Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 9 showing 161 ~ 180 papers out of 1,409 papers

Towards 3D in silico modeling of the sea urchin embryonic development.

  • Barbara Rizzi‎ et al.
  • Journal of chemical biology‎
  • 2013‎

Embryogenesis is a dynamic process with an intrinsic variability whose understanding requires the integration of molecular, genetic, and cellular dynamics. Biological circuits function over time at the level of single cells and require a precise analysis of the topology, temporality, and probability of events. Integrative developmental biology is currently looking for the appropriate strategies to capture the intrinsic properties of biological systems. The "-omic" approaches require disruption of the function of the biological circuit; they provide static information, with low temporal resolution and usually with population averaging that masks fast or variable features at the cellular scale and in a single individual. This data should be correlated with cell behavior as cells are the integrators of biological activity. Cellular dynamics are captured by the in vivo microscopy observation of live organisms. This can be used to reconstruct the 3D + time cell lineage tree to serve as the basis for modeling the organism's multiscale dynamics. We discuss here the progress that has been made in this direction, starting with the reconstruction over time of three-dimensional digital embryos from in toto time-lapse imaging. Digital specimens provide the means for a quantitative description of the development of model organisms that can be stored, shared, and compared. They open the way to in silico experimentation and to a more theoretical approach to biological processes. We show, with some unpublished results, how the proposed methodology can be applied to sea urchin species that have been model organisms in the field of classical embryology and modern developmental biology for over a century.


Phylogenetic and morphological classification of Ophiocordyceps species on termites from Thailand.

  • Kanoksri Tasanathai‎ et al.
  • MycoKeys‎
  • 2019‎

Seven new species occurring on termites are added to Ophiocordyceps - O. asiatica, O. brunneirubra, O. khokpasiensis, O. mosingtoensis, O. pseudocommunis, O. pseudorhizoidea and O. termiticola, based on morphological and molecular phylogenetic evidence. O. brunneirubra possesses orange to reddish-brown immersed perithecia on cylindrical to clavate stromata. O. khokpasiensis, O. mosingtoensis and O. termiticola have pseudo-immersed perithecia while O. asiatica, O. pseudocommunis and O. pseudorhizoidea all possess superficial perithecia, reminiscent of O. communis and O. rhizoidea. Phylogenetic analyses based on a combined dataset comprising the internal transcribed spacer regions (ITS) and the largest subunit (LSU) of the ribosomal DNA, partial regions of the elongation factor 1-α (TEF) and the largest and second largest subunits for the RNA polymerase genes (RPB1, RPB2) strongly support the placement of these seven new species in Ophiocordyceps.


A description of preimaginal stages of Pseudaspidapion botanicum Alonso-Zarazaga & Wang, 2011 (Apionidae, Curculionoidea).

  • Zhiliang Wang‎ et al.
  • ZooKeys‎
  • 2013‎

The preimaginal stages including egg, mature larva and pupa of Pseudaspidapion botanicum Alonso-Zarazaga & Wang, 2011 were described and figured, diagnostic characters of larva and pupa were discussed, and corresponding biological information was supplied. The nomenclature of frontal setae in the larva compared with curculionid weevils, the absence of the hypopharyngeal bracon in the larva, and the metafemoral setae in the pupa were discussed. Common and different characters among the larvae of Pseudaspidapion botanicum, Aspidapion radiolus (Marsham, 1802) and Aspidapion aeneum (Fabricius, 1775) were also provided.


Global gene expression analysis of the zoonotic parasite Trichinella spiralis revealed novel genes in host parasite interaction.

  • Xiaolei Liu‎ et al.
  • PLoS neglected tropical diseases‎
  • 2012‎

Trichinellosis is a typical food-borne zoonotic disease which is epidemic worldwide and the nematode Trichinella spiralis is the main pathogen. The life cycle of T. spiralis contains three developmental stages, i.e. adult worms, new borne larva (new borne L1 larva) and muscular larva (infective L1 larva). Stage-specific gene expression in the parasites has been investigated with various immunological and cDNA cloning approaches, whereas the genome-wide transcriptome and expression features of the parasite have been largely unknown. The availability of the genome sequence information of T. spiralis has made it possible to deeply dissect parasite biology in association with global gene expression and pathogenesis.


Interaction of a Trichinella spiralis cathepsin B with enterocytes promotes the larval intrusion into the cells.

  • Yue Han‎ et al.
  • Research in veterinary science‎
  • 2020‎

Cathepsin B is one member of cysteine protease family and widely distributed in organisms, it plays an important function in parasite penetrating, migrating, molting and immune escaping. The aim of this work was to investigate whether exist interaction between a Trichinella spiralis cathepsin B (TsCB) and mouse intestinal epithelium cells (IECs), and its influence in the process of larva cell invasion. The results of ELISA, indirect immunofluorescence assay (IIFA), confocal microscopy and Far western blotting showed that there was a strong specific binding of rTsCB and IEC proteins, and the binding positions were located in cytoplasm and nuclei of IECs. The results of the in vitro larva penetration test revealed that rTsCB facilitated the larva invasion of IECs, whereas anti-rTsCB antibodies impeded partially the larva intrusion of enterocytes, this promotive or inhibitory roles were dose-dependent of rTsCB or anti-rTsCB antibodies. Silencing TsCB by siRNA mediated RNA interference reduced the TsCB expression in T. spiralis larvae, and markedly inhibited the larva penetration of enterocytes. The results indicated that TsCB binding to IECs promoted larva penetration of host's enteral epithelia, and it is a promising molecular target against intestinal invasive stages of T. spiralis.


Short-Term Transcriptomic Points of Departure Are Consistent with Chronic Points of Departure for Three Organophosphate Pesticides across Mouse and Fathead Minnow.

  • Rubia Martin‎ et al.
  • Toxics‎
  • 2023‎

New approach methods (NAMs) can reduce the need for chronic animal studies. Here, we apply benchmark dose (concentration) (BMD(C))-response modeling to transcriptomic changes in the liver of mice and in fathead minnow larvae after short-term exposures (7 days and 1 day, respectively) to several dose/concentrations of three organophosphate pesticides (OPPs): fenthion, methidathion, and parathion. The mouse liver transcriptional points of departure (TPODs) for fenthion, methidathion, and parathion were 0.009, 0.093, and 0.046 mg/Kg-bw/day, while the fathead minnow larva TPODs were 0.007, 0.115, and 0.046 mg/L, respectively. The TPODs were consistent across both species and reflected the relative potencies from traditional chronic toxicity studies with fenthion identified as the most potent. Moreover, the mouse liver TPODs were more sensitive than or within a 10-fold difference from the chronic apical points of departure (APODs) for mammals, while the fathead minnow larva TPODs were within an 18-fold difference from the chronic APODs for fish species. Short-term exposure to OPPs significantly impacted acetylcholinesterase mRNA abundance (FDR p-value <0.05, |fold change| ≥2) and canonical pathways (IPA, p-value <0.05) associated with organism death and neurological/immune dysfunctions, indicating the conservation of key events related to OPP toxicity. Together, these results build confidence in using short-term, molecular-based assays for the characterization of chemical toxicity and risk, thereby reducing reliance on chronic animal studies.


Development and Characterization of Transgenic Sugarcane with Insect Resistance and Herbicide Tolerance.

  • Wen Zhi Wang‎ et al.
  • Frontiers in plant science‎
  • 2017‎

Genetically modified crops which had been commercial applied extensively majorly are the insect resistance and herbicide tolerance events. In this study, the Bt insecticidal gene Cry1Ab, the glyphosate-tolerant gene EPSPS, and the selection marker gene PMI were combined into a single transferred DNA fragment and introduced into sugarcane by Agrobacterium-mediated transformation. Thirty-three resistant plantlets were obtained after selection using a PMI/mannose selection system. Thirty of these resistant plantlets were PCR positive for the three target genes. Southern blot assay revealed that the copy number of the integrated fragment in the transformed plantlets varied from 1 to 7. ELISA analysis showed that 23 of the 33 resistant plantlets expressed Cry1Ab and EPSPS protein. Five single-copy and ELISA-positive transgenic lines were tested under laboratory and field conditions to determine their resistance to insects and herbicides, and also evaluated their agronomic characteristics and industrial traits. Results showed that larvae fed with fodder mixture containing stem tissues from single-copy transgenic lines were weak and small, moreover, pupation and eclosion were delayed significantly during voluntary feeding bioassays. None of transgenic sugarcane was destroyed by cane borer while more than 30% of wild type sugarcane was destroyed by cane borer. For herbicide resistance, the transgenic plantlets grew healthy even when treated with up to 0.5% roundup while wild type plantlets would die off when treated with 0.1% roundup. Thus demonstrate that these transgenic lines showed strong insect resistance and glyphosate tolerance under both laboratory and field conditions. But in the field most of the transgenic plants were shorter and more slender than non-transformed control plants. So they presented poor agronomic characteristics and industrial traits than non-transformed control plants. Thus, a considerable number of embryogenic calli should be infected to obtain transgenic lines with potential for commercial use.


TaqMan probe assays on different biological samples for the identification of three ambrosia beetle species, Xylosandrus compactus (Eichoff), X. crassiusculus (Motschulsky) and X. germanus (Blandford) (Coleoptera Curculionidae Scolytinae).

  • Domenico Rizzo‎ et al.
  • 3 Biotech‎
  • 2021‎

Molecular assays based on qPCR TaqMan Probes were developed to identify three species of the genus Xylosandrus, X. compactus, X. crassiusculus and X. germanus (Coleoptera Curculionidae Scolytinae). These ambrosia beetles are xylophagous species alien to Europe, causing damages to many ornamental and fruiting trees as well as shrubs. DNA extraction was carried out from adults, larvae and biological samples derived from insect damages on infested plants. For X. compactus, segments of galleries in thin infested twigs were cut and processed; in the case of X. crassiusculus, raw frass extruded from exit holes was used, while DNA of X. germanus was extracted from small wood chips removed around insect exit holes. The assays were inclusive for the target species and exclusive for all the non-target species tested. The LoD was 3.2 pg/µL for the frass of X. crassiusculus and 0.016 ng/µL for the woody matrices of the other two species. Both repeatability and reproducibility were estimated on adults and woody samples, showing very low values ranging between 0.00 and 4.11. Thus, the proposed diagnostic assays resulted to be very efficient also on the woody matrices used for DNA extraction, demonstrating the applicability of the protocol in the absence of dead specimens or living stages.


Microimplantation of foreign materials for assessment of foreign body immune responses and granuloma formation in zebrafish larvae.

  • Kevin K Takaki‎
  • STAR protocols‎
  • 2021‎

This protocol describes the microimplantation of foreign materials such as schistosome eggs, polymer beads, and other microscopic objects into the small and optically transparent larval zebrafish for the assessment of immune responses, including granuloma formation. This protocol has wide applicability for both fundamental studies on host responses to parasite eggs and other foreign bodies, as well as the testing of potential biomaterials and devices used for human medical implants. For complete details on the use and execution of this protocol, please refer to Takaki et al. (2021a) and (2021b).


A cerebellar internal model calibrates a feedback controller involved in sensorimotor control.

  • Daniil A Markov‎ et al.
  • Nature communications‎
  • 2021‎

Animals must adapt their behavior to survive in a changing environment. Behavioral adaptations can be evoked by two mechanisms: feedback control and internal-model-based control. Feedback controllers can maintain the sensory state of the animal at a desired level under different environmental conditions. In contrast, internal models learn the relationship between the motor output and its sensory consequences and can be used to recalibrate behaviors. Here, we present multiple unpredictable perturbations in visual feedback to larval zebrafish performing the optomotor response and show that they react to these perturbations through a feedback control mechanism. In contrast, if a perturbation is long-lasting, fish adapt their behavior by updating a cerebellum-dependent internal model. We use modelling and functional imaging to show that the neuronal requirements for these mechanisms are met in the larval zebrafish brain. Our results illustrate the role of the cerebellum in encoding internal models and how these can calibrate neuronal circuits involved in reactive behaviors depending on the interactions between animal and environment.


Toosendanin triggered hepatotoxicity in zebrafish via inflammation, autophagy, and apoptosis pathways.

  • Meng Sun‎ et al.
  • Comparative biochemistry and physiology. Toxicology & pharmacology : CBP‎
  • 2021‎

Toosendanin (TSN) is a crucial component from Toosendan Fructus with a promising anti-tumor capacity. It is also the primary suspect hepatotoxic component of Toosendan Fructus. However, the mechanisms underlying TSN-induced liver injury are still largely unknown. In present study, we evaluated the hepatotoxicity of TSN on zebrafish and explored the role of inflammation, autophagy, and apoptosis in TSN-induced hepatotoxicity. We found that TSN treatment decreased the area and fluorescence intensity of zebrafish liver in time- and dose-dependent manners at nonlethal concentrations. The ALT and AST activities were increased after TSN treatment. Severe cytoplasmic vacuolation and nuclear shrank were found in the liver of TSN-treated zebrafish. The expression profile of genes demonstrated that inflammation, autophagy and apoptosis pathways were involved in TSN-induced hepatotoxicity. Our study demonstrated for the first time that TSN treatment gave rise to liver injury in zebrafish, and inflammation, autophagy, apoptosis played a role in TSN-induced hepatotoxicity.


Zooplankters' nightmare: The fast and efficient catching basket of larval phantom midges (Diptera: Chaoborus).

  • Sebastian Kruppert‎ et al.
  • PloS one‎
  • 2019‎

Filter feeding zooplankton are a crucial component of limnic food webs. Copepods and cladocerans are important prey organisms for first-level predators like the common and abundant larvae of phantom midges (Chaoborus sp.). The latter possess a complex catching basket built of head appendages specialized to capture small crustaceans. The predator-prey-relationship of Chaoborus (Diptera, Nematocera) and Daphnia (Crustacea, Cladocera) has been studied in particular detail owing to the daphniids' ability to react upon the threat of predation with inducible defenses. Daphnia pulex expresses so-called 'neckteeth' in the presence of Chaoborus larvae that are discussed as a defensive trait that interferes with the larval head appendages and their effectiveness has been shown in several studies. Nonetheless, mode of function of these neckteeth is not understood and the hypothesis that they interfere with the predator's head appendages still has to be confirmed. To clarify the role of neckteeth in Daphnia, an understanding of the Chaoborus capture apparatus is essential. Here, we present a detailed three-dimensional analysis of Chaoborus obscuripes' larval head morphology as well as a kinematic analysis of the attack motion, which revealed an impressive strike velocity (14 ms to prey contact). The movement of the larvae's head appendages is reconstructed in the three-dimensional space using a combination of high-speed videography, micro-computed tomography and computer animation. Furthermore, we provide predation trial data to distinguish between pre- and post-attack defensive effects in D. pulex. Our findings suggest a combination of pre- and post-attack defenses with an average effectiveness of 50% each. With this study, we quantitatively describe prey capture kinematics of C. obscuripes and take a further step to reveal the neckteeth' mode of function in D. pulex.


Natural variation in gene expression in the early development of dauer larvae of Caenorhabditis elegans.

  • Simon C Harvey‎ et al.
  • BMC genomics‎
  • 2009‎

The free-living nematode Caenorhabditis elegans makes a developmental decision based on environmental conditions: larvae either arrest as dauer larva, or continue development into reproductive adults. There is natural variation among C. elegans lines in the sensitivity of this decision to environmental conditions; that is, there is variation in the phenotypic plasticity of dauer larva development. We hypothesised that these differences may be transcriptionally controlled in early stage larvae. We investigated this by microarray analysis of different C. elegans lines under different environmental conditions, specifically the presence and absence of dauer larva-inducing pheromone.


Anti-Inflammatory and Antioxidant Properties of the Ethanol Extract of Clerodendrum Cyrtophyllum Turcz in Copper Sulfate-Induced Inflammation in Zebrafish.

  • Thu Hang Nguyen‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2020‎

Oxidative stress and inflammation are commonly present in many chronic diseases. These responses are closely related to pathophysiological processes. The inflammatory process can induce oxidative stress and vice versa through the activation of multiple pathways. Therefore, agents with antioxidant and/or anti-inflammatory activities are very useful in the treatment of many pathologies. Clerodendrum cyrthophyllum Turcz, a plant belonging to the Verbenaceae family, is used in Vietnamese traditional medicine for treating migraine, hypertension, inflammation of the throat, and rheumatic arthritis. Despite its usefulness, studies on its biological properties are still scarce. In this study, ethanol extract (EE) of leaves of C. cyrtophyllum showed protective activity against CuSO4 toxicity. The protective activity was proven to relate to antioxidant and anti-inflammatory properties. EE exhibited relatively high antioxidant activity (IC50 of 16.45 µg/mL) as measured by DPPH assay. In an in vivo anti-antioxidant test, three days post fertilization (dpf) zebrafish larvae were treated with different concentrations of EE for 1 h and then exposed to 10 µM CuSO4 for 20 min to induce oxidative stress. Fluorescent probes were used to detect and quantify oxidative stress by measuring the fluorescent intensity (FI) in larvae. FI significantly decreased in the presence of EE at 5 and 20µg/mL, demonstrating EE's profound antioxidant effects, reducing or preventing oxidative stress from CuSO4. Moreover, the co-administration of EE also protected zebrafish larvae against oxidative damage from CuSO4 through down-regulation of hsp70 and gadd45bb expression and upregulation of sod. Due to copper accumulation in zebrafish tissues, the damage and oxidative stress were exacerbated overtime, resulting in the upregulation of genes related to inflammatory processes such as cox-2, pla2, c3a, mpo, and pro- and anti-inflammatory cytokines (il-1ß, il-8, tnf-α, and il-10, respectively). However, the association of CuSO4 with EE significantly decreased the expression of cox-2, pla2, c3a, mpo, il-8, and il-1ß. Taken together, the results suggest that EE has potent antioxidant and anti-inflammatory activities and may be useful in the treatment of various inflammatory diseases.


Clavukoellians G-K, New Nardosinane and Aristolane Sesquiterpenoids with Angiogenesis Promoting Activity from the Marine Soft Coral Lemnalia sp.

  • Qi Wang‎ et al.
  • Marine drugs‎
  • 2020‎

The chemical examination of the marine soft coral Lemnalia sp., collected at the Xisha islands in the South China Sea, resulted in the isolation of four new nardosinane-type sesquiterpenoids, namely clavukoellians G-J (1-4), and one new aristolane sesquiterpene, namely clavukoellian K (5), together with five known compounds, 6-10. The structure elucidation of the isolated natural products was based on various spectroscopic techniques including HRESIMS and NMR, while their absolute configurations were resolved on the basis of comparisons of the ECD spectra with the calculated ECD data. The isolated new compounds 1-5 were evaluated for their anti- and pro- angiogenesis activities in a transgenic fluorescent zebrafish (Tg(vegfr2:GFP)) model. Quantitative analysis revealed that compound 5 displayed pro-angiogenesis activity in a PTK787-induced vascular injury zebrafish model at 2.5 μM. Data showed that compound 5 significantly promoted the angiogenesis in a dose-dependent manner.


Upregulation of E93 Gene Expression Acts as the Trigger for Metamorphosis Independently of the Threshold Size in the Beetle Tribolium castaneum.

  • Silvia Chafino‎ et al.
  • Cell reports‎
  • 2019‎

Body size in holometabolous insects is determined by the size at which the juvenile larva undergoes metamorphosis to the pupal stage. To undergo larva-pupa transition, larva must reach a critical developmental checkpoint, the threshold size (TS); however, the molecular mechanisms through which the TS cues this transition remain to be fully characterized. Here, we use the flour beetle Tribolium castaneum to characterize the molecular mechanisms underlying entry into metamorphosis. We found that T. castaneum reaches a TS at the beginning of the last larval instar, which is associated with the downregulation of TcKr-h1 and the upregulation of TcE93 and TcBr-C. Unexpectedly, we found that while there is an association between TS and TcE93 upregulation, it is the latter that constitutes the molecular trigger for metamorphosis initiation. In light of our results, we evaluate the interactions that control the larva-pupa transition and suggest alternative models.


Effects of melon yellow spot orthotospovirus infection on the preference and developmental traits of melon thrips, Thrips palmi, in cucumber.

  • Shuhei Adachi-Fukunaga‎ et al.
  • PloS one‎
  • 2020‎

Melon yellow spot orthotospovirus (MYSV), a member of the genus Orthotospovirus, is an important virus in cucurbits. Thrips palmi is considered the most serious pest of cucurbits because it directly damages and indirectly transmits MYSV to the plant. The effects of MYSV-infected plants on the development time, fecundity, and preference of the thrips were analyzed in this study. Our results showed that the development time of male and female thrips did not differ significantly between MYSV-infected and non-infected cucumbers. The survival rate of thrips in non-infected and MYSV-infected cucumbers were not significantly different. In a non-choice assay, T. palmi adults were released on non-infected and MYSV-infected cucumbers and allowed to lay eggs. The number of hatched larvae did not significantly differ between non-infected and MYSV-infected cucumbers. In a choice assay, MYSV had no detectable effect on the number of adult thrips and preceding hatched larvae. In a pull assay, the settling rate of thrips on the released plant did not differ significantly when the adult thrips were released to non-infected or MYSV infected cucumbers for any cucumber cultivar. Based on our results, we propose that the effects of MYSV-infected cucumbers on the development time, fecundity, or preference of T. palmi may not be an important factor in MYSV spread between cucumbers.


Novel oxytocin gene expression in the hindbrain is induced by alcohol exposure: transgenic zebrafish enable visualization of sensitive neurons.

  • Caitrín M Coffey‎ et al.
  • PloS one‎
  • 2013‎

Fetal Alcohol Spectrum Disorders (FASD) are a collection of disorders resulting from fetal ethanol exposure, which causes a wide range of physical, neurological and behavioral deficits including heightened susceptibility for alcoholism and addictive disorders. While a number of mechanisms have been proposed for how ethanol exposure disrupts brain development, with selective groups of neurons undergoing reduced proliferation, dysfunction and death, the induction of a new neurotransmitter phenotype by ethanol exposure has not yet been reported.


Mechanisms of odor receptor gene choice in Drosophila.

  • Anandasankar Ray‎ et al.
  • Neuron‎
  • 2007‎

A remarkable problem in neurobiology is how olfactory receptor neurons (ORNs) select, from among a large odor receptor repertoire, which receptors to express. We use computational algorithms and mutational analysis to define positive and negative regulatory elements that are required for selection of odor receptor (Or) genes in the proper olfactory organ of Drosophila, and we identify an element that is essential for selection in one ORN class. Two odor receptors are coexpressed by virtue of the alternative splicing of a single gene, and we identify dicistronic mRNAs that each encode two receptors. Systematic analysis reveals no evidence for negative feedback regulation, but provides evidence that the choices made by neighboring ORNs of a sensillum are coordinated via the asymmetric segregation of regulatory factors from a common progenitor. We show that receptor gene choice in Drosophila also depends on a combinatorial code of transcription factors to generate the receptor-to-neuron map.


Variance adaptation in navigational decision making.

  • Ruben Gepner‎ et al.
  • eLife‎
  • 2018‎

Sensory systems relay information about the world to the brain, which enacts behaviors through motor outputs. To maximize information transmission, sensory systems discard redundant information through adaptation to the mean and variance of the environment. The behavioral consequences of sensory adaptation to environmental variance have been largely unexplored. Here, we study how larval fruit flies adapt sensory-motor computations underlying navigation to changes in the variance of visual and olfactory inputs. We show that variance adaptation can be characterized by rescaling of the sensory input and that for both visual and olfactory inputs, the temporal dynamics of adaptation are consistent with optimal variance estimation. In multisensory contexts, larvae adapt independently to variance in each sense, and portions of the navigational pathway encoding mixed odor and light signals are also capable of variance adaptation. Our results suggest multiplication as a mechanism for odor-light integration.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: