Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 61 papers

A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells.

  • Akshay K Ahuja‎ et al.
  • Nature communications‎
  • 2016‎

Embryonic stem cells (ESCs) represent a transient biological state, where pluripotency is coupled with fast proliferation. ESCs display a constitutively active DNA damage response (DDR), but its molecular determinants have remained elusive. Here we show in cultured ESCs and mouse embryos that H2AX phosphorylation is dependent on Ataxia telangiectasia and Rad3 related (ATR) and is associated with chromatin loading of the ssDNA-binding proteins RPA and RAD51. Single-molecule analysis of replication intermediates reveals massive ssDNA gap accumulation, reduced fork speed and frequent fork reversal. All these marks of replication stress do not impair the mitotic process and are rapidly lost at differentiation onset. Delaying the G1/S transition in ESCs allows formation of 53BP1 nuclear bodies and suppresses ssDNA accumulation, fork slowing and reversal in the following S-phase. Genetic inactivation of fork slowing and reversal leads to chromosomal breakage in unperturbed ESCs. We propose that rapid cell cycle progression makes ESCs dependent on effective replication-coupled mechanisms to protect genome integrity.


Randomised, double-blind, placebo-controlled trial with azithromycin selects for anti-inflammatory microbial metabolites in the emphysematous lung.

  • Leopoldo N Segal‎ et al.
  • Thorax‎
  • 2017‎

Azithromycin (AZM) reduces pulmonary inflammation and exacerbations in patients with COPD having emphysema. The antimicrobial effects of AZM on the lower airway microbiome are not known and may contribute to its beneficial effects. Here we tested whether AZM treatment affects the lung microbiome and bacterial metabolites that might contribute to changes in levels of inflammatory cytokines in the airways.


Heteromers of amyloid precursor protein in cerebrospinal fluid.

  • Inmaculada Cuchillo-Ibañez‎ et al.
  • Molecular neurodegeneration‎
  • 2015‎

Soluble fragments of the amyloid precursor protein (APP) generated by α- and β-secretases, sAPPα and sAPPβ, have been postulated as promising new cerebrospinal fluid (CSF) biomarkers for the clinical diagnosis of Alzheimer's disease (AD). However, the capacity of these soluble proteins to assemble has not been explored and could be relevant. Our aim is to characterize possible sAPP oligomers that could contribute to the quantification of sAPPα and sAPPβ in CSF by ELISA, as well as to characterize the possible presence of soluble full-length APP (sAPPf).


Changes in vaginal microbiota following antimicrobial and probiotic therapy.

  • Jean M Macklaim‎ et al.
  • Microbial ecology in health and disease‎
  • 2015‎

The composition of the vaginal microbiota is known to be important for health. When infections occur, antimicrobial therapy is often poorly efficacious.


Gut microbiota density influences host physiology and is shaped by host and microbial factors.

  • Eduardo J Contijoch‎ et al.
  • eLife‎
  • 2019‎

To identify factors that regulate gut microbiota density and the impact of varied microbiota density on health, we assayed this fundamental ecosystem property in fecal samples across mammals, human disease, and therapeutic interventions. Physiologic features of the host (carrying capacity) and the fitness of the gut microbiota shape microbiota density. Therapeutic manipulation of microbiota density in mice altered host metabolic and immune homeostasis. In humans, gut microbiota density was reduced in Crohn's disease, ulcerative colitis, and ileal pouch-anal anastomosis. The gut microbiota in recurrent Clostridium difficile infection had lower density and reduced fitness that were restored by fecal microbiota transplantation. Understanding the interplay between microbiota and disease in terms of microbiota density, host carrying capacity, and microbiota fitness provide new insights into microbiome structure and microbiome targeted therapeutics.


Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences.

  • Morgan G I Langille‎ et al.
  • Nature biotechnology‎
  • 2013‎

Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community's functional capabilities. Here we describe PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this 'predictive metagenomic' approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available.


Evidence for Environmental-Human Microbiota Transfer at a Manufacturing Facility with Novel Work-related Respiratory Disease.

  • Benjamin G Wu‎ et al.
  • American journal of respiratory and critical care medicine‎
  • 2020‎

Rationale: Workers' exposure to metalworking fluid (MWF) has been associated with respiratory disease.Objectives: As part of a public health investigation of a manufacturing facility, we performed a cross-sectional study using paired environmental and human sampling to evaluate the cross-pollination of microbes between the environment and the host and possible effects on lung pathology present among workers.Methods: Workplace environmental microbiota were evaluated in air and MWF samples. Human microbiota were evaluated in lung tissue samples from workers with respiratory symptoms found to have lymphocytic bronchiolitis and alveolar ductitis with B-cell follicles and emphysema, in lung tissue samples from control subjects, and in skin, nasal, and oral samples from 302 workers from different areas of the facility. In vitro effects of MWF exposure on murine B cells were assessed.Measurements and Main Results: An increased similarity of microbial composition was found between MWF samples and lung tissue samples of case workers compared with control subjects. Among workers in different locations within the facility, those that worked in the machine shop area had skin, nasal, and oral microbiota more closely related to the microbiota present in the MWF samples. Lung samples from four index cases and skin and nasal samples from workers in the machine shop area were enriched with Pseudomonas, the dominant taxa in MWF. Exposure to used MWF stimulated murine B-cell proliferation in vitro, a hallmark cell subtype found in the pathology of index cases.Conclusions: Evaluation of a manufacturing facility with a cluster of workers with respiratory disease supports cross-pollination of microbes from MWF to humans and suggests the potential for exposure to these microbes to be a health hazard.


Detecting and phasing minor single-nucleotide variants from long-read sequencing data.

  • Zhixing Feng‎ et al.
  • Nature communications‎
  • 2021‎

Cellular genetic heterogeneity is common in many biological conditions including cancer, microbiome, and co-infection of multiple pathogens. Detecting and phasing minor variants play an instrumental role in deciphering cellular genetic heterogeneity, but they are still difficult tasks because of technological limitations. Recently, long-read sequencing technologies, including those by Pacific Biosciences and Oxford Nanopore, provide an opportunity to tackle these challenges. However, high error rates make it difficult to take full advantage of these technologies. To fill this gap, we introduce iGDA, an open-source tool that can accurately detect and phase minor single-nucleotide variants (SNVs), whose frequencies are as low as 0.2%, from raw long-read sequencing data. We also demonstrate that iGDA can accurately reconstruct haplotypes in closely related strains of the same species (divergence ≥0.011%) from long-read metagenomic data.


Oral vancomycin treatment suppresses gut trypsin activity and preserves intestinal barrier function during EAE.

  • Paola Bianchimano‎ et al.
  • iScience‎
  • 2023‎

Studies have reported increased intestinal permeability in multiple sclerosis (MS) patients and its mouse model experimental autoimmune encephalomyelitis (EAE). However, the mechanisms driving increased intestinal permeability that in turn exacerbate neuroinflammation during EAE remain unclear. Here we showed that vancomycin preserved the integrity of the intestinal barrier, while also suppressing gut trypsin activity, enhancing the relative abundance of specific Lactobacilli and ameliorating disease during EAE. Furthermore, Lactobacilli enriched in the gut of vancomycin-treated EAE mice at day 3 post immunization negatively correlated with gut trypsin activity and EAE severity. In untreated EAE mice, we observed increased intestinal permeability and increased intestinal protease activated receptor 2 (PAR2) expression at day 3 post immunization. Prior studies have shown that trypsin increases intestinal permeability by activating PAR2. Our results suggest that the interaction between intestinal PAR2 and trypsin may be a key modulator of intestinal permeability and disease severity during EAE.


Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior.

  • Mar Gacias‎ et al.
  • eLife‎
  • 2016‎

Gene-environment interactions impact the development of neuropsychiatric disorders, but the relative contributions are unclear. Here, we identify gut microbiota as sufficient to induce depressive-like behaviors in genetically distinct mouse strains. Daily gavage of vehicle (dH2O) in nonobese diabetic (NOD) mice induced a social avoidance behavior that was not observed in C57BL/6 mice. This was not observed in NOD animals with depleted microbiota via oral administration of antibiotics. Transfer of intestinal microbiota, including members of the Clostridiales, Lachnospiraceae and Ruminococcaceae, from vehicle-gavaged NOD donors to microbiota-depleted C57BL/6 recipients was sufficient to induce social avoidance and change gene expression and myelination in the prefrontal cortex. Metabolomic analysis identified increased cresol levels in these mice, and exposure of cultured oligodendrocytes to this metabolite prevented myelin gene expression and differentiation. Our results thus demonstrate that the gut microbiota modifies the synthesis of key metabolites affecting gene expression in the prefrontal cortex, thereby modulating social behavior.


Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease.

  • Andrew Kovalenko‎ et al.
  • The Journal of experimental medicine‎
  • 2009‎

Expression of enzymatically inactive caspase-8, or deletion of caspase-8 from basal epidermal keratinocytes, triggers chronic skin inflammation in mice. Unlike similar inflammation resulting from arrest of nuclear factor kappaB activation in the epidermal cells, the effect induced by caspase-8 deficiency did not depend on TNF, IL-1, dermal macrophage function, or expression of the toll-like receptor adapter proteins MyD88 or TRIF. Both interferon regulatory factor (IRF) 3 and TANK-binding kinase were constitutively phosphorylated in the caspase-8-deficient epidermis, and knockdown of IRF3 in the epidermis-derived cells from these mice abolished the expression of up-regulated genes. Temporal and spatial analyses of the alterations in gene expression that result from caspase-8 deficiency reveal that the changes are initiated before birth, around the time that cornification develops, and occur mainly in the suprabasal layer. Finally, we found that caspase-8-deficient keratinocytes display an enhanced response to gene activation by transfected DNA. Our findings suggest that an enhanced response to endogenous activators of IRF3 in the epidermis, presumably generated in association with keratinocyte differentiation, contributes to the skin inflammatory process triggered by caspase-8 deficiency.


Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice.

  • Gerold Bongers‎ et al.
  • The Journal of experimental medicine‎
  • 2014‎

The preferential localization of some neoplasms, such as serrated polyps (SPs), in specific areas of the intestine suggests that nongenetic factors may be important for their development. To test this hypothesis, we took advantage of transgenic mice that expressed HB-EGF throughout the intestine but developed SPs only in the cecum. Here we show that a host-specific microbiome was associated with SPs and that alterations of the microbiota induced by antibiotic treatment or by embryo transfer rederivation markedly inhibited the formation of SPs in the cecum. Mechanistically, development of SPs was associated with a local decrease in epithelial barrier function, bacterial invasion, production of antimicrobials, and increased expression of several inflammatory factors such as IL-17, Cxcl2, Tnf-α, and IL-1. Increased numbers of neutrophils were found within the SPs, and their depletion significantly reduced polyp growth. Together these results indicate that nongenetic factors contribute to the development of SPs and suggest that the development of these intestinal neoplasms in the cecum is driven by the interplay between genetic changes in the host, an inflammatory response, and a host-specific microbiota.


The microbiome of uncontacted Amerindians.

  • Jose C Clemente‎ et al.
  • Science advances‎
  • 2015‎

Most studies of the human microbiome have focused on westernized people with life-style practices that decrease microbial survival and transmission, or on traditional societies that are currently in transition to westernization. We characterize the fecal, oral, and skin bacterial microbiome and resistome of members of an isolated Yanomami Amerindian village with no documented previous contact with Western people. These Yanomami harbor a microbiome with the highest diversity of bacteria and genetic functions ever reported in a human group. Despite their isolation, presumably for >11,000 years since their ancestors arrived in South America, and no known exposure to antibiotics, they harbor bacteria that carry functional antibiotic resistance (AR) genes, including those that confer resistance to synthetic antibiotics and are syntenic with mobilization elements. These results suggest that westernization significantly affects human microbiome diversity and that functional AR genes appear to be a feature of the human microbiome even in the absence of exposure to commercial antibiotics. AR genes are likely poised for mobilization and enrichment upon exposure to pharmacological levels of antibiotics. Our findings emphasize the need for extensive characterization of the function of the microbiome and resistome in remote nonwesternized populations before globalization of modern practices affects potentially beneficial bacteria harbored in the human body.


Survival function of the FADD-CASPASE-8-cFLIP(L) complex.

  • Christopher P Dillon‎ et al.
  • Cell reports‎
  • 2012‎

Caspase-8, the initiator caspase of the death receptor pathway of apoptosis, its adapter molecule, FADD, required for caspase-8 activation, and cFLIPL, a caspase-8-like protein that lacks a catalytic site and blocks caspase-8-mediated apoptosis, are each essential for embryonic development. Animals deficient in any of these genes present with E10.5 embryonic lethality. Recent studies have shown that development in caspase-8-deficient mice is rescued by ablation of RIPK3, a kinase that promotes a form of programmed, necrotic cell death. Here, we show that FADD, RIPK3 double-knockout mice develop normally but that the lethal effects of cFLIP deletion are not rescued by RIPK3 deficiency. Remarkably, in mice lacking FADD, cFLIP, and RIPK3, embryonic development is normal. This can be explained by the convergence of two cell processes: the enzymatic activity of the FADD-caspase-8-cFLIPL complex blocks RIPK3-dependent signaling (including necrosis), whereas cFLIPL blocks RIPK3-independent apoptosis promoted by the FADD-caspase-8 complex.


Microbiotas from Humans with Inflammatory Bowel Disease Alter the Balance of Gut Th17 and RORγt+ Regulatory T Cells and Exacerbate Colitis in Mice.

  • Graham J Britton‎ et al.
  • Immunity‎
  • 2019‎

Microbiota are thought to influence the development and progression of inflammatory bowel disease (IBD), but determining generalizable effects of microbiota on IBD etiology requires larger-scale functional analyses. We colonized germ-free mice with intestinal microbiotas from 30 healthy and IBD donors and determined the homeostatic intestinal T cell response to each microbiota. Compared to microbiotas from healthy donors, transfer of IBD microbiotas into germ-free mice increased numbers of intestinal Th17 cells and Th2 cells and decreased numbers of RORγt+ Treg cells. Colonization with IBD microbiotas exacerbated disease in a model where colitis is induced upon transfer of naive T cells into Rag1-/- mice. The proportions of Th17 and RORγt+ Treg cells induced by each microbiota were predictive of human disease status and accounted for disease severity in the Rag1-/- colitis model. Thus, an impact on intestinal Th17 and RORγt+ Treg cell compartments emerges as a unifying feature of IBD microbiotas, suggesting a general mechanism for microbial contribution to IBD pathogenesis.


Interleukin-17 Inhibition in Spondyloarthritis Is Associated With Subclinical Gut Microbiome Perturbations and a Distinctive Interleukin-25-Driven Intestinal Inflammation.

  • Julia Manasson‎ et al.
  • Arthritis & rheumatology (Hoboken, N.J.)‎
  • 2020‎

To characterize the ecological effects of biologic therapies on the gut bacterial and fungal microbiome in psoriatic arthritis (PsA)/spondyloarthritis (SpA) patients.


Anaerobe-enriched gut microbiota predicts pro-inflammatory responses in pulmonary tuberculosis.

  • Charissa C Naidoo‎ et al.
  • EBioMedicine‎
  • 2021‎

The relationship between tuberculosis (TB), one of the leading infectious causes of death worldwide, and the microbiome, which is critical for health, is poorly understood.


A Dual Role of Caspase-8 in Triggering and Sensing Proliferation-Associated DNA Damage, a Key Determinant of Liver Cancer Development.

  • Yannick Boege‎ et al.
  • Cancer cell‎
  • 2017‎

Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apoptotic function of caspase-8, but no caspase-3 or caspase-8 cleavage. It may represent a DNA damage-sensing mechanism in hepatocytes that can act via JNK and subsequent phosphorylation of the histone variant H2AX.


Novel technologies to characterize and engineer the microbiome in inflammatory bowel disease.

  • Alba Boix-Amorós‎ et al.
  • Gut microbes‎
  • 2022‎

We present an overview of recent experimental and computational advances in technology used to characterize the microbiome, with a focus on how these developments improve our understanding of inflammatory bowel disease (IBD). Specifically, we present studies that make use of flow cytometry and metabolomics assays to provide a functional characterization of microbial communities. We also describe computational methods for strain-level resolution, temporal series, mycobiome and virome data, co-occurrence networks, and compositional data analysis. In addition, we review novel techniques to therapeutically manipulate the microbiome in IBD. We discuss the benefits and drawbacks of these technologies to increase awareness of specific biases, and to facilitate a more rigorous interpretation of results and their potential clinical application. Finally, we present future lines of research to better characterize the relation between microbial communities and IBD pathogenesis and progression.


Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome.

  • Imran Sulaiman‎ et al.
  • Nature microbiology‎
  • 2021‎

Respiratory failure is associated with increased mortality in COVID-19 patients. There are no validated lower airway biomarkers to predict clinical outcome. We investigated whether bacterial respiratory infections were associated with poor clinical outcome of COVID-19 in a prospective, observational cohort of 589 critically ill adults, all of whom required mechanical ventilation. For a subset of 142 patients who underwent bronchoscopy, we quantified SARS-CoV-2 viral load, analysed the lower respiratory tract microbiome using metagenomics and metatranscriptomics and profiled the host immune response. Acquisition of a hospital-acquired respiratory pathogen was not associated with fatal outcome. Poor clinical outcome was associated with lower airway enrichment with an oral commensal (Mycoplasma salivarium). Increased SARS-CoV-2 abundance, low anti-SARS-CoV-2 antibody response and a distinct host transcriptome profile of the lower airways were most predictive of mortality. Our data provide evidence that secondary respiratory infections do not drive mortality in COVID-19 and clinical management strategies should prioritize reducing viral replication and maximizing host responses to SARS-CoV-2.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: