Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Expression of phosphofructokinase in skeletal muscle is influenced by genetic variation and associated with insulin sensitivity.

Diabetes | 2014

Using an integrative approach in which genetic variation, gene expression, and clinical phenotypes are assessed in relevant tissues may help functionally characterize the contribution of genetics to disease susceptibility. We sought to identify genetic variation influencing skeletal muscle gene expression (expression quantitative trait loci [eQTLs]) as well as expression associated with measures of insulin sensitivity. We investigated associations of 3,799,401 genetic variants in expression of >7,000 genes from three cohorts (n = 104). We identified 287 genes with cis-acting eQTLs (false discovery rate [FDR] <5%; P < 1.96 × 10(-5)) and 49 expression-insulin sensitivity phenotype associations (i.e., fasting insulin, homeostasis model assessment-insulin resistance, and BMI) (FDR <5%; P = 1.34 × 10(-4)). One of these associations, fasting insulin/phosphofructokinase (PFKM), overlaps with an eQTL. Furthermore, the expression of PFKM, a rate-limiting enzyme in glycolysis, was nominally associated with glucose uptake in skeletal muscle (P = 0.026; n = 42) and overexpressed (Bonferroni-corrected P = 0.03) in skeletal muscle of patients with T2D (n = 102) compared with normoglycemic controls (n = 87). The PFKM eQTL (rs4547172; P = 7.69 × 10(-6)) was nominally associated with glucose uptake, glucose oxidation rate, intramuscular triglyceride content, and metabolic flexibility (P = 0.016-0.048; n = 178). We explored eQTL results using published data from genome-wide association studies (DIAGRAM and MAGIC), and a proxy for the PFKM eQTL (rs11168327; r(2) = 0.75) was nominally associated with T2D (DIAGRAM P = 2.7 × 10(-3)). Taken together, our analysis highlights PFKM as a potential regulator of skeletal muscle insulin sensitivity.

Pubmed ID: 24306210 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: Wellcome Trust, United Kingdom
    Id: 081917/Z/07/Z
  • Agency: Wellcome Trust, United Kingdom
    Id: 086596/Z/08/Z
  • Agency: Wellcome Trust, United Kingdom
    Id: 090532

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ArrayExpress (tool)

RRID:SCR_002964

International functional genomics data collection generated from microarray or next-generation sequencing (NGS) platforms. Repository of functional genomics data supporting publications. Provides genes expression data for reuse to the research community where they can be queried and downloaded. Integrated with the Gene Expression Atlas and the sequence databases at the European Bioinformatics Institute. Contains a subset of curated and re-annotated Archive data which can be queried for individual gene expression under different biological conditions across experiments. Data collected to MIAME and MINSEQE standards. Data are submitted by users or are imported directly from the NCBI Gene Expression Omnibus.

View all literature mentions

METAL (tool)

RRID:SCR_002013

Software application designed to facilitate meta-analysis of large datasets (such as several whole genome scans) in a convenient, rapid and memory efficient manner. (entry from Genetic Analysis Software)

View all literature mentions