Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 110 papers

11β-Hydroxysteroid Dehydrogenase Type 1 Is Expressed in Neutrophils and Restrains an Inflammatory Response in Male Mice.

  • Agnes E Coutinho‎ et al.
  • Endocrinology‎
  • 2016‎

Endogenous glucocorticoid action within cells is enhanced by prereceptor metabolism by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts intrinsically inert cortisone and 11-dehydrocorticosterone into active cortisol and corticosterone, respectively. 11β-HSD1 is highly expressed in immune cells elicited to the mouse peritoneum during thioglycollate-induced peritonitis and is down-regulated as the inflammation resolves. During inflammation, 11β-HSD1-deficient mice show enhanced recruitment of inflammatory cells and delayed acquisition of macrophage phagocytic capacity. However, the key cells in which 11β-HSD1 exerts these effects remain unknown. Here we have identified neutrophils (CD11b(+),Ly6G(+),7/4(+) cells) as the thioglycollate-recruited cells that most highly express 11β-HSD1 and show dynamic regulation of 11β-HSD1 in these cells during an inflammatory response. Flow cytometry showed high expression of 11β-HSD1 in peritoneal neutrophils early during inflammation, declining at later states. In contrast, expression in blood neutrophils continued to increase during inflammation. Ablation of monocytes/macrophages by treatment of CD11b-diphtheria-toxin receptor transgenic mice with diphtheria toxin prior to thioglycollate injection had no significant effect on 11β-HSD1 activity in peritoneal cells, consistent with neutrophils being the predominant 11β-HSD1 expressing cell type at this time. Similar to genetic deficiency in 11β-HSD1, acute inhibition of 11β-HSD1 activity during thioglycollate-induced peritonitis augmented inflammatory cell recruitment to the peritoneum. These data suggest that neutrophil 11β-HSD1 increases during inflammation to contribute to the restraining effect of glucocorticoids upon neutrophil-mediated inflammation. In human neutrophils, lipopolysaccharide activation increased 11β-HSD1 expression, suggesting the antiinflammatory effects of 11β-HSD1 in neutrophils may be conserved in humans.


mDia1/3 generate cortical F-actin meshwork in Sertoli cells that is continuous with contractile F-actin bundles and indispensable for spermatogenesis and male fertility.

  • Satoko Sakamoto‎ et al.
  • PLoS biology‎
  • 2018‎

Formin is one of the two major classes of actin binding proteins (ABPs) with nucleation and polymerization activity. However, despite advances in our understanding of its biochemical activity, whether and how formins generate specific architecture of the actin cytoskeleton and function in a physiological context in vivo remain largely obscure. It is also unknown how actin filaments generated by formins interact with other ABPs in the cell. Here, we combine genetic manipulation of formins mammalian diaphanous homolog1 (mDia1) and 3 (mDia3) with superresolution microscopy and single-molecule imaging, and show that the formins mDia1 and mDia3 are dominantly expressed in Sertoli cells of mouse seminiferous tubule and together generate a highly dynamic cortical filamentous actin (F-actin) meshwork that is continuous with the contractile actomyosin bundles. Loss of mDia1/3 impaired these F-actin architectures, induced ectopic noncontractile espin1-containing F-actin bundles, and disrupted Sertoli cell-germ cell interaction, resulting in impaired spermatogenesis. These results together demonstrate the previously unsuspected mDia-dependent regulatory mechanism of cortical F-actin that is indispensable for mammalian sperm development and male fertility.


Neutrophils induce macrophage anti-inflammatory reprogramming by suppressing NF-κB activation.

  • John A Marwick‎ et al.
  • Cell death & disease‎
  • 2018‎

Apoptotic cells modulate the function of macrophages to control and resolve inflammation. Here, we show that neutrophils induce a rapid and sustained suppression of NF-κB signalling in the macrophage through a unique regulatory relationship which is independent of apoptosis. The reduction of macrophage NF-κB activation occurs through a blockade in transforming growth factor β-activated kinase 1 (TAK1) and IKKβ activation. As a consequence, NF-κB (p65) phosphorylation is reduced, its translocation to the nucleus is inhibited and NF-κB-mediated inflammatory cytokine transcription is suppressed. Gene Set Enrichment Analysis reveals that this suppression of NF-κB activation is not restricted to post-translational modifications of the canonical NF-κB pathway, but is also imprinted at the transcriptional level. Thus neutrophils exert a sustained anti-inflammatory phenotypic reprogramming of the macrophage, which is reflected by the sustained reduction in the release of pro- but not anti- inflammatory cytokines from the macrophage. Together, our findings identify a novel apoptosis-independent mechanism by which neutrophils regulate the mediator profile and reprogramming of monocytes/macrophages, representing an important nodal point for inflammatory control.


Repeated social defeat stress impairs attentional set shifting irrespective of social avoidance and increases female preference associated with heightened anxiety.

  • Shu Higashida‎ et al.
  • Scientific reports‎
  • 2018‎

Repeated social defeat stress (R-SDS) induces multiple behavioral changes in mice. However, the relationships between these behavioral changes were not fully understood. In the first experiment, to examine how the social avoidance is related to R-SDS-impaired behavioral flexibility, 10-week-old male C57BL/6N mice received R-SDS followed by the social interaction test and the attentional set shifting task. R-SDS impaired attentional set shifting irrespective of the development of social avoidance. In the second experiment, to examine whether R-SDS affects sexual preference and how this behavioral change is related to the social avoidance and R-SDS-heightened anxiety, another group of 10-week-old male C57BL/6N mice were subjected to R-SDS followed by the social interaction test, the female encounter test and the elevated plus maze test. The anxiety was heightened in the defeated mice without social avoidance, but not in those which showed social avoidance. Furthermore, female preference was increased specifically in the defeated mice which showed heightened anxiety, but was not related to the level of social avoidance. Together, these results showed that attentional set shifting is more sensitive to R-SDS than social interaction, and that female preference is affected by R-SDS in association with heightened anxiety rather than the social avoidance.


Prostaglandin E2 stimulates adaptive IL-22 production and promotes allergic contact dermatitis.

  • Calum T Robb‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2018‎

Atopic dermatitis (AD) and allergic contact dermatitis (ACD) are both forms of eczema and are common inflammatory skin diseases with a central role of T cell-derived IL-22 in their pathogenesis. Although prostaglandin (PG) E2 is known to promote inflammation, little is known about its role in processes related to AD and ACD development, including IL-22 upregulation.


PGE2 EP1 receptor exacerbated neurotoxicity in a mouse model of cerebral ischemia and Alzheimer's disease.

  • Gehua Zhen‎ et al.
  • Neurobiology of aging‎
  • 2012‎

Stroke and Alzheimer's disease (AD) are major age-related neurodegenerative diseases that may worsen the prognosis of each other. Our study was designed to delineate the prostaglandin E(2) EP1 receptor role in AD and in the setting of cerebral ischemia. Genetic deletion of the prostaglandin EP1 receptor significantly attenuated the more severe neuronal damage (38.5 ± 10.6%) and memory loss induced by ischemic insult observed in AD transgenic mice (percentage of viable hippocampal CA1 neurons: 11.2 ± 2.9%) when compared with wild type mice (45.1 ± 9.1%). In addition, we found that the amyloid plaques were reduced in EP1 deleted AD mice. β-amyloid-induced toxicity (18.0 ± 7.1%) and Ca(2+) response (91.8 ± 12.9%) were also reduced in EP1(-/-) neurons compared with control neurons in in vitro. Hence, EP1 might mediate most of the toxicity associated with cyclooxygenase-2 and contribute substantially to the cell death pathways in AD and stroke. Exploring potential therapeutic agent targeting EP1 receptor could potentially benefit treatments for stroke and AD patients.


The intrinsic prostaglandin E2-EP4 system of the renal tubular epithelium limits the development of tubulointerstitial fibrosis in mice.

  • Naoki Nakagawa‎ et al.
  • Kidney international‎
  • 2012‎

Inflammatory responses in the kidney lead to tubulointerstitial fibrosis, a common feature of chronic kidney diseases. Here we examined the role of prostaglandin E(2) (PGE(2)) in the development of tubulointerstitial fibrosis. In the kidneys of wild-type mice, unilateral ureteral obstruction leads to progressive tubulointerstitial fibrosis with macrophage infiltration and myofibroblast proliferation. This was accompanied by an upregulation of COX-2 and PGE(2) receptor subtype EP(4) mRNAs. In the kidneys of EP(4) gene knockout mice, however, obstruction-induced histological alterations were significantly augmented. In contrast, an EP(4)-specific agonist significantly attenuated these alterations in the kidneys of wild-type mice. The mRNAs for macrophage chemokines and profibrotic growth factors were upregulated in the kidneys of wild-type mice after ureteral obstruction. This was significantly augmented in the kidneys of EP(4)-knockout mice and suppressed by the EP(4) agonist but only in the kidneys of wild-type mice. Notably, COX-2 and MCP-1 proteins, as well as EP(4) mRNA, were localized in renal tubular epithelial cells after ureteral obstruction. In cultured renal fibroblasts, another EP(4)-specific agonist significantly inhibited PDGF-induced proliferation and profibrotic connective tissue growth factor production. Hence, an endogenous PGE(2)-EP(4) system in the tubular epithelium limits the development of tubulointerstitial fibrosis by suppressing inflammatory responses.


Prostacyclin-IP signaling and prostaglandin E2-EP2/EP4 signaling both mediate joint inflammation in mouse collagen-induced arthritis.

  • Tetsuya Honda‎ et al.
  • The Journal of experimental medicine‎
  • 2006‎

Prostaglandin (PG)I2 (prostacyclin [PGI]) and PGE2 are abundantly present in the synovial fluid of rheumatoid arthritis (RA) patients. Although the role of PGE2 in RA has been well studied, how much PGI2 contributes to RA is little known. To examine this issue, we backcrossed mice lacking the PGI receptor (IP) to the DBA/1J strain and subjected them to collagen-induced arthritis (CIA). IP-deficient (IP-/-) mice exhibited significant reduction in arthritic scores compared with wild-type (WT) mice, despite anti-collagen antibody production and complement activation similar to WT mice. IP-/- mice also showed significant reduction in contents of proinflammatory cytokines, such as interleukin (IL)-6 in arthritic paws. Consistently, the addition of an IP agonist to cultured synovial fibroblasts significantly enhanced IL-6 production and induced expression of other arthritis-related genes. On the other hand, loss or inhibition of each PGE receptor subtype alone did not affect elicitation of inflammation in CIA. However, a partial but significant suppression of CIA was achieved by the combined inhibition of EP2 and EP4. Our results show significant roles of both PGI2-IP and PGE2-EP2/EP4 signaling in the development of CIA, and suggest that inhibition of PGE2 synthesis alone may not be sufficient for suppression of RA symptoms.


Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis.

  • Fabian Oceguera-Yanez‎ et al.
  • The Journal of cell biology‎
  • 2005‎

Although Rho regulates cytokinesis, little was known about the functions in mitosis of Cdc42 and Rac. We recently suggested that Cdc42 works in metaphase by regulating bi-orient attachment of spindle microtubules to kinetochores. We now confirm the role of Cdc42 by RNA interference and identify the mechanisms for activation and down-regulation of Cdc42. Using a pull-down assay, we found that the level of GTP-Cdc42 elevates in metaphase, whereas the level of GTP-Rac does not change significantly in mitosis. Overexpression of dominant-negative mutants of Ect2 and MgcRacGAP, a Rho GTPase guanine nucleotide exchange factor and GTPase activating protein, respectively, or depletion of Ect2 by RNA interference suppresses this change of GTP-Cdc42 in mitosis. Depletion of Ect2 also impairs microtubule attachment to kinetochores and causes prometaphase delay and abnormal chromosomal segregation, as does depletion of Cdc42 or expression of the Ect2 and MgcRacGAP mutants. These results suggest that Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis.


Actin turnover-dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing.

  • Takushi Miyoshi‎ et al.
  • The Journal of cell biology‎
  • 2006‎

Actin forms the dendritic nucleation network and undergoes rapid polymerization-depolymerization cycles in lamellipodia. To elucidate the mechanism of actin disassembly, we characterized molecular kinetics of the major filament end-binding proteins Arp2/3 complex and capping protein (CP) using single-molecule speckle microscopy. We have determined the dissociation rates of Arp2/3 and CP as 0.048 and 0.58 s(-1), respectively, in lamellipodia of live XTC fibroblasts. This CP dissociation rate is three orders of magnitude faster than in vitro. CP dissociates slower from actin stress fibers than from the lamellipodial actin network, suggesting that CP dissociation correlates with actin filament dynamics. We found that jasplakinolide, an actin depolymerization inhibitor, rapidly blocked the fast CP dissociation in cells. Consistently, the coexpression of LIM kinase prolonged CP speckle lifetime in lamellipodia. These results suggest that cofilin-mediated actin disassembly triggers CP dissociation from actin filaments. We predict that filament severing and end-to-end annealing might take place fairly frequently in the dendritic nucleation actin arrays.


Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells.

  • Hamida Hammad‎ et al.
  • The Journal of experimental medicine‎
  • 2007‎

Prostaglandins (PGs) can enhance or suppress inflammation by acting on different receptors expressed by hematopoietic and nonhematopoietic cells. Prostaglandin D(2) binds to the D prostanoid (DP)1 and DP2 receptor and is seen as a critical mediator of asthma causing vasodilation, bronchoconstriction, and inflammatory cell influx. Here we show that inhalation of a selective DP1 agonist suppresses the cardinal features of asthma by targeting the function of lung dendritic cells (DCs). In mice treated with DP1 agonist or receiving DP1 agonist-treated DCs, there was an increase in Foxp3(+) CD4(+) regulatory T cells that suppressed inflammation in an interleukin 10-dependent way. These effects of DP1 agonist on DCs were mediated by cyclic AMP-dependent protein kinase A. We furthermore show that activation of DP1 by an endogenous ligand inhibits airway inflammation as chimeric mice with selective hematopoietic loss of DP1 had strongly enhanced airway inflammation and antigen-pulsed DCs lacking DP1 were better at inducing airway T helper 2 responses in the lung. Triggering DP1 on DCs is an important mechanism to induce regulatory T cells and to control the extent of airway inflammation. This pathway could be exploited to design novel treatments for asthma.


Mer-mediated eosinophil efferocytosis regulates resolution of allergic airway inflammation.

  • Jennifer M Felton‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2018‎

Eosinophils play a central role in propagation of allergic diseases, including asthma. Both recruitment and retention of eosinophils regulate pulmonary eosinophilia, but the question of whether alterations in apoptotic cell clearance by phagocytes contributes directly to resolution of allergic airway inflammation remains unexplored.


A fluorogenic cyclic peptide for imaging and quantification of drug-induced apoptosis.

  • Nicole D Barth‎ et al.
  • Nature communications‎
  • 2020‎

Programmed cell death or apoptosis is a central biological process that is dysregulated in many diseases, including inflammatory conditions and cancer. The detection and quantification of apoptotic cells in vivo is hampered by the need for fixatives or washing steps for non-fluorogenic reagents, and by the low levels of free calcium in diseased tissues that restrict the use of annexins. In this manuscript, we report the rational design of a highly stable fluorogenic peptide (termed Apo-15) that selectively stains apoptotic cells in vitro and in vivo in a calcium-independent manner and under wash-free conditions. Furthermore, using a combination of chemical and biophysical methods, we identify phosphatidylserine as a molecular target of Apo-15. We demonstrate that Apo-15 can be used for the quantification and imaging of drug-induced apoptosis in preclinical mouse models, thus creating opportunities for assessing the in vivo efficacy of anti-inflammatory and anti-cancer therapeutics.


Macrophages trigger cardiomyocyte proliferation by increasing epicardial vegfaa expression during larval zebrafish heart regeneration.

  • Finnius A Bruton‎ et al.
  • Developmental cell‎
  • 2022‎

Cardiac injury leads to the loss of cardiomyocytes, which are rapidly replaced by the proliferation of the surviving cells in zebrafish, but not in mammals. In both the regenerative zebrafish and non-regenerative mammals, cardiac injury induces a sustained macrophage response. Macrophages are required for cardiomyocyte proliferation during zebrafish cardiac regeneration, but the mechanisms whereby macrophages facilitate this crucial process are fundamentally unknown. Using heartbeat-synchronized live imaging, RNA sequencing, and macrophage-null genotypes in the larval zebrafish cardiac injury model, we characterize macrophage function and reveal that these cells activate the epicardium, inducing cardiomyocyte proliferation. Mechanistically, macrophages are specifically recruited to the epicardial-myocardial niche, triggering the expansion of the epicardium, which upregulates vegfaa expression to induce cardiomyocyte proliferation. Our data suggest that epicardial Vegfaa augments a developmental cardiac growth pathway via increased endocardial notch signaling. The identification of this macrophage-dependent mechanism of cardiac regeneration highlights immunomodulation as a potential strategy for enhancing mammalian cardiac repair.


Early Exacerbation Relapse is Increased in Patients with Asthma and Bronchiectasis (a Post hoc Analysis).

  • Andrew R Hill‎ et al.
  • Lung‎
  • 2023‎

Asthma is a common comorbidity in patients with bronchiectasis and has been shown to increase the risk of bronchiectasis exacerbations. This paper explores the impact of comorbid asthma on patients receiving intravenous antibiotic treatment for bronchiectasis exacerbations.


Pannexin 1 drives efficient epithelial repair after tissue injury.

  • Christopher D Lucas‎ et al.
  • Science immunology‎
  • 2022‎

Epithelial tissues such as lung and skin are exposed to the environment and therefore particularly vulnerable to damage during injury or infection. Rapid repair is therefore essential to restore function and organ homeostasis. Dysregulated epithelial tissue repair occurs in several human disease states, yet how individual cell types communicate and interact to coordinate tissue regeneration is incompletely understood. Here, we show that pannexin 1 (Panx1), a cell membrane channel activated by caspases in dying cells, drives efficient epithelial regeneration after tissue injury by regulating injury-induced epithelial proliferation. Lung airway epithelial injury promotes the Panx1-dependent release of factors including ATP, from dying epithelial cells, which regulates macrophage phenotype after injury. This process, in turn, induces a reparative response in tissue macrophages that includes the induction of the soluble mitogen amphiregulin, which promotes injury-induced epithelial proliferation. Analysis of regenerating lung epithelium identified Panx1-dependent induction of Nras and Bcas2, both of which positively promoted epithelial proliferation and tissue regeneration in vivo. We also established that this role of Panx1 in boosting epithelial repair after injury is conserved between mouse lung and zebrafish tailfin. These data identify a Panx1-mediated communication circuit between epithelial cells and macrophages as a key step in promoting epithelial regeneration after injury.


Galectin-3 inhibitor GB0139 protects against acute lung injury by inhibiting neutrophil recruitment and activation.

  • Duncan C Humphries‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Rationale: Galectin-3 (Gal-3) drives fibrosis during chronic lung injury, however, its role in acute lung injury (ALI) remains unknown. Effective pharmacological therapies available for ALI are limited; identifying novel concepts in treatment is essential. GB0139 is a Gal-3 inhibitor currently under clinical investigation for the treatment of idiopathic pulmonary fibrosis. We investigate the role of Gal-3 in ALI and evaluate whether its inhibition with GB0139 offers a protective role. The effect of GB0139 on ALI was explored in vivo and in vitro. Methods: The pharmacokinetic profile of intra-tracheal (i.t.) GB0139 was investigated in C57BL/6 mice to support the daily dosing regimen. GB0139 (1-30 µg) was then assessed following acute i.t. lipopolysaccharide (LPS) and bleomycin administration. Histology, broncho-alveolar lavage fluid (BALf) analysis, and flow cytometric analysis of lung digests and BALf were performed. The impact of GB0139 on cell activation and apoptosis was determined in vitro using neutrophils and THP-1, A549 and Jurkat E6 cell lines. Results: GB0139 decreased inflammation severity via a reduction in neutrophil and macrophage recruitment and neutrophil activation. GB0139 reduced LPS-mediated increases in interleukin (IL)-6, tumor necrosis factor alpha (TNFα) and macrophage inflammatory protein-1-alpha. In vitro, GB0139 inhibited Gal-3-induced neutrophil activation, monocyte IL-8 secretion, T cell apoptosis and the upregulation of pro-inflammatory genes encoding for IL-8, TNFα, IL-6 in alveolar epithelial cells in response to mechanical stretch. Conclusion: These data indicate that Gal-3 adopts a pro-inflammatory role following the early stages of lung injury and supports the development of GB0139, as a potential treatment approach in ALI.


The role of thromboxane prostanoid receptor signaling in gastric ulcer healing.

  • Sakiko Yamane‎ et al.
  • International journal of experimental pathology‎
  • 2022‎

The process of gastric ulcer healing includes cell migration, proliferation, angiogenesis and re-epithelialization. Platelets contain angiogenesis stimulating factors that induce angiogenesis. Thromboxane A2 (TXA2 ) not only induces platelet activity but also angiogenesis. This study investigated the role of TXA2 in gastric ulcer healing using TXA2 receptor knockout (TPKO) mice. Gastric ulcer healing was suppressed by treatment with the TXA2 synthase inhibitor OKY-046 and the TXA2 receptor antagonist S-1452 compared with vehicle-treated mice. TPKO showed delayed gastric ulcer healing compared with wild-type mice (WT). The number of microvessels and CD31 expression were lower in TPKO than in WT mice, and TPKO suppressed the expression of transforming growth factor beta (TGF-β) and vascular endothelial growth factor A (VEGF-A) in areas around gastric ulcers. Immunofluorescence assays showed that TGF-β and VEGF-A co-localized with platelets. Gastric ulcer healing was significantly reduced in WT mice transplanted with TPKO compared with WT bone marrow. These results suggested that TP signalling on platelets facilitates gastric ulcer healing through TGF-β and VEGF-A.


Eicosanoid signaling as a therapeutic target in middle-aged mice with severe COVID-19.

  • Lok-Yin Roy Wong‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2021‎

Coronavirus disease 2019 (COVID-19) is especially severe in aged populations 1 . Resolution of the COVID-19 pandemic has been advanced by the recent development of SARS-CoV-2 vaccines, but vaccine efficacy is partly compromised by the recent emergence of SARS-CoV-2 variants with enhanced transmissibility 2 . The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially in aged populations. Here, we describe the isolation of a new set of highly virulent mouse-adapted viruses and use them to test a novel therapeutic drug useful in infections of aged animals. Initially, we show that many of the mutations observed in SARS-CoV-2 during mouse adaptation (at positions 417, 484, 501 of the spike protein) also arise in humans in variants of concern (VOC) 2 . Their appearance during mouse adaptation indicates that immune pressure is not required for their selection. Similar to the human infection, aged mice infected with mouse-adapted SARS-CoV-2 develop more severe disease than young mice. In murine SARS, in which severity is also age-dependent, we showed that elevated levels of an eicosanoid, prostaglandin D2 (PGD 2 ) and of a phospholipase, PLA 2 G2D, contributed to poor outcomes in aged mice 3,4 . Using our virulent mouse-adapted SARS-CoV-2, we show that infection of middle-aged mice lacking expression of DP1, a PGD 2 receptor, or PLA 2 G2D are protected from severe disease. Further, treatment with a DP1 antagonist, asapiprant, protected aged mice from a lethal infection. DP1 antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, and demonstrates that the PLA 2 G2D-PGD 2 /DP1 pathway is a useful target for therapeutic interventions. (Words: 254).


Formylated Peptide Receptor-1-Mediated Gut Inflammation as a Therapeutic Target in Inflammatory Bowel Disease.

  • Milly J McAllister‎ et al.
  • Crohn's & colitis 360‎
  • 2024‎

Formylated peptide receptor (FPR)-1 is a G-coupled receptor that senses foreign bacterial and host-derived mitochondrial formylated peptides (FPs), leading to innate immune system activation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: