Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

HLA class-I and class-II restricted neoantigen loads predict overall survival in breast cancer.

Oncoimmunology | 2020

Tumors acquire numerous mutations during development and progression. When translated into proteins, these mutations give rise to neoantigens that can be recognized by T cells and generate antibodies, representing an exciting direction of cancer immunotherapy. While neoantigens have been reported in many cancer types, the profiling of neoantigens often focused on the class-I subtype that are presented to CD8 + T cells, and the relationship between neoantigen load and clinical outcomes was often inconsistent among cancer types. In this study, we described an informatics workflow, REAL-neo, for identification, quality control (QC), and prioritization of both class-I and class-II human leukocyte antigen (HLA) bound neoantigens that arise from somatic single nucleotide mutations (SNM), small insertions and deletions (INDEL), and gene fusions. We applied REAL-neo to 835 primary breast tumors in the Cancer Genome Atlas (TCGA) and performed comprehensive profiling and characterization of the detected neoantigens. We found recurrent HLA class-I and class-II restricted neoantigens across breast cancer cases, and uncovered associations between neoantigen load and clinical traits. Both class-I and class-II neoantigen loads from SNM and INDEL were found to predict overall survival independent of tumor mutational burden (TMB), breast cancer subtypes, tumor-infiltrating lymphocyte (TIL) levels, tumor stage, and age at diagnosis. Our study highlighted the importance of accurate and comprehensive neoantigen profiling and QC, and is the first to report the predictive value of neoantigen load for overall survival in breast cancer.

Pubmed ID: 32523802 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GATK (tool)

RRID:SCR_001876

A software package to analyze next-generation resequencing data. The toolkit offers a wide variety of tools, with a primary focus on variant discovery and genotyping as well as strong emphasis on data quality assurance. Its robust architecture, powerful processing engine and high-performance computing features make it capable of taking on projects of any size. This software library makes writing efficient analysis tools using next-generation sequencing data very easy, and second it's a suite of tools for working with human medical resequencing projects such as 1000 Genomes and The Cancer Genome Atlas. These tools include things like a depth of coverage analyzers, a quality score recalibrator, a SNP/indel caller and a local realigner. (entry from Genetic Analysis Software)

View all literature mentions

Ensembl (tool)

RRID:SCR_002344

Collection of genome databases for vertebrates and other eukaryotic species with DNA and protein sequence search capabilities. Used to automatically annotate genome, integrate this annotation with other available biological data and make data publicly available via web. Ensembl tools include BLAST, BLAT, BioMart and the Variant Effect Predictor (VEP) for all supported species.

View all literature mentions

Jackson Laboratory (tool)

RRID:SCR_004633

An independent, nonprofit organization focused on mammalian genetics research to advance human health. Their mission is to discover the genetic basis for preventing, treating, and curing human disease, and to enable research for the global biomedical community. Jackson Laboratory breeds and manages colonies of mice as resources for other research institutions and laboratories, along with providing software and techniques. Jackson Lab also conducts genetic research and provides educational material for various educational levels.

View all literature mentions

Genomic Data Commons Data Portal (GDC Data Portal) (tool)

RRID:SCR_014514

A unified data repository of the National Cancer Institute (NCI)'s Genomic Data Commons (GDC) that enables data sharing across cancer genomic studies in support of precision medicine. The GDC supports several cancer genome programs at the NCI Center for Cancer Genomics (CCG), including The Cancer Genome Atlas (TCGA), Therapeutically Applicable Research to Generate Effective Treatments (TARGET), and the Cancer Genome Characterization Initiative (CGCI). The GDC Data Portal provides a platform for efficiently querying and downloading high quality and complete data. The GDC also provides a GDC Data Transfer Tool and a GDC API for programmatic access.

View all literature mentions

cBioPortal (tool)

RRID:SCR_014555

A portal that provides visualization, analysis and download of large-scale cancer genomics data sets.

View all literature mentions

BWA-MEM2 (tool)

RRID:SCR_022192

Software tool for sequence mapping.The next version of BWA-MEM. Used for aligning sequencing reads against large reference genome.

View all literature mentions

OptiType (tool)

RRID:SCR_022279

Software tool for precision HLA typing from next generation sequencing data.

View all literature mentions