Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 92 papers

Expression profiling of formalin-fixed paraffin-embedded primary breast tumors using cancer-specific and whole genome gene panels on the DASL® platform.

  • Monica M Reinholz‎ et al.
  • BMC medical genomics‎
  • 2010‎

The cDNA-mediated Annealing, extension, Selection and Ligation (DASL) assay has become a suitable gene expression profiling system for degraded RNA from paraffin-embedded tissue. We examined assay characteristics and the performance of the DASL 502-gene Cancer Panel v1 (1.5K) and 24,526-gene panel (24K) platforms at differentiating nine human epidermal growth factor receptor 2- positive (HER2+) and 11 HER2-negative (HER2-) paraffin-embedded breast tumors.


Role of AKT-glycogen synthase kinase axis in monocyte activation in human beings with and without type 2 diabetes.

  • Debashis Nandy‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2010‎

Monocyte activation by chemokines is a vital trigger for initiation of atherosclerotic process. Circulating levels of platelet activating factor (PAF), a recognized chemokine, is known to be increased in type 2 diabetes that is linked to accelerated atherosclerosis. To explore the molecular basis we examined the signalling pathways involved in PAF induced monocyte activation. PAF increased migration in monocytes obtained from THP-1 cells, nondiabetic and diabetic subjects. This effect was blocked by AKT inhibition. It did so by phosphorylation of glycogen synthase kinase (GSK)-3betaS(9), which was completely blocked by AKT inhibition. Additionally, PAF induced GSK-3beta phosphorylation was linked to Rac-1 activation and Rho-A inactivation leading to migration. Paradoxically, inhibition of GSK-3beta phosphorylation also augmented monocyte migration in THP-1, ND and diabetic monocytes through phosphorylation of AKT and activation of Rho-A that was independent of GSK. This was validated when (i) overexpression of dominant negative mutants of Rho-A reversed GSK inhibitor induced monocyte migration and (ii) AKT inhibition blocked GSK inhibitor induced Rho-A activity. Constitutively active ARAP3 (Rho-GAP) appears to have a regulatory role in monocyte activity during GSK inhibition. Finally, inhibition of monocyte GSK-3beta activity (by inhibitors and genetic manipulation) led to enhanced migration in diabetes compared to persons without diabetes. We conclude that diabetic monocytes show increased migratory capacity in response to GSK-3beta inhibition. GSK inhibitors developed to treat the metabolic complications of diabetes should therefore be used with caution.


TYROBP genetic variants in early-onset Alzheimer's disease.

  • Cyril Pottier‎ et al.
  • Neurobiology of aging‎
  • 2016‎

We aimed to identify new candidate genes potentially involved in early-onset Alzheimer's disease (EOAD). Exome sequencing was conducted on 45 EOAD patients with either a family history of Alzheimer's disease (AD, <65 years) or an extremely early age at the onset (≤55 years) followed by multiple variant filtering according to different modes of inheritance. We identified 29 candidate genes potentially involved in EOAD, of which the gene TYROBP, previously implicated in AD, was selected for genetic and functional follow-up. Using 3 patient cohorts, we observed rare coding TYROBP variants in 9 out of 1110 EOAD patients, whereas no such variants were detected in 1826 controls (p = 0.0001), suggesting that at least some rare TYROBP variants might contribute to EOAD risk. Overexpression of the p.D50_L51ins14 TYROBP mutant led to a profound reduction of TREM2 expression, a well-established risk factor for AD. This is the first study supporting a role for genetic variation in TYROBP in EOAD, with in vitro support for a functional effect of the p.D50_L51ins14 TYROBP mutation on TREM2 expression.


B7-H1 antibodies lose antitumor activity due to activation of p38 MAPK that leads to apoptosis of tumor-reactive CD8+ T cells.

  • Xin Liu‎ et al.
  • Scientific reports‎
  • 2016‎

B7-H1 (aka PD-L1) blocking antibodies have been used in treatment of human cancers through blocking B7-H1 expressed by tumor cells; however, their impact on B7-H1 expressing tumor-reactive CD8+ T cells is still unknown. Here, we report that tumor-reactive CD8+ T cells expressing B7-H1 are functional effector cells. In contrast to normal B7-H1 blocking antibody, B7-H1 antibodies capable of activating p38 MAPK lose their antitumor activity by deleting B7-H1+ tumor-reactive CD8+ T cells via p38 MAPK pathway. B7-H1 deficiency or engagement with certain antibody results in more activation of p38 MAPK that leads to T cell apoptosis. DNA-PKcs is a new intracellular partner of B7-H1 in the cytoplasm of activated CD8+ T cells. B7-H1 suppresses p38 MAPK activation by sequestering DNA-PKcs in order to preserve T cell survival. Our findings provide a new mechanism of action of B7-H1 in T cells and have clinical implications in cancer immunotherapy when anti-B7-H1 (PD-L1) antibody is applied.


SAAP-RRBS: streamlined analysis and annotation pipeline for reduced representation bisulfite sequencing.

  • Zhifu Sun‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2012‎

Reduced representation bisulfite sequencing (RRBS) is a cost-effective approach for genome-wide methylation pattern profiling. Analyzing RRBS sequencing data is challenging and specialized alignment/mapping programs are needed. Although such programs have been developed, a comprehensive solution that provides researchers with good quality and analyzable data is still lacking. To address this need, we have developed a Streamlined Analysis and Annotation Pipeline for RRBS data (SAAP-RRBS) that integrates read quality assessment/clean-up, alignment, methylation data extraction, annotation, reporting and visualization. This package facilitates a rapid transition from sequencing reads to a fully annotated CpG methylation report to biological interpretation.


TREAT: a bioinformatics tool for variant annotations and visualizations in targeted and exome sequencing data.

  • Yan W Asmann‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2012‎

TREAT (Targeted RE-sequencing Annotation Tool) is a tool for facile navigation and mining of the variants from both targeted resequencing and whole exome sequencing. It provides a rich integration of publicly available as well as in-house developed annotations and visualizations for variants, variant-hosting genes and host-gene pathways.


Efficacy of focal adhesion kinase inhibition in non-small cell lung cancer with oncogenically activated MAPK pathways.

  • Hao Zhang‎ et al.
  • British journal of cancer‎
  • 2016‎

Focal adhesion kinase (FAK) is overexpressed in many types of tumours, including lung cancer. Y15, a small molecule which inhibits Y397 FAK autophosphorylation, decreases growth of human neuroblastoma, breast and pancreatic cancers. In this study, we investigated the in vitro and in vivo effects of Y15, and the underlying mechanism on non-small cell lung cancer cells.


Genetically predicted longer telomere length is associated with increased risk of B-cell lymphoma subtypes.

  • Mitchell J Machiela‎ et al.
  • Human molecular genetics‎
  • 2016‎

Evidence from a small number of studies suggests that longer telomere length measured in peripheral leukocytes is associated with an increased risk of non-Hodgkin lymphoma (NHL). However, these studies may be biased by reverse causation, confounded by unmeasured environmental exposures and might miss time points for which prospective telomere measurement would best reveal a relationship between telomere length and NHL risk. We performed an analysis of genetically inferred telomere length and NHL risk in a study of 10 102 NHL cases of the four most common B-cell histologic types and 9562 controls using a genetic risk score (GRS) comprising nine telomere length-associated single-nucleotide polymorphisms. This approach uses existing genotype data and estimates telomere length by weighing the number of telomere length-associated variant alleles an individual carries with the published change in kb of telomere length. The analysis of the telomere length GRS resulted in an association between longer telomere length and increased NHL risk [four B-cell histologic types combined; odds ratio (OR) = 1.49, 95% CI 1.22-1.82,P-value = 8.5 × 10(-5)]. Subtype-specific analyses indicated that chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL/SLL) was the principal NHL subtype contributing to this association (OR = 2.60, 95% CI 1.93-3.51,P-value = 4.0 × 10(-10)). Significant interactions were observed across strata of sex for CLL/SLL and marginal zone lymphoma subtypes as well as age for the follicular lymphoma subtype. Our results indicate that a genetic background that favors longer telomere length may increase NHL risk, particularly risk of CLL/SLL, and are consistent with earlier studies relating longer telomere length with increased NHL risk.


Comprehensive assessment of potential multiple myeloma immunoglobulin heavy chain V-D-J intraclonal variation using massively parallel pyrosequencing.

  • Renee C Tschumper‎ et al.
  • Oncotarget‎
  • 2012‎

Multiple myeloma (MM) is characterized by the accumulation of malignant plasma cells (PCs) in the bone marrow (BM). MM is viewed as a clonal disorder due to lack of verified intraclonal sequence diversity in the immunoglobulin heavy chain variable region gene (IGHV). However, this conclusion is based on analysis of a very limited number of IGHV subclones and the methodology employed did not permit simultaneous analysis of the IGHV repertoire of non-malignant PCs in the same samples. Here we generated genomic DNA and cDNA libraries from purified MM BMPCs and performed massively parallel pyrosequencing to determine the frequency of cells expressing identical IGHV sequences. This method provided an unprecedented opportunity to interrogate the presence of clonally related MM cells and evaluate the IGHV repertoire of non-MM PCs. Within the MM sample, 37 IGHV genes were expressed, with 98.9% of all immunoglobulin sequences using the same IGHV gene as the MM clone and 83.0% exhibiting exact nucleotide sequence identity in the IGHV and heavy chain complementarity determining region 3 (HCDR3). Of interest, we observed in both genomic DNA and cDNA libraries 48 sets of identical sequences with single point mutations in the MM clonal IGHV or HCDR3 regions. These nucleotide changes were suggestive of putative subclones and therefore were subjected to detailed analysis to interpret: 1) their legitimacy as true subclones; and 2) their significance in the context of MM. Finally, we report for the first time the IGHV repertoire of normal human BMPCs and our data demonstrate the extent of IGHV repertoire diversity as well as the frequency of clonally-related normal BMPCs. This study demonstrates the power and potential weaknesses of in-depth sequencing as a tool to thoroughly investigate the phylogeny of malignant PCs in MM and the IGHV repertoire of normal BMPCs.


Prospective Validation of an Ex Vivo, Patient-Derived 3D Spheroid Model for Response Predictions in Newly Diagnosed Ovarian Cancer.

  • Stephen Shuford‎ et al.
  • Scientific reports‎
  • 2019‎

Although 70-80% of newly diagnosed ovarian cancer patients respond to first-line therapy, almost all relapse and five-year survival remains below 50%. One strategy to increase five-year survival is prolonging time to relapse by improving first-line therapy response. However, no biomarker today can accurately predict individual response to therapy. In this study, we present analytical and prospective clinical validation of a new test that utilizes primary patient tissue in 3D cell culture to make patient-specific response predictions prior to initiation of treatment in the clinic. Test results were generated within seven days of tissue receipt from newly diagnosed ovarian cancer patients obtained at standard surgical debulking or laparoscopic biopsy. Patients were followed for clinical response to chemotherapy. In a study population of 44, the 32 test-predicted Responders had a clinical response rate of 100% across both adjuvant and neoadjuvant treated populations with an overall prediction accuracy of 89% (39 of 44, p < 0.0001). The test also functioned as a prognostic readout with test-predicted Responders having a significantly increased progression-free survival compared to test-predicted Non-Responders, p = 0.01. This correlative accuracy establishes the test's potential to benefit ovarian cancer patients through accurate prediction of patient-specific response before treatment.


Prevention of Human Lymphoproliferative Tumor Formation in Ovarian Cancer Patient-Derived Xenografts.

  • Kristina A Butler‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2017‎

Interest in preclinical drug development for ovarian cancer has stimulated development of patient-derived xenograft (PDX) or tumorgraft models. However, the unintended formation of human lymphoma in severe combined immunodeficiency (SCID) mice from Epstein-Barr virus (EBV)-infected human lymphocytes can be problematic. In this study, we have characterized ovarian cancer PDXs which developed human lymphomas and explore methods to suppress lymphoproliferative growth. Fresh human ovarian tumors from 568 patients were transplanted intraperitoneally in SCID mice. A subset of PDX models demonstrated atypical patterns of dissemination with mediastinal masses, hepatosplenomegaly, and CD45-positive lymphoblastic atypia without ovarian tumor engraftment. Expression of human CD20 but not CD3 supported a B-cell lineage, and EBV genomes were detected in all lymphoproliferative tumors. Immunophenotyping confirmed monoclonal gene rearrangements consistent with B-cell lymphoma, and global gene expression patterns correlated well with other human lymphomas. The ability of rituximab, an anti-CD20 antibody, to suppress human lymphoproliferation from a patient's ovarian tumor in SCID mice and prevent growth of an established lymphoma led to a practice change with a goal to reduce the incidence of lymphomas. A single dose of rituximab during the primary tumor heterotransplantation process reduced the incidence of CD45-positive cells in subsequent PDX lines from 86.3% (n = 117 without rituximab) to 5.6% (n = 160 with rituximab), and the lymphoma rate declined from 11.1% to 1.88%. Taken together, investigators utilizing PDX models for research should routinely monitor for lymphoproliferative tumors and consider implementing methods to suppress their growth.


Survival of cutaneous melanoma based on sex, age, and stage in the United States, 1992-2011.

  • Elizabeth Ann L Enninga‎ et al.
  • Cancer medicine‎
  • 2017‎

Women diagnosed with cutaneous melanoma have a survival advantage compared to men, which has been hypothesized to be due to difference in behavior and/or biology (sex hormones). It remains controversial whether this advantage is dependent on age or stage of disease. We sought to compare melanoma-specific survival between females in pre, peri, and postmenopausal age groups to males in the same age group, adjusting for stage of disease. This is a retrospective population-based cohort study using the Surveillance, Epidemiology, and End Results (SEER) database. Patients diagnosed from 1 January 1992 through 31 January 2011 with primary invasive cutaneous melanoma were included in our cohort. Melanoma-specific survival was the main outcome studied. Of the 106,511 subjects that were included, 45% were female. Females in all age groups (18-45, 46-54, and ≥55) with localized and regional disease, were less likely to die from melanoma compared to males in the same age group. Among patients with localized and regional disease, the relative risk of death due to melanoma increased with advancing age at diagnosis; this increase was more pronounced among females than males. In contrast, we observed no female survival advantage among patients with distant disease and no effect of age on relative risk of death from melanoma. Females with localized and regional melanoma have a decreased risk of death compared to males within all age groups. Our data show no differences in survival between men and women with metastatic melanoma, indicating that the influence of sex on survival is limited to early stage disease but not confined to pre or perimenopausal age groups.


HLA class-I and class-II restricted neoantigen loads predict overall survival in breast cancer.

  • Yingxue Ren‎ et al.
  • Oncoimmunology‎
  • 2020‎

Tumors acquire numerous mutations during development and progression. When translated into proteins, these mutations give rise to neoantigens that can be recognized by T cells and generate antibodies, representing an exciting direction of cancer immunotherapy. While neoantigens have been reported in many cancer types, the profiling of neoantigens often focused on the class-I subtype that are presented to CD8 + T cells, and the relationship between neoantigen load and clinical outcomes was often inconsistent among cancer types. In this study, we described an informatics workflow, REAL-neo, for identification, quality control (QC), and prioritization of both class-I and class-II human leukocyte antigen (HLA) bound neoantigens that arise from somatic single nucleotide mutations (SNM), small insertions and deletions (INDEL), and gene fusions. We applied REAL-neo to 835 primary breast tumors in the Cancer Genome Atlas (TCGA) and performed comprehensive profiling and characterization of the detected neoantigens. We found recurrent HLA class-I and class-II restricted neoantigens across breast cancer cases, and uncovered associations between neoantigen load and clinical traits. Both class-I and class-II neoantigen loads from SNM and INDEL were found to predict overall survival independent of tumor mutational burden (TMB), breast cancer subtypes, tumor-infiltrating lymphocyte (TIL) levels, tumor stage, and age at diagnosis. Our study highlighted the importance of accurate and comprehensive neoantigen profiling and QC, and is the first to report the predictive value of neoantigen load for overall survival in breast cancer.


A Novel Humanized PD-1/PD-L1 Mouse Model Permits Direct Comparison of Antitumor Immunity Generated by Food and Drug Administration-Approved PD-1 and PD-L1 Inhibitors.

  • Whitney Barham‎ et al.
  • ImmunoHorizons‎
  • 2023‎

Seven different anti-PD-1 and PD-L1 mAbs are now widely used in the United States to treat a variety of cancer types, but no clinical trials have compared them directly. Furthermore, because many of these Abs do not cross-react between mouse and human proteins, no preclinical models exist in which to consider these types of questions. Thus, we produced humanized PD-1 and PD-L1 mice in which the extracellular domains of both mouse PD-1 and PD-L1 were replaced with the corresponding human sequences. Using this new model, we sought to compare the strength of the immune response generated by Food and Drug Administration-approved Abs. To do this, we performed an in vivo T cell priming assay in which anti-PD-1/L1 therapies were given at the time of T cell priming against surrogate tumor Ag (OVA), followed by subsequent B16-OVA tumor challenge. Surprisingly, both control and Ab-treated mice formed an equally robust OVA-specific T cell response at the time of priming. Despite this, anti-PD-1/L1-treated mice exhibited significantly better tumor rejection versus controls, with avelumab generating the best protection. To determine what could be mediating this, we identified the increased production of CX3CR1+PD-1+CD8+ cytotoxic T cells in the avelumab-treated mice, the same phenotype of effector T cells known to increase in clinical responders to PD-1/L1 therapy. Thus, our model permits the direct comparison of Food and Drug Administration-approved anti-PD-1/L1 mAbs and further correlates successful tumor rejection with the level of CX3CR1+PD-1+CD8 + T cells, making this model a critical tool for optimizing and better utilizing anti-PD-1/L1 therapeutics.


Amplification of 9p24.1 in diffuse large B-cell lymphoma identifies a unique subset of cases that resemble primary mediastinal large B-cell lymphoma.

  • Yucai Wang‎ et al.
  • Blood cancer journal‎
  • 2019‎

Copy number alterations (CNAs) of 9p24.1 occur frequently in Hodgkin lymphoma, primary mediastinal large B-cell lymphoma (PMBCL), primary central nervous system lymphoma, and primary testicular lymphoma, resulting in overexpression of PD-L1 and sensitivity to PD-1 blockade-based immunotherapy. While 9p24.1 CNA was also reported in diffuse large B-cell lymphoma (DLBCL), little is known about its molecular or clinical significance. In this study, we analyzed the prevalence of 9p24.1 CNA in newly diagnosed DLBCL and examined its association with PD-L1, PD-L2, and JAK2 expression, clinical characteristics, and outcome. We found that 10% of DLBCL cases had CNA of 9p24.1, with 6.5% gains, and 3.5% amplifications. Only the cases with a 9p24.1 amplification had high levels of PD-L1, PD-L2, and JAK2 expression. Gains or amplifications of 9p24.1 were associated with a younger age and the ABC/non-GCB subtype. Compared with DLBCL cases without 9p24.1 CNA, the cases with a 9p24.1 amplification had a trend of better event-free survival. Furthermore, the amplification cases had a gene expression and mutation profile similar to those of PMBCL. Our data suggest that amplification of 9p24.1 identifies a unique subset of DLBCL with clinical and molecular features resembling PMBCL that may be amenable to PD-1 blockade-based immunotherapy.


Integrated analysis of gene expression, CpG island methylation, and gene copy number in breast cancer cells by deep sequencing.

  • Zhifu Sun‎ et al.
  • PloS one‎
  • 2011‎

We used deep sequencing technology to profile the transcriptome, gene copy number, and CpG island methylation status simultaneously in eight commonly used breast cell lines to develop a model for how these genomic features are integrated in estrogen receptor positive (ER+) and negative breast cancer. Total mRNA sequence, gene copy number, and genomic CpG island methylation were carried out using the Illumina Genome Analyzer. Sequences were mapped to the human genome to obtain digitized gene expression data, DNA copy number in reference to the non-tumor cell line (MCF10A), and methylation status of 21,570 CpG islands to identify differentially expressed genes that were correlated with methylation or copy number changes. These were evaluated in a dataset from 129 primary breast tumors. Gene expression in cell lines was dominated by ER-associated genes. ER+ and ER- cell lines formed two distinct, stable clusters, and 1,873 genes were differentially expressed in the two groups. Part of chromosome 8 was deleted in all ER- cells and part of chromosome 17 amplified in all ER+ cells. These loci encoded 30 genes that were overexpressed in ER+ cells; 9 of these genes were overexpressed in ER+ tumors. We identified 149 differentially expressed genes that exhibited differential methylation of one or more CpG islands within 5 kb of the 5' end of the gene and for which mRNA abundance was inversely correlated with CpG island methylation status. In primary tumors we identified 84 genes that appear to be robust components of the methylation signature that we identified in ER+ cell lines. Our analyses reveal a global pattern of differential CpG island methylation that contributes to the transcriptome landscape of ER+ and ER- breast cancer cells and tumors. The role of gene amplification/deletion appears to more modest, although several potentially significant genes appear to be regulated by copy number aberrations.


Gene expression, single nucleotide variant and fusion transcript discovery in archival material from breast tumors.

  • Nadine Norton‎ et al.
  • PloS one‎
  • 2013‎

Advantages of RNA-Seq over array based platforms are quantitative gene expression and discovery of expressed single nucleotide variants (eSNVs) and fusion transcripts from a single platform, but the sensitivity for each of these characteristics is unknown. We measured gene expression in a set of manually degraded RNAs, nine pairs of matched fresh-frozen, and FFPE RNA isolated from breast tumor with the hybridization based, NanoString nCounter (226 gene panel) and with whole transcriptome RNA-Seq using RiboZeroGold ScriptSeq V2 library preparation kits. We performed correlation analyses of gene expression between samples and across platforms. We then specifically assessed whole transcriptome expression of lincRNA and discovery of eSNVs and fusion transcripts in the FFPE RNA-Seq data. For gene expression in the manually degraded samples, we observed Pearson correlations of >0.94 and >0.80 with NanoString and ScriptSeq protocols, respectively. Gene expression data for matched fresh-frozen and FFPE samples yielded mean Pearson correlations of 0.874 and 0.783 for NanoString (226 genes) and ScriptSeq whole transcriptome protocols respectively, p<2x10(-16). Specifically for lincRNAs, we observed superb Pearson correlation (0.988) between matched fresh-frozen and FFPE pairs. FFPE samples across NanoString and RNA-Seq platforms gave a mean Pearson correlation of 0.838. In FFPE libraries, we detected 53.4% of high confidence SNVs and 24% of high confidence fusion transcripts. Sensitivity of fusion transcript detection was not overcome by an increase in depth of sequencing up to 3-fold (increase from ~56 to ~159 million reads). Both NanoString and ScriptSeq RNA-Seq technologies yield reliable gene expression data for degraded and FFPE material. The high degree of correlation between NanoString and RNA-Seq platforms suggests discovery based whole transcriptome studies from FFPE material will produce reliable expression data. The RiboZeroGold ScriptSeq protocol performed particularly well for lincRNA expression from FFPE libraries, but detection of eSNV and fusion transcripts was less sensitive.


Impact of library preparation on downstream analysis and interpretation of RNA-Seq data: comparison between Illumina PolyA and NuGEN Ovation protocol.

  • Zhifu Sun‎ et al.
  • PloS one‎
  • 2013‎

The sequencing by the PolyA selection is the most common approach for library preparation. With limited amount or degraded RNA, alternative protocols such as the NuGEN have been developed. However, it is not yet clear how the different library preparations affect the downstream analyses of the broad applications of RNA sequencing.


Late-onset Alzheimer disease risk variants mark brain regulatory loci.

  • Mariet Allen‎ et al.
  • Neurology. Genetics‎
  • 2015‎

To investigate the top late-onset Alzheimer disease (LOAD) risk loci detected or confirmed by the International Genomics of Alzheimer's Project for association with brain gene expression levels to identify variants that influence Alzheimer disease (AD) risk through gene expression regulation.


Clinical Correlates of Autosomal Chromosomal Abnormalities in an Electronic Medical Record-Linked Genome-Wide Association Study: A Case Series.

  • Hayan Jouni‎ et al.
  • Journal of investigative medicine high impact case reports‎
  • 2013‎

Although mosaic autosomal chromosomal abnormalities are being increasingly detected as part of high-density genotyping studies, the clinical correlates are unclear. From an electronic medical record (EMR)-based genome-wide association study (GWAS) of peripheral arterial disease, log-R-ratio and B-allele-frequency data were used to identify mosaic autosomal chromosomal abnormalities including copy number variation and loss of heterozygosity. The EMRs of patients with chromosomal abnormalities and those without chromosomal abnormalities were reviewed to compare clinical characteristics. Among 3336 study participants, 0.75% (n = 25, mean age = 74.8 ± 10.7 years, 64% men) had abnormal intensity plots indicative of autosomal chromosomal abnormalities. A hematologic malignancy was present in 8 patients (32%), of whom 4 also had a solid organ malignancy while 2 patients had a solid organ malignancy only. In 50 age- and sex-matched participants without chromosomal abnormalities, there was a lower rate of hematologic malignancies (2% vs 32%, P < .001) but not solid organ malignancies (20% vs 24%, P = .69). We also report the clinical characteristics of each patient with the observed chromosomal abnormalities. Interestingly, among 5 patients with 20q deletions, 4 had a myeloproliferative disorder while all 3 men in this group had prostate cancer. In summary, in a GWAS of 3336 adults, 0.75% had autosomal chromosomal abnormalities and nearly a third of them had hematologic malignancies. A potential novel association between 20q deletions, myeloproliferative disorders, and prostate cancer was also noted.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: