Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 101 papers

Infarcted myocardium-like stiffness contributes to endothelial progenitor lineage commitment of bone marrow mononuclear cells.

  • Shuning Zhang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2011‎

Optimal timing of cell therapy for myocardial infarction (MI) appears during 5 to 14 days after the infarction. However, the potential mechanism requires further investigation. This work aimed to verify the hypothesis that myocardial stiffness within a propitious time frame might provide a most beneficial physical condition for cell lineage specification in favour of cardiac repair. Serum vascular endothelial growth factor (VEGF) levels and myocardial stiffness of MI mice were consecutively detected. Isolated bone marrow mononuclear cells (BMMNCs) were injected into infarction zone at distinct time-points and cardiac function were measured 2 months after infarction. Polyacrylamide gel substrates with varied stiffness were used to mechanically mimic the infarcted myocardium. BMMNCs were plated on the flexible culture substrates under different concentrations of VEGF. Endothelial progenitor lineage commitment of BMMNCs was verified by immunofluorescent technique and flow cytometry. Our results demonstrated that the optimal timing in terms of improvement of cardiac function occurred during 7 to 14 days after MI, which was consistent with maximized capillary density at this time domains, but not with peak VEGF concentration. Percentage of double-positive cells for DiI-labelled acetylated low-density lipoprotein uptake and fluorescein isothiocyanate (FITC)-UEA-1 (ulex europaeus agglutinin I lectin) binding had no significant differences among the tissue-like stiffness in high concentration VEGF. With the decrease of VEGF concentration, the benefit of 42 kPa stiffness, corresponding to infarcted myocardium at days 7 to 14, gradually occurred and peaked when it was removed from culture medium. Likewise, combined expressions of VEGFR2(+) , CD133(+) and CD45(-) remained the highest level on 42 kPa substrate in conditions of lower concentration VEGF. In conclusion, the optimal efficacy of BMMNCs therapy at 7 to 14 days after MI might result from non-VEGF dependent angiogenesis, and myocardial stiffness at this time domains was more suitable for endothelial progenitor lineage specification of BMMNCs. The results here highlight the need for greater attention to mechanical microenvironments in cell culture and cell therapy.


Probucol Protects Against Atherosclerosis Through Lipid-lowering and Suppressing Immune Maturation of CD11c+ Dendritic Cells in STZ-induced Diabetic LDLR-/- Mice.

  • Hong Zhu‎ et al.
  • Journal of cardiovascular pharmacology‎
  • 2015‎

Probucol, an agent characterized by lipid-lowering and antioxidant property, retards atherosclerosis effectively. To test the hypothesis that probucol might act its antiatherosclerotic role by suppressing immune maturation of dendritic cells (DCs), 7-week-old LDLR mice were rendered diabetic with streptozotocin (STZ) and then fed either a high-fat diet only or added with 0.5% (wt/wt) probucol for 4 months, and human monocyte-derived dendritic cells were preincubated with or without probucol and stimulated by oxidized low-density lipoprotein. In STZ-induced diabetic LDLR mice, probucol treatment significantly lowered plasma total cholesterol and high-density lipoprotein-cholesterol levels; regressed aortic atherosclerotic lesions; reduced splenic CD40, CD80, CD86, MHC-II expression, and plasma IL-12p70 production; and decreased the expression of CD11c DCs within atherosclerotic lesions. In vitro, oxidized low-density lipoprotein promoted human monocyte-derived dendritic cells maturation; stimulated CD40, CD86, CD1a, HLA-DR expression; increased tumor necrosis factor-α production; and decreased IL-4 production. However, these effects were obviously inhibited by probucol pretreatment. In conclusion, our study indicated that probucol effectively retarded atherosclerosis at least partly through lipid-lowering and inhibiting immune maturation of CD11c DCs in STZ-induced diabetic LDLR mice.


Regulation of p53 by jagged1 contributes to angiotensin II-induced impairment of myocardial angiogenesis.

  • Aili Guan‎ et al.
  • PloS one‎
  • 2013‎

Angiotensin II (AngII) is a major contributor to the development of heart failure, however, the molecular and cellular mechanisms still remain elucidative. Inadequate angiogenesis in myocardium leads to transition from cardiac hypertrophy to dysfunction, this study was therefore conducted to examine the effects of AngII on myocardial angiogenesis and the underlying mechanisms. AngII treatment significantly impaired angiogenetic responses, which were determined by counting the capillaries either in matrigel formed by cultured cardiac microvascular endothelial cells (CMVECs) or in myocardium of mice and by measuring the in vitro and in vivo production of VEGF proteins, and stimulated accumulation and phosphorylation of cytosolic p53 which led to increases in phosphorylated p53 and decreases of hypoxia inducible factor (Hif-1) in nucleus. All of these cellular and molecular events induced by AngII in CEMCs and hearts of mice were largely reduced by a p53 inhibitor, pifithrin-α (PFT-α). Interestingly, AngII stimulated the upregulation of Jagged1, a ligand of Notch, but it didn't affect the expression of Delta-like 4 (Dll-4), another ligand of Notch. Inhibition of p53 by PFT-α partly abolished this effect of AngII. Further experiments showed that knockdown ofJagged1 by addition of siRNA to cultured CMVECs dramatically declined AngII-stimulated accumulation and phosphorylation of p53 in cytosol, upregulation of phosphorylated p53 and downregulation of Hif-1 expression in nucleus, decrease of VEGF production and impairment of capillary-like tube formation by the cells. Our data collectively suggest that AngII impairs myocardial angiogenetic responses through p53-dependent downregulation of Hif-1 which is regulated by Jagged1/Notch1 signaling.


Comparison of acute recoil between bioabsorbable poly-L-lactic acid XINSORB stent and metallic stent in porcine model.

  • Yizhe Wu‎ et al.
  • Journal of biomedicine & biotechnology‎
  • 2012‎

To investigate acute recoil of bioabsorbable poly-L-lactic acid (PLLA) stent.


Taurine detected using high-resolution magic angle spinning (1)H nuclear magnetic resonance: A potential indicator of early myocardial infarction.

  • Yunlong Yang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2013‎

Magnetic resonance spectroscopy (MRS) is a unique non-invasive method for detecting cardiac metabolic changes. However, MRS in cardiac diagnosis is limited due to insensitivity and low efficiency. Taurine (Tau) is the most abundant free amino acid in the myocardium. We hypothesized that Tau levels may indicate myocardial ischemia and early infarction. Sprague-Dawley rats were divided into seven groups according to different time points during the course of myocardial ischemia, which was induced by left anterior descending coronary artery ligation. Infarcted myocardial tissue was obtained for high-resolution magic angle spinning (1)H nuclear magnetic resonance (NMR) analysis. Results were validated via high-performance liquid chromatography. The Tau levels in the ischemic myocardial tissue were reduced significantly within 5 min compared with those in the control group (relative ratio from 20.27±6.48 to 8.81±0.04, P<0.05) and were maintained for 6 h post-ischemia. Tau levels declined more markedly (56.5%) than creatine levels (48.5%) at 5 min after ligation. This suggests that Tau may have potential as an indicator in the early detection of myocardial ischemia by (1)H MRS.


Mitochondrial aldehyde dehydrogenase-2 deficiency compromises therapeutic effect of ALDH bright cell on peripheral ischemia.

  • Xiaolei Sun‎ et al.
  • Redox biology‎
  • 2017‎

The autologous ALDH bright (ALDHbr) cell therapy for ischemic injury is clinically safe and effective, while the underlying mechanism remains elusive. Here, we demonstrated that the glycolysis dominant metabolism of ALDHbr cells is permissive to restore blood flow in an ischemic hind limb model compared with bone marrow mononuclear cells (BMNCs). PCR array analysis showed overtly elevated Aldh2 expression of ALDHbr cells following hypoxic challenge. Notably, ALDHbr cells therapy induced blood flow recovery in this model was reduced in case of ALDH2 deficiency. Moreover, significantly reduced glycolysis flux and increased reactive oxygen species (ROS) levels were detected in ALDHbr cell from Aldh2-/- mice. Compromised effect on blood flow recovery was also noticed post transplanting the human ALDHbr cell from ALDH2 deficient patients (GA or AA genotypes) in this ischemic hindlimb mice model. Taken together, our findings illustrate the indispensable role of ALDH2 in maintaining glycolysis dominant metabolism of ALDHbr cell and advocate that patient's Aldh2 genotype is a prerequisite for the efficacy of ALDHbr cell therapy for peripheral ischemia.


miR-181a and miR-150 regulate dendritic cell immune inflammatory responses and cardiomyocyte apoptosis via targeting JAK1-STAT1/c-Fos pathway.

  • Jianbing Zhu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2017‎

The immune inflammatory response plays a crucial role in many cardiac pathophysiological processes, including ischaemic cardiac injury and the post-infarction repair process. MicroRNAs (miRNAs) regulate the development and function of dendritic cells (DCs), which are key players in the initiation and regulation of immune responses; however, the underlying regulatory mechanisms remain unclear. Here, we used the supernatants of necrotic primary cardiomyocytes (Necrotic-S) to mimic the myocardial infarction (MI) microenvironment to investigate the role of miRNAs in the regulation of DC-mediated inflammatory responses. Our results showed that Necrotic-S up-regulated the DC maturation markers CD40, CD83 and CD86 and increased the production of inflammatory cytokines, concomitant with the up-regulation of miR-181a and down-regulation of miR-150. Necrotic-S stimulation activated the JAK/STAT pathway and promoted the nuclear translocation of c-Fos and NF-κB p65, and silencing of STAT1 or c-Fos suppressed Necrotic-S-induced DC maturation and inflammatory cytokine production. The effects of Necrotic-S on DC maturation and inflammatory responses, its activation of the JAK/STAT pathway and the induction of cardiomyocyte apoptosis under conditions of hypoxia were suppressed by miR-181a or miR-150 overexpression. Taken together, these data indicate that miR-181a and miR-150 attenuate DC immune inflammatory responses via JAK1-STAT1/c-Fos signalling and protect cardiomyocytes from cell death under conditions of hypoxia.


Effect of combined testing of ceramides with high-sensitive troponin T on the detection of acute coronary syndrome in patients with chest pain in China: a prospective observational study.

  • Kang Yao‎ et al.
  • BMJ open‎
  • 2019‎

Ceramides are associated with coronary plaque vulnerability. We aim to investigate the potential diagnostic value of ceramides for acute coronary syndrome (ACS) in Chinese patients with chest pain.


Methane Ameliorates Lipopolysaccharide-Induced Acute Orchitis by Anti-inflammatory, Antioxidative, and Antiapoptotic Effects via Regulation of the PK2/PKR1 Pathway.

  • Chao Huang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2020‎

The present study is aimed at investigating the anti-inflammatory, antioxidative, and antiapoptotic effects of methane on lipopolysaccharide- (LPS-) induced acute orchitis and its potential mechanisms.


Construction of vascularized pacemaker tissues by seeding cardiac progenitor cells and endothelial progenitor cells into Matrigel.

  • Luping Zhang‎ et al.
  • Life sciences‎
  • 2017‎

Transplantation of a tissue engineered cardiac pacemaker (TECP) may represent a novel therapy for cardiac sinus node dysfunction. We previously reported that cardiac progenitor cells (CPCs) derived from embryonic heart tubes could differentiate into cardiac pacemaking cells after endothelin-1 treatment. We aimed to examine the feasibility of TECP fabricated from CPCs-derived pacemaking cells and vascularization of TECP fabricated from CPCs-derived pacemaking cells and endothelial progenitor cells (EPCs) in vitro and in vivo implantation.


Ergosterol peroxide exhibits antiviral and immunomodulatory abilities against porcine deltacoronavirus (PDCoV) via suppression of NF-κB and p38/MAPK signaling pathways in vitro.

  • Cong Duan‎ et al.
  • International immunopharmacology‎
  • 2021‎

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus (CoV) that poses economic and public health burdens. Currently, there are no effective antiviral agents against PDCoV. Cryptoporus volvatus often serves as an antimicrobial agent in Traditional Chinese Medicines. This study aimed to evaluate the antiviral activities of ergosterol peroxide (EP) from C. volvatus against PDCoV infection. The inhibitory activity of EP against PDCoV was assessed by using virus titration and performing Quantitative Reverse transcription PCR (RT-qPCR), Western blotting and immunofluorescence assays in LLC-PK1 cells. The mechanism of EP against PDCoV was analyzed by flow cytometry, RT-qPCR and Western blotting. We found that EP treatment inhibited PDCoV infection in LLC-PK1 cells in a dose-dependent manner. Subsequently, we demonstrated that EP blocked virus attachment and entry using RT-qPCR. Time-of-addition assays indicated that EP mainly exerted its inhibitory effect at the early and middle stages in the PDCoV replication cycle. EP also inactivated PDCoV infectivity directly as well as suppressed PDCoV-induced apoptosis. Furthermore, EP treatment decreased the phosphorylation of IκBα and p38 MAPK induced by PDCoV infection as well as the mRNA levels of cytokines (IL-1β, IL-6, IL-12, TNF-α, IFN-α, IFN-β, Mx1 and PKR). These results imply that EP can inhibit PDCoV infection and regulate host immune responses by downregulating the activation of the NF-κB and p38/MAPK signaling pathways in vitro. EP can be used as a potential candidate for the development of a new anti-PDCoV therapy.


The proteasome activator REGγ accelerates cardiac hypertrophy by declining PP2Acα-SOD2 pathway.

  • Yifan Xie‎ et al.
  • Cell death and differentiation‎
  • 2020‎

Pathological cardiac hypertrophy eventually leads to heart failure without adequate treatment. REGγ is emerging as 11S proteasome activator of 20S proteasome to promote the degradation of cellular proteins in a ubiquitin- and ATP-independent manner. Here, we found that REGγ was significantly upregulated in the transverse aortic constriction (TAC)-induced hypertrophic hearts and angiotensin II (Ang II)-treated cardiomyocytes. REGγ deficiency ameliorated pressure overload-induced cardiac hypertrophy were associated with inhibition of cardiac reactive oxygen species (ROS) accumulation and suppression of protein phosphatase 2A catalytic subunit α (PP2Acα) decay. Mechanistically, REGγ interacted with and targeted PP2Acα for degradation directly, thereby leading to increase of phosphorylation levels and nuclear export of Forkhead box protein O (FoxO) 3a and subsequent of SOD2 decline, ROS accumulation, and cardiac hypertrophy. Introducing exogenous PP2Acα or SOD2 to human cardiomyocytes significantly rescued the REGγ-mediated ROS accumulation of Ang II stimulation in vitro. Furthermore, treatment with superoxide dismutase mimetic, MnTBAP prevented cardiac ROS production and hypertrophy features that REGγ caused in vivo, thereby establishing a REGγ-PP2Acα-FoxO3a-SOD2 pathway in cardiac oxidative stress and hypertrophy, indicates modulating the REGγ-proteasome activity may be a potential therapeutic approach in cardiac hypertrophy-associated disorders.


Design, synthesis, in vitro and in vivo anti-respiratory syncytial virus (RSV) activity of novel oxizine fused benzimidazole derivatives.

  • Xiangyu Huo‎ et al.
  • European journal of medicinal chemistry‎
  • 2021‎

Respiratory syncytial virus (RSV) causes serious lower respiratory tract infections. Currently, the only clinical anti-RSV drug is ribavirin, but ribavirin has serious toxic side effect and can only be used by critically ill patients. A series of benzimidazole derivatives were synthesized starting from 1,4:3,6-dianhydro-d-fructose and a variety of o-phenylenediamines. Evaluation of their antiviral activity showed that compound a27 had the highest antiviral activity with a half maximal effective concentration (EC50) of 9.49 μM. Investigation of the antiviral mechanism of compound a27 indicated that it can inhibit the replication of RSV by inhibiting apoptosis and autophagy pathways. Retinoic acid-inducible gene (RIG)-I, TNF receptor associated factor (TRAF)-3, TANK binding kinase (TBK)-1, interferon regulatory factor (IRF)-3, nuclear factor Kappa-B (NF-κB), interferon (IFN)-β, Toll-like receptor (TLR)-3, interleukin (IL)-6 were suppressed at the cellular level. Mouse lung tissue was subjected to hematoxylin and eosin (HE) staining and immunohistochemistry, which showed that RSV antigen and M gene expression could be reduced by compound a27. Decreased expression of RIG-I, IRF-3, IFN-β, TLR-3, IL-6, interleukin (IL)-8, interleukin (IL)-10, inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α was also found in vivo.


The therapeutic effects of glucagon-like peptide-1 receptor agonists and metformin on polycystic ovary syndrome: A protocol for systematic review and meta-analysis.

  • Ruilin Ma‎ et al.
  • Medicine‎
  • 2021‎

Obesity and insulin resistance (IR) are common in polycystic ovary syndrome (PCOS), which contribute to reproductive and metabolic abnormalities. Metformin increases insulin sensitivity, but it is associated with unsatisfied benefits of weight loss. Recent studies have reported that glucagon-like peptide 1 (GLP-1) receptor agonists improve IR and reduce weight in women with PCOS. We conducted a systematic review and meta-analysis to compare the effects between GLP-1 receptor agonists and metformin, and between GLP-1 receptor agonist-metformin combination and GLP-1 receptor agonists in overweight/obese women with PCOS on anthropometric, metabolic, reproductive outcomes.


β-Hydroxybutyrate Exacerbates Hypoxic Injury by Inhibiting HIF-1α-Dependent Glycolysis in Cardiomyocytes-Adding Fuel to the Fire?

  • Xiurui Ma‎ et al.
  • Cardiovascular drugs and therapy‎
  • 2022‎

Ketone body oxidation yields more ATP per mole of consumed oxygen than glucose. However, whether an increased ketone body supply in hypoxic cardiomyocytes and ischemic hearts is protective or not remains elusive. The goal of this study is to determine the effect of β-hydroxybutyrate (β-OHB), the main constituent of ketone bodies, on cardiomyocytes under hypoxic conditions and the effects of ketogenic diet (KD) on cardiac function in a myocardial infarction (MI) mouse model.


Identification and Characterization of a Novel Epitope of ASFV-Encoded dUTPase by Monoclonal Antibodies.

  • Shuai Zhang‎ et al.
  • Viruses‎
  • 2021‎

Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) of African swine fever virus (ASFV) is an essential enzyme required for efficient virus replication. Previous crystallography data have indicated that dUTPase (E165R) may serve as a therapeutic target for inhibiting ASFV replication; however, the specificity of the targeting site(s) in ASFV dUTPase remains unclear. In this study, 19 mouse monoclonal antibodies (mAbs) were produced, in which four mAbs showed inhibitory reactivity against E165R recombinant protein. Epitope mapping studies indicated that E165R has three major antigenic regions: 100-120 aa, 120-140 aa, and 140-165 aa. Three mAbs inhibited the dUTPase activity of E165R by binding to the highly conserved 149-RGEGRFGSTG-158 amino acid sequence. Interestingly, 8F6 mAb specifically recognized ASFV dUTPase but not Sus scrofa dUTPase, which may be due to structural differences in the amino acids of F151, R153, and F154 in the motif V region. In summary, we developed anti-E165R-specific mAbs, and identified an important antibody-binding antigenic epitope in the motif V of ASFV dUTPase. Our study provides a comprehensive analysis of mAbs that target the antigenic epitope of ASFV dUTPase, which may contribute to the development of novel antibody-based ASFV therapeutics.


Mechanism of selenomethionine inhibiting of PDCoV replication in LLC-PK1 cells based on STAT3/miR-125b-5p-1/HK2 signaling.

  • Zhihua Ren‎ et al.
  • Frontiers in immunology‎
  • 2022‎

There are no licensed therapeutics or vaccines available against porcine delta coronavirus (PDCoV) to eliminate its potential for congenital disease. In the absence of effective treatments, it has led to significant economic losses in the swine industry worldwide. Similar to the current coronavirus disease 2019 (COVID-19) pandemic, PDCoV is trans-species transmissible and there is still a large desert for scientific exploration. We have reported that selenomethionine (SeMet) has potent antiviral activity against PDCoV. Here, we systematically investigated the endogenous immune mechanism of SeMet and found that STAT3/miR-125b-5p-1/HK2 signalling is essential for the exertion of SeMet anti-PDCoV replication function. Meanwhile, HK2, a key rate-limiting enzyme of the glycolytic pathway, was able to control PDCoV replication in LLC-PK1 cells, suggesting a strategy for viruses to evade innate immunity using glucose metabolism pathways. Overall, based on the ability of selenomethionine to control PDCoV infection and transmission, we provide a molecular basis for the development of new therapeutic approaches.


RPA-CRISPR/Cas12a-Based Detection of Haemophilus parasuis.

  • Kunli Zhang‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2023‎

Haemophilus parasuis (H. parasuis, HPS) is a prominent pathogenic bacterium in pig production. Its infection leads to widespread fibrinous inflammation in various pig tissues and organs, often in conjunction with various respiratory virus infections, and leads to substantial economic losses in the pig industry. Therefore, the rapid diagnosis of this pathogen is of utmost importance. In this study, we used recombinase polymerase amplification (RPA) and clustered regularly interspaced short palindromic repeats (CRISPR) technology to establish a convenient detection and analysis system for H. parasuis that is fast to detect, easy to implement, and accurate to analyze, known as RPA-CRISPR/Cas12a analysis. The process from sample to results can be completed within 1 h with high sensitivity (0.163 pg/μL of DNA template, p < 0.05), which is 104 -fold higher than the common PCR method. The specificity test results show that the RPA-CRISPR/Cas12a analysis of H. parasuis did not react with other common pig pathogens, including Streptococcus suis type II and IX, Actinobacillus pleuropneumoniae, Escherichia coli, Salmonella, Streptococcus suis, and Staphylococcus aureus (p < 0.0001). The RPA-CRISPR/Cas12a assay was applied to 15 serotypes of H. parasuis clinical samples through crude extraction of nucleic acid by boiling method, and all of the samples were successfully identified. It greatly reduces the time and cost of nucleic acid extraction. Moreover, the method allows results to be visualized with blue light. The accurate and convenient detection method could be incorporated into a portable format as point-of-care (POC) diagnostics detection for H. parasuis at the field level.


Mitochondrial transplantation ameliorates doxorubicin-induced cardiac dysfunction via activating glutamine metabolism.

  • Xiaolei Sun‎ et al.
  • iScience‎
  • 2023‎

Doxorubicin is a wildly used effective anticancer agent. However, doxorubicin use is also related to cardiotoxic side effect in some patients. Mitochondrial damage has been shown to be one of the pathogeneses of doxorubicin-induced myocardial injury. In this study, we demonstrated that mitochondrial transplantation could inhibit doxorubicin-induced cardiotoxicity by directly supplying functional mitochondria. Mitochondrial transplantation improved contractile function and respiratory capacity, reduced cellular apoptosis and oxidative stress in cardiomyocytes. Mitochondria isolated from various sources, including mouse hearts, mouse and human arterial blood, and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), all exerted similar cardioprotective effects. Mechanically, mitochondrial transplantation activates glutamine metabolism in doxorubicin-treated mice heart and blocking glutamine metabolism attenuated the cardioprotective effects of mitochondrial transplantation. Overall, our study demonstrates that mitochondria isolated from arterial blood could be used for mitochondrial transplantation, which might serve as a feasible promising therapeutic option for patients with doxorubicin-induced cardiotoxicity.


Cuproptosis-related genes predict prognosis and trastuzumab therapeutic response in HER2-positive breast cancer.

  • Rui Sha‎ et al.
  • Scientific reports‎
  • 2024‎

Breast cancer is the most common diagnosed cancer, the HER2-positive subtype account for 15% of all breast cancer. HER2-targeted therapy is the mainstay treatment for HER2-positive breast cancer. Cuproptosis is a novel form of programmed cell death, and is caused by mitochondrial lipoylation and destabilization of iron-sulfur proteins triggered by copper, which was considered as a key player in various biological processes. However, the roles of cuproptosis-related genes in HER2-positive breast cancer remain largely unknown. In the present study, we constructed a prognostic prediction model of HER2-positive breast cancer patients using TCGA database. Dysregulated genes for cells resistant to HER2-targeted therapy were analyzed in the GEO dataset. KEGG pathway, GO enrichment and GSEA was performed respectively. The immune landscape of DLAT was analyzed by CIBERSORT algorithm and TIDE algorithm. HER2-positive breast cancer patients with high CRGs risk score showed shorter OS. DLAT was downregulated and correlated with better survival of HER2-positive breast cancer patients (HR = 3.30, p = 0.022). High expressed DLAT was associated with resistant to HER2-targeted therapy. Knocking down DLAT with siRNA increased sensitivity of breast cancer to trastuzumab. KEGG pathway and GO enrichment of DEGs indicated that DLAT participates in various pathways correlated with organelle fission, chromosome segregation, nuclear division, hormone-mediated signaling pathway, regulation of intracellular estrogen receptor signaling pathway, condensed chromosome and PPAR signaling pathway. There was a negative correlation between TIDE and DLAT expression (r = - 0.292, p < 0.001), which means high DLAT expression is an indicator of sensitivity to immunotherapy. In conclusion, our study constructed a four CRGs signature prognostic prediction model and identified DLAT as an independent prognostic factor and associated with resistant to HER2-targeted therapy for HER2-positive breast cancer patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: