADI1) using O'Brien and VEGAS. Gene-wide significant associations were not observed in univariate gene-based tests.


Epigenome-Wide Association Study of Soluble Tumor Necrosis Factor Receptor 2 Levels in the Framingham Heart Study.

  • Michael M Mendelson‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

Background: Transmembrane tumor necrosis factor (TNF) receptors are involved in inflammatory, apoptotic, and proliferative processes. In the bloodstream, soluble TNF receptor II (sTNFR2) can modify the inflammatory response of immune cells and is predictive of cardiovascular disease risk. We hypothesize that sTNFR2 is associated with epigenetic modifications of circulating leukocytes, which may relate to the pathophysiology underlying atherogenic risk. Methods: We conducted an epigenome-wide association study of sTNFR2 levels in the Framingham Heart Study Offspring cohort (examination 8; 2005-2008). sTNFR2 was quantitated by enzyme immunoassay and DNA methylation by microarray. The concentration of sTNFR2 was loge-transformed and outliers were excluded. We conducted linear mixed effects models to test the association between sTNFR2 level and methylation at over 400,000 CpGs, adjusting for age, sex, BMI, smoking, imputed cell count, technical covariates, and accounting for familial relatedness. Results: The study sample included 2468 participants (mean age: 67 ± 9 years, 52% women, mean sTNFR2 level 2661 ± 1078 pg/ml). After accounting for multiple testing, we identified 168 CpGs (P < 1.2 × 10-7) that were differentially methylated in relation to sTNFR2. A substantial proportion (27 CpGs; 16%) are in the major histocompatibility complex region and in loci overrepresented for antigen binding molecular functions (P = 1.7 × 10-4) and antigen processing and presentation biological processes (P = 1.3 × 10-8). Identified CpGs are enriched in active regulatory regions and associated with expression of 48 cis-genes (±500 kb) in whole blood (P < 1.1 × 10-5) that coincide with genes identified in GWAS of diseases of immune dysregulation (inflammatory bowel disease, type 1 diabetes, IgA nephropathy). Conclusion: Differentially methylated loci in leukocytes associated with sTNF2 levels reside in active regulatory regions, are overrepresented in antigen processes, and are linked to inflammatory diseases.


Sequence data and association statistics from 12,940 type 2 diabetes cases and controls.

  • Jason Flannick‎ et al.
  • Scientific data‎
  • 2017‎

To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.


Meta-analysis of exome array data identifies six novel genetic loci for lung function.

  • Victoria E Jackson‎ et al.
  • Wellcome open research‎
  • 2018‎

Background: Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. Methods: We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV 1), forced vital capacity (FVC) and the ratio of FEV 1 to FVC (FEV 1/FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. Results: We identified significant (P<2·8x10 -7) associations with six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs ( SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including TYRO3 and PLAU. Conclusions: Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.


Expression of phosphofructokinase in skeletal muscle is influenced by genetic variation and associated with insulin sensitivity.

  • Sarah Keildson‎ et al.
  • Diabetes‎
  • 2014‎

Using an integrative approach in which genetic variation, gene expression, and clinical phenotypes are assessed in relevant tissues may help functionally characterize the contribution of genetics to disease susceptibility. We sought to identify genetic variation influencing skeletal muscle gene expression (expression quantitative trait loci [eQTLs]) as well as expression associated with measures of insulin sensitivity. We investigated associations of 3,799,401 genetic variants in expression of >7,000 genes from three cohorts (n = 104). We identified 287 genes with cis-acting eQTLs (false discovery rate [FDR] <5%; P < 1.96 × 10(-5)) and 49 expression-insulin sensitivity phenotype associations (i.e., fasting insulin, homeostasis model assessment-insulin resistance, and BMI) (FDR <5%; P = 1.34 × 10(-4)). One of these associations, fasting insulin/phosphofructokinase (PFKM), overlaps with an eQTL. Furthermore, the expression of PFKM, a rate-limiting enzyme in glycolysis, was nominally associated with glucose uptake in skeletal muscle (P = 0.026; n = 42) and overexpressed (Bonferroni-corrected P = 0.03) in skeletal muscle of patients with T2D (n = 102) compared with normoglycemic controls (n = 87). The PFKM eQTL (rs4547172; P = 7.69 × 10(-6)) was nominally associated with glucose uptake, glucose oxidation rate, intramuscular triglyceride content, and metabolic flexibility (P = 0.016-0.048; n = 178). We explored eQTL results using published data from genome-wide association studies (DIAGRAM and MAGIC), and a proxy for the PFKM eQTL (rs11168327; r(2) = 0.75) was nominally associated with T2D (DIAGRAM P = 2.7 × 10(-3)). Taken together, our analysis highlights PFKM as a potential regulator of skeletal muscle insulin sensitivity.


A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk.

  • Alisa Manning‎ et al.
  • Diabetes‎
  • 2017‎

To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.


Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis.

  • Eleanor Wheeler‎ et al.
  • PLoS medicine‎
  • 2017‎

Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes.


Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function.

  • Dana B Hancock‎ et al.
  • PLoS genetics‎
  • 2012‎

Genome-wide association studies have identified numerous genetic loci for spirometic measures of pulmonary function, forced expiratory volume in one second (FEV(1)), and its ratio to forced vital capacity (FEV(1)/FVC). Given that cigarette smoking adversely affects pulmonary function, we conducted genome-wide joint meta-analyses (JMA) of single nucleotide polymorphism (SNP) and SNP-by-smoking (ever-smoking or pack-years) associations on FEV(1) and FEV(1)/FVC across 19 studies (total N = 50,047). We identified three novel loci not previously associated with pulmonary function. SNPs in or near DNER (smallest P(JMA = )5.00×10(-11)), HLA-DQB1 and HLA-DQA2 (smallest P(JMA = )4.35×10(-9)), and KCNJ2 and SOX9 (smallest P(JMA = )1.28×10(-8)) were associated with FEV(1)/FVC or FEV(1) in meta-analysis models including SNP main effects, smoking main effects, and SNP-by-smoking (ever-smoking or pack-years) interaction. The HLA region has been widely implicated for autoimmune and lung phenotypes, unlike the other novel loci, which have not been widely implicated. We evaluated DNER, KCNJ2, and SOX9 and found them to be expressed in human lung tissue. DNER and SOX9 further showed evidence of differential expression in human airway epithelium in smokers compared to non-smokers. Our findings demonstrated that joint testing of SNP and SNP-by-environment interaction identified novel loci associated with complex traits that are missed when considering only the genetic main effects.


Genome-wide association analysis of soluble ICAM-1 concentration reveals novel associations at the NFKBIK, PNPLA3, RELA, and SH2B3 loci.

  • Guillaume Paré‎ et al.
  • PLoS genetics‎
  • 2011‎

Soluble ICAM-1 (sICAM-1) is an endothelium-derived inflammatory marker that has been associated with diverse conditions such as myocardial infarction, diabetes, stroke, and malaria. Despite evidence for a heritable component to sICAM-1 levels, few genetic loci have been identified so far. To comprehensively address this issue, we performed a genome-wide association analysis of sICAM-1 concentration in 22,435 apparently healthy women from the Women's Genome Health Study. While our results confirm the previously reported associations at the ABO and ICAM1 loci, four novel associations were identified in the vicinity of NFKBIK (rs3136642, P = 5.4 × 10(-9)), PNPLA3 (rs738409, P  =  5.8 × 10(-9)), RELA (rs1049728, P =  2.7 × 10(-16)), and SH2B3 (rs3184504, P =  2.9 × 10(-17)). Two loci, NFKBIB and RELA, are involved in NFKB signaling pathway; PNPLA3 is known for its association with fatty liver disease; and SH3B2 has been associated with a multitude of traits and disease including myocardial infarction. These associations provide insights into the genetic regulation of sICAM-1 levels and implicate these loci in the regulation of endothelial function.


Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts.

  • Karani S Vimaleswaran‎ et al.
  • PLoS medicine‎
  • 2013‎

Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(OH)D] using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis.


Genome-wide association study identifies two novel regions at 11p15.5-p13 and 1p31 with major impact on acute-phase serum amyloid A.

  • Carola Marzi‎ et al.
  • PLoS genetics‎
  • 2010‎

Elevated levels of acute-phase serum amyloid A (A-SAA) cause amyloidosis and are a risk factor for atherosclerosis and its clinical complications, type 2 diabetes, as well as various malignancies. To investigate the genetic basis of A-SAA levels, we conducted the first genome-wide association study on baseline A-SAA concentrations in three population-based studies (KORA, TwinsUK, Sorbs) and one prospective case cohort study (LURIC), including a total of 4,212 participants of European descent, and identified two novel genetic susceptibility regions at 11p15.5-p13 and 1p31. The region at 11p15.5-p13 (rs4150642; p = 3.20×10(-111)) contains serum amyloid A1 (SAA1) and the adjacent general transcription factor 2 H1 (GTF2H1), Hermansky-Pudlak Syndrome 5 (HPS5), lactate dehydrogenase A (LDHA), and lactate dehydrogenase C (LDHC). This region explains 10.84% of the total variation of A-SAA levels in our data, which makes up 18.37% of the total estimated heritability. The second region encloses the leptin receptor (LEPR) gene at 1p31 (rs12753193; p = 1.22×10(-11)) and has been found to be associated with CRP and fibrinogen in previous studies. Our findings demonstrate a key role of the 11p15.5-p13 region in the regulation of baseline A-SAA levels and provide confirmative evidence of the importance of the 1p31 region for inflammatory processes and the close interplay between A-SAA, leptin, and other acute-phase proteins.


Refined QTLs of osteoporosis-related traits by linkage analysis with genome-wide SNPs: Framingham SHARe.

  • David Karasik‎ et al.
  • Bone‎
  • 2010‎

Genome-wide association studies (GWAS) using high-density array of single-nucleotide polymorphisms (SNPs) offer an unbiased strategy to identify new candidate genes for osteoporosis. We used a subset of autosomal SNPs from the Affymetrix 500K+50K SNP GeneChip marker set to examine genetic linkage with multiple highly heritable osteoporosis-related traits, including BMD of the hip and spine, heel ultrasound (attenuation and speed of sound), and geometric indices of the hip, in two generations from the Framingham Osteoporosis Study. Variance component linkage analysis was performed using normalized residuals (adjusted for age, height, BMI, and estrogen status in women). Multipoint linkage analyses produced LOD scores > or =3.0 for BMD on chromosomes (chr.) 9 and 11 and for ultrasound speed of sound on chr. 5. Hip geometric traits were linked with higher LOD scores, such as with shaft width on chr. 4 (LOD=3.9) and chr. 16 (LOD=3.8) and with shaft section modulus on chr. 22 (LOD=4.0). LOD score > or =5.0 was obtained for femoral neck width on chr. 7. In conclusion, with an SNP-based linkage approach, we identified several novel potential QTLs and confirmed previously identified chromosomal regions linked to bone mass and geometry. Subsequent focus on the spectrum of genetic polymorphisms in these refined regions may contribute to finding variants predisposing to osteoporosis.


Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans.

  • Erik Ingelsson‎ et al.
  • Diabetes‎
  • 2010‎

OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes.


Association of variants in RETN with plasma resistin levels and diabetes-related traits in the Framingham Offspring Study.

  • Marie-France Hivert‎ et al.
  • Diabetes‎
  • 2009‎

The RETN gene encodes the adipokine resistin. Associations of RETN with plasma resistin levels, type 2 diabetes, and related metabolic traits have been inconsistent. Using comprehensive linkage disequilibrium mapping, we genotyped tag single nucleotide polymorphisms (SNPs) in RETN and tested associations with plasma resistin levels, risk of diabetes, and glycemic traits.


Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

  • Cecilia M Lindgren‎ et al.
  • PLoS genetics‎
  • 2009‎

To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.


The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports.

  • L Adrienne Cupples‎ et al.
  • BMC medical genetics‎
  • 2007‎

The Framingham Heart Study (FHS), founded in 1948 to examine the epidemiology of cardiovascular disease, is among the most comprehensively characterized multi-generational studies in the world. Many collected phenotypes have substantial genetic contributors; yet most genetic determinants remain to be identified. Using single nucleotide polymorphisms (SNPs) from a 100K genome-wide scan, we examine the associations of common polymorphisms with phenotypic variation in this community-based cohort and provide a full-disclosure, web-based resource of results for future replication studies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: