Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

The machinery at endoplasmic reticulum-plasma membrane contact sites contributes to spatial regulation of multiple Legionella effector proteins.

  • Andree Hubber‎ et al.
  • PLoS pathogens‎
  • 2014‎

The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P)-binding domain first described in the effector DrrA (SidM). This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV), and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM) and the endoplasmic reticulum (ER) modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα) was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis.


Chloroquine-Inducible Par-4 Secretion Is Essential for Tumor Cell Apoptosis and Inhibition of Metastasis.

  • Ravshan Burikhanov‎ et al.
  • Cell reports‎
  • 2017‎

The induction of tumor suppressor proteins capable of cancer cell apoptosis represents an attractive option for the re-purposing of existing drugs. We report that the anti-malarial drug, chloroquine (CQ), is a robust inducer of Par-4 secretion from normal cells in mice and cancer patients in a clinical trial. CQ-inducible Par-4 secretion triggers paracrine apoptosis of cancer cells and also inhibits metastatic tumor growth. CQ induces Par-4 secretion via the classical secretory pathway that requires the activation of p53. Mechanistically, p53 directly induces Rab8b, a GTPase essential for vesicle transport of Par-4 to the plasma membrane prior to secretion. Our findings indicate that CQ induces p53- and Rab8b-dependent Par-4 secretion from normal cells for Par-4-dependent inhibition of metastatic tumor growth.


CLAC-P/collagen type XXV is required for the intramuscular innervation of motoneurons during neuromuscular development.

  • Tomohiro Tanaka‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2014‎

Formation of proper neuromuscular connections is a process coordinated by both motoneuron-intrinsic and target-dependent programs. Under these programs, motoneurons innervate target muscles, escape programmed cell death during fetal development, and form neuromuscular junctions (NMJ). Although a number of studies have revealed molecules involved in axon guidance to target muscles and NMJ formation, little is known about the molecular mechanisms linking intramuscular innervation and target-derived trophic factor-dependent prevention of motoneuron apoptosis. Here we studied the physiological function of CLAC-P/collagen XXV, a transmembrane-type collagen originally identified as a component of senile plaque amyloid of Alzheimer's disease brains, by means of generating Col25a1-deficient (KO) mice. Col25a1 KO mice died immediately after birth of respiratory failure. In Col25a1 KO mice, motor axons projected properly toward the target muscles but failed to elongate and branch within the muscle, followed by degeneration of axons. Failure of muscular innervation in Col25a1 KO mice led to excessive apoptosis during development, resulting in almost complete and exclusive loss of spinal motoneurons and immaturity in skeletal muscle development. Bax deletion in Col25a1 KO mice rescued motoneurons from apoptosis, although motor axons remained halted around the muscle entry site. Furthermore, these motoneurons were positive for phosphorylated c-Jun, an indicator of insufficient supply of target-derived survival signals. Together, these observations indicate that CLAC-P/collagen XXV is a novel essential factor that regulates the initial phase of intramuscular motor innervation, which is required for subsequent target-dependent motoneuron survival and NMJ formation during development.


A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells.

  • Ramiro Nández‎ et al.
  • eLife‎
  • 2014‎

Mutations in the inositol 5-phosphatase OCRL cause Lowe syndrome and Dent's disease. Although OCRL, a direct clathrin interactor, is recruited to late-stage clathrin-coated pits, clinical manifestations have been primarily attributed to intracellular sorting defects. Here we show that OCRL loss in Lowe syndrome patient fibroblasts impacts clathrin-mediated endocytosis and results in an endocytic defect. These cells exhibit an accumulation of clathrin-coated vesicles and an increase in U-shaped clathrin-coated pits, which may result from sequestration of coat components on uncoated vesicles. Endocytic vesicles that fail to lose their coat nucleate the majority of the numerous actin comets present in patient cells. SNX9, an adaptor that couples late-stage endocytic coated pits to actin polymerization and which we found to bind OCRL directly, remains associated with such vesicles. These results indicate that OCRL acts as an uncoating factor and that defects in clathrin-mediated endocytosis likely contribute to pathology in patients with OCRL mutations.


Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells.

  • Miyuki Sato‎ et al.
  • Molecular biology of the cell‎
  • 2011‎

It is generally accepted that soluble N-ethylmaleimide-sensitive factor attachment protein receptors mediate the docking and fusion of transport intermediates with target membranes. Our research identifies Caenorhabditis elegans homologue of synaptosomal-associated protein 29 (SNAP-29) as an essential regulator of membrane trafficking in polarized intestinal cells of living animals. We show that a depletion of SNAP-29 blocks yolk secretion and targeting of apical and basolateral plasma membrane proteins in the intestinal cells and results in a strong accumulation of small cargo-containing vesicles. The loss of SNAP-29 also blocks the transport of yolk receptor RME-2 to the plasma membrane in nonpolarized oocytes, indicating that its function is required in various cell types. SNAP-29 is essential for embryogenesis, animal growth, and viability. Functional fluorescent protein-tagged SNAP-29 mainly localizes to the plasma membrane and the late Golgi, although it also partially colocalizes with endosomal proteins. The loss of SNAP-29 leads to the vesiculation/fragmentation of the Golgi and endosomes, suggesting that SNAP-29 is involved in multiple transport pathways between the exocytic and endocytic organelles. These observations also suggest that organelles comprising the endomembrane system are highly dynamic structures based on the balance between membrane budding and fusion and that SNAP-29-mediated fusion is required to maintain proper organellar morphology and functions.


Emergent functional properties of neuronal networks with controlled topology.

  • Emanuele Marconi‎ et al.
  • PloS one‎
  • 2012‎

The interplay between anatomical connectivity and dynamics in neural networks plays a key role in the functional properties of the brain and in the associated connectivity changes induced by neural diseases. However, a detailed experimental investigation of this interplay at both cellular and population scales in the living brain is limited by accessibility. Alternatively, to investigate the basic operational principles with morphological, electrophysiological and computational methods, the activity emerging from large in vitro networks of primary neurons organized with imposed topologies can be studied. Here, we validated the use of a new bio-printing approach, which effectively maintains the topology of hippocampal cultures in vitro and investigated, by patch-clamp and MEA electrophysiology, the emerging functional properties of these grid-confined networks. In spite of differences in the organization of physical connectivity, our bio-patterned grid networks retained the key properties of synaptic transmission, short-term plasticity and overall network activity with respect to random networks. Interestingly, the imposed grid topology resulted in a reinforcement of functional connections along orthogonal directions, shorter connectivity links and a greatly increased spiking probability in response to focal stimulation. These results clearly demonstrate that reliable functional studies can nowadays be performed on large neuronal networks in the presence of sustained changes in the physical network connectivity.


The inositol 5-phosphatase SHIP2 regulates endocytic clathrin-coated pit dynamics.

  • Fubito Nakatsu‎ et al.
  • The Journal of cell biology‎
  • 2010‎

Phosphatidylinositol (PI) 4,5-bisphosphate (PI(4,5)P(2)) and its phosphorylated product PI 3,4,5-triphosphate (PI(3,4,5)P(3)) are two major phosphoinositides concentrated at the plasma membrane. Their levels, which are tightly controlled by kinases, phospholipases, and phosphatases, regulate a variety of cellular functions, including clathrin-mediated endocytosis and receptor signaling. In this study, we show that the inositol 5-phosphatase SHIP2, a negative regulator of PI(3,4,5)P(3)-dependent signaling, also negatively regulates PI(4,5)P(2) levels and is concentrated at endocytic clathrin-coated pits (CCPs) via interactions with the scaffold protein intersectin. SHIP2 is recruited early at the pits and dissociates before fission. Both knockdown of SHIP2 expression and acute production of PI(3,4,5)P(3) shorten CCP lifetime by enhancing the rate of pit maturation, which is consistent with a positive role of both SHIP2 substrates, PI(4,5)P(2) and PI(3,4,5)P(3), on coat assembly. Because SHIP2 is a negative regulator of insulin signaling, our findings suggest the importance of the phosphoinositide metabolism at CCPs in the regulation of insulin signal output.


UPR transducer BBF2H7 allows export of type II collagen in a cargo- and developmental stage-specific manner.

  • Tokiro Ishikawa‎ et al.
  • The Journal of cell biology‎
  • 2017‎

The unfolded protein response (UPR) handles unfolded/misfolded proteins accumulated in the endoplasmic reticulum (ER). However, it is unclear how vertebrates correctly use the total of ten UPR transducers. We have found that ER stress occurs physiologically during early embryonic development in medaka fish and that the smooth alignment of notochord cells requires ATF6 as a UPR transducer, which induces ER chaperones for folding of type VIII (short-chain) collagen. After secretion of hedgehog for tissue patterning, notochord cells differentiate into sheath cells, which synthesize type II collagen. In this study, we show that this vacuolization step requires both ATF6 and BBF2H7 as UPR transducers and that BBF2H7 regulates a complete set of genes (Sec23/24/13/31, Tango1, Sedlin, and KLHL12) essential for the enlargement of COPII vesicles to accommodate long-chain collagen for export, leading to the formation of the perinotochordal basement membrane. Thus, the most appropriate UPR transducer is activated to cope with the differing physiological ER stresses of different content types depending on developmental stage.


Roles of Collagen XXV and Its Putative Receptors PTPσ/δ in Intramuscular Motor Innervation and Congenital Cranial Dysinnervation Disorder.

  • Haruka Munezane‎ et al.
  • Cell reports‎
  • 2019‎

Intramuscular motor innervation is an essential process in neuromuscular development. Recently, mutations in COL25A1, encoding CLAC-P/collagen XXV, have been linked to the development of a congenital cranial dysinnervation disorder (CCDD). Yet the molecular mechanisms of intramuscular innervation and the etiology of CCDD related to COL25A1 have remained elusive. Here, we report that muscle-derived collagen XXV is indispensable for intramuscular innervation. In developing skeletal muscles, Col25a1 expression is tightly regulated by muscle excitation. In vitro and cell-based assays reveal a direct interaction between collagen XXV and receptor protein tyrosine phosphatases (PTPs) σ and δ. Motor explant assays show that expression of collagen XXV in target cells attracts motor axons, but this is inhibited by exogenous PTPσ/δ. CCDD mutations attenuate motor axon attraction by reducing collagen XXV-PTPσ/δ interaction. Overall, our study identifies PTPσ/δ as putative receptors for collagen XXV, implicating collagen XXV and PTPσ/δ in intramuscular innervation and a developmental ocular motor disorder.


Rab8a vesicles regulate Wnt ligand delivery and Paneth cell maturation at the intestinal stem cell niche.

  • Soumyashree Das‎ et al.
  • Development (Cambridge, England)‎
  • 2015‎

Communication between stem and niche supporting cells maintains the homeostasis of adult tissues. Wnt signaling is a crucial regulator of the stem cell niche, but the mechanism that governs Wnt ligand delivery in this compartment has not been fully investigated. We identified that Wnt secretion is partly dependent on Rab8a-mediated anterograde transport of Gpr177 (wntless), a Wnt-specific transmembrane transporter. Gpr177 binds to Rab8a, depletion of which compromises Gpr177 traffic, thereby weakening the secretion of multiple Wnts. Analyses of generic Wnt/β-catenin targets in Rab8a knockout mouse intestinal crypts indicate reduced signaling activities; maturation of Paneth cells - a Wnt-dependent cell type - is severely affected. Rab8a knockout crypts show an expansion of Lgr5(+) and Hopx(+) cells in vivo. However, in vitro, the knockout enteroids exhibit significantly weakened growth that can be partly restored by exogenous Wnts or Gsk3β inhibitors. Immunogold labeling and surface protein isolation identified decreased plasma membrane localization of Gpr177 in Rab8a knockout Paneth cells and fibroblasts. Upon stimulation by exogenous Wnts, Rab8a-deficient cells show ligand-induced Lrp6 phosphorylation and transcriptional reporter activation. Rab8a thus controls Wnt delivery in producing cells and is crucial for Paneth cell maturation. Our data highlight the profound tissue plasticity that occurs in response to stress induced by depletion of a stem cell niche signal.


Rab11a is required for apical protein localisation in the intestine.

  • Tomoaki Sobajima‎ et al.
  • Biology open‎
  • 2014‎

The small GTPase Rab11 plays an important role in the recycling of proteins to the plasma membrane as well as in polarised transport in epithelial cells and neurons. We generated conditional knockout mice deficient in Rab11a. Rab11a-deficient mice are embryonic lethal, and brain-specific Rab11a knockout mice show no overt abnormalities in brain architecture. In contrast, intestine-specific Rab11a knockout mice begin dying approximately 1 week after birth. Apical proteins in the intestines of knockout mice accumulate in the cytoplasm and mislocalise to the basolateral plasma membrane, whereas the localisation of basolateral proteins is unaffected. Shorter microvilli and microvillus inclusion bodies are also observed in the knockout mice. Elevation of a serum starvation marker was also observed, likely caused by the mislocalisation of apical proteins and reduced nutrient uptake. In addition, Rab8a is mislocalised in Rab11a knockout mice. Conversely, Rab11a is mislocalised in Rab8a knockout mice and in a microvillus atrophy patient, which has a mutation in the myosin Vb gene. Our data show an essential role for Rab11a in the localisation of apical proteins in the intestine and demonstrate functional relationships between Rab11a, Rab8a and myosin Vb in vivo.


Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits.

  • Mirko Messa‎ et al.
  • eLife‎
  • 2014‎

Epsin is an evolutionarily conserved endocytic clathrin adaptor whose most critical function(s) in clathrin coat dynamics remain(s) elusive. To elucidate such function(s), we generated embryonic fibroblasts from conditional epsin triple KO mice. Triple KO cells displayed a dramatic cell division defect. Additionally, a robust impairment in clathrin-mediated endocytosis was observed, with an accumulation of early and U-shaped pits. This defect correlated with a perturbation of the coupling between the clathrin coat and the actin cytoskeleton, which we confirmed in a cell-free assay of endocytosis. Our results indicate that a key evolutionary conserved function of epsin, in addition to other roles that include, as we show here, a low affinity interaction with SNAREs, is to help generate the force that leads to invagination and then fission of clathrin-coated pits.


Uncovering genes required for neuronal morphology by morphology-based gene trap screening with a revertible retrovirus vector.

  • Yukiko Hashimoto‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2012‎

The molecular mechanisms of neuronal morphology and synaptic vesicle transport have been largely elusive, and only a few of the molecules involved in these processes have been identified. Here, we developed a novel morphology-based gene trap method, which is theoretically applicable to all cell lines, to easily and rapidly identify the responsible genes. Using this method, we selected several gene-trapped clones of rat pheochromocytoma PC12 cells, which displayed abnormal morphology and distribution of synaptic vesicle-like microvesicles (SLMVs). We identified several genes responsible for the phenotypes and analyzed three genes in more detail. The first gene was BTB/POZ domain-containing protein 9 (Btbd9), which is associated with restless legs syndrome. The second gene was cytokine receptor-like factor 3 (Crlf3), whose involvement in the nervous system remains unknown. The third gene was single-stranded DNA-binding protein 3 (Ssbp3), a gene known to regulate head morphogenesis. These results suggest that Btbd9, Crlf3, and Ssbp3 regulate neuronal morphology and the biogenesis/transport of synaptic vesicles. Because our novel morphology-based gene trap method is generally applicable, this method is promising for uncovering novel genes involved in the function of interest in any cell lines.


Opposing roles for SNAP23 in secretion in exocrine and endocrine pancreatic cells.

  • Masataka Kunii‎ et al.
  • The Journal of cell biology‎
  • 2016‎

The membrane fusion of secretory granules with plasma membranes is crucial for the exocytosis of hormones and enzymes. Secretion disorders can cause various diseases such as diabetes or pancreatitis. Synaptosomal-associated protein 23 (SNAP23), a soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE) molecule, is essential for secretory granule fusion in several cell lines. However, the in vivo functions of SNAP23 in endocrine and exocrine tissues remain unclear. In this study, we show opposing roles for SNAP23 in secretion in pancreatic exocrine and endocrine cells. The loss of SNAP23 in the exocrine and endocrine pancreas resulted in decreased and increased fusion of granules to the plasma membrane after stimulation, respectively. Furthermore, we identified a low molecular weight compound, MF286, that binds specifically to SNAP23 and promotes insulin secretion in mice. Our results demonstrate opposing roles for SNAP23 in the secretion mechanisms of the endocrine and exocrine pancreas and reveal that the SNAP23-binding compound MF286 may be a promising drug for diabetes treatment.


A proteogenomic view of Parkinson's disease causality and heterogeneity.

  • Sergio Kaiser‎ et al.
  • NPJ Parkinson's disease‎
  • 2023‎

The pathogenesis and clinical heterogeneity of Parkinson's disease (PD) have been evaluated from molecular, pathophysiological, and clinical perspectives. High-throughput proteomic analysis of cerebrospinal fluid (CSF) opened new opportunities for scrutinizing this heterogeneity. To date, this is the most comprehensive CSF-based proteomics profiling study in PD with 569 patients (350 idiopathic patients, 65 GBA + mutation carriers and 154 LRRK2 + mutation carriers), 534 controls, and 4135 proteins analyzed. Combining CSF aptamer-based proteomics with genetics we determined protein quantitative trait loci (pQTLs). Analyses of pQTLs together with summary statistics from the largest PD genome wide association study (GWAS) identified 68 potential causal proteins by Mendelian randomization. The top causal protein, GPNMB, was previously reported to be upregulated in the substantia nigra of PD patients. We also compared the CSF proteomes of patients and controls. Proteome differences between GBA + patients and unaffected GBA + controls suggest degeneration of dopaminergic neurons, altered dopamine metabolism and increased brain inflammation. In the LRRK2 + subcohort we found dysregulated lysosomal degradation, altered alpha-synuclein processing, and neurotransmission. Proteome differences between idiopathic patients and controls suggest increased neuroinflammation, mitochondrial dysfunction/oxidative stress, altered iron metabolism and potential neuroprotection mediated by vasoactive substances. Finally, we used proteomic data to stratify idiopathic patients into "endotypes". The identified endotypes show differences in cognitive and motor disease progression based on previously reported protein-based risk scores.Our findings not only contribute to the identification of new therapeutic targets but also to shape personalized medicine in CNS neurodegeneration.


SNAP23 deficiency causes severe brain dysplasia through the loss of radial glial cell polarity.

  • Masataka Kunii‎ et al.
  • The Journal of cell biology‎
  • 2021‎

In the developing brain, the polarity of neural progenitor cells, termed radial glial cells (RGCs), is important for neurogenesis. Intercellular adhesions, termed apical junctional complexes (AJCs), at the apical surface between RGCs are necessary for cell polarization. However, the mechanism by which AJCs are established remains unclear. Here, we show that a SNARE complex composed of SNAP23, VAMP8, and Syntaxin1B has crucial roles in AJC formation and RGC polarization. Central nervous system (CNS)-specific ablation of SNAP23 (NcKO) results in mice with severe hypoplasia of the neocortex and no hippocampus or cerebellum. In the developing NcKO brain, RGCs lose their polarity following the disruption of AJCs and exhibit reduced proliferation, increased differentiation, and increased apoptosis. SNAP23 and its partner SNAREs, VAMP8 and Syntaxin1B, are important for the localization of an AJC protein, N-cadherin, to the apical plasma membrane of RGCs. Altogether, SNARE-mediated localization of N-cadherin is essential for AJC formation and RGC polarization during brain development.


MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction.

  • Akihiro Harada‎ et al.
  • The Journal of cell biology‎
  • 2002‎

Microtubule-associated protein 2 (MAP2) is a major component of cross-bridges between microtubules in dendrites, and is known to stabilize microtubules. MAP2 also has a binding domain for the regulatory subunit II of cAMP-dependent protein kinase (PKA). We found that there is reduction in microtubule density in dendrites and a reduction of dendritic length in MAP2-deficient mice. Moreover, there is a significant reduction of various subunits of PKA in dendrites and total amounts of various PKA subunits in hippocampal tissue and cultured neurons. In MAP2-deficient cultured neurons, the induction rate of phosphorylated CREB after forskolin stimulation was much lower than in wild-type neurons. Therefore, MAP2 is an anchoring protein of PKA in dendrites, whose loss leads to reduced amount of dendritic and total PKA and reduced activation of CREB.


Defective function of GABA-containing synaptic vesicles in mice lacking the AP-3B clathrin adaptor.

  • Fubito Nakatsu‎ et al.
  • The Journal of cell biology‎
  • 2004‎

AP-3 is a member of the adaptor protein (AP) complex family that regulates the vesicular transport of cargo proteins in the secretory and endocytic pathways. There are two isoforms of AP-3: the ubiquitously expressed AP-3A and the neuron-specific AP-3B. Although the physiological role of AP-3A has recently been elucidated, that of AP-3B remains unsolved. To address this question, we generated mice lacking mu3B, a subunit of AP-3B. mu3B-/- mice suffered from spontaneous epileptic seizures. Morphological abnormalities were observed at synapses in these mice. Biochemical studies demonstrated the impairment of gamma-aminobutyric acid (GABA) release because of, at least in part, the reduction of vesicular GABA transporter in mu3B-/- mice. This facilitated the induction of long-term potentiation in the hippocampus and the abnormal propagation of neuronal excitability via the temporoammonic pathway. Thus, AP-3B plays a critical role in the normal formation and function of a subset of synaptic vesicles. This work adds a new aspect to the pathogenesis of epilepsy.


Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis.

  • Takashi Sato‎ et al.
  • Journal of cell science‎
  • 2014‎

The small GTP-binding protein Rab8 is known to play an essential role in intracellular transport and cilia formation. We have previously demonstrated that Rab8a is required for localising apical markers in various organisms. Rab8a has a closely related isoform, Rab8b. To determine whether Rab8b can compensate for Rab8a, we generated Rab8b-knockout mice. Although the Rab8b-knockout mice did not display an overt phenotype, Rab8a and Rab8b double-knockout mice exhibited mislocalisation of apical markers and died earlier than Rab8a-knockout mice. The apical markers accumulated in three intracellular patterns in the double-knockout mice. However, the localisation of basolateral and/or dendritic markers of the double-knockout mice seemed normal. The morphology and the length of various primary and/or motile cilia, and the frequency of ciliated cells appeared to be identical in control and double-knockout mice. However, an additional knockdown of Rab10 in double-knockout cells greatly reduced the percentage of ciliated cells. Our results highlight the compensatory effect of Rab8a and Rab8b in apical transport, and the complexity of the apical transport process. In addition, neither Rab8a nor Rab8b are required for basolateral and/or dendritic transport. However, simultaneous loss of Rab8a and Rab8b has little effect on ciliogenesis, whereas additional loss of Rab10 greatly affects ciliogenesis.


A novel non-canonical Notch signaling regulates expression of synaptic vesicle proteins in excitatory neurons.

  • Yukari Hayashi‎ et al.
  • Scientific reports‎
  • 2016‎

Notch signaling plays crucial roles for cellular differentiation during development through γ-secretase-dependent intramembrane proteolysis followed by transcription of target genes. Although recent studies implicate that Notch regulates synaptic plasticity or cognitive performance, the molecular mechanism how Notch works in mature neurons remains uncertain. Here we demonstrate that a novel Notch signaling is involved in expression of synaptic proteins in postmitotic neurons. Levels of several synaptic vesicle proteins including synaptophysin 1 and VGLUT1 were increased when neurons were cocultured with Notch ligands-expressing NIH3T3 cells. Neuron-specific deletion of Notch genes decreased these proteins, suggesting that Notch signaling maintains the expression of synaptic vesicle proteins in a cell-autonomous manner. Unexpectedly, cGMP-dependent protein kinase (PKG) inhibitor, but not γ-secretase inhibitor, abolished the elevation of synaptic vesicle proteins, suggesting that generation of Notch intracellular domain is dispensable for this function. These data uncover a ligand-dependent, but γ-secretase-independent, non-canonical Notch signaling involved in presynaptic protein expression in postmitotic neurons.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: