Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 6 showing 101 ~ 120 papers out of 598 papers

Can pulsatile CSF flow across the cerebral aqueduct cause ventriculomegaly? A prospective study of patients with communicating hydrocephalus.

  • P Holmlund‎ et al.
  • Fluids and barriers of the CNS‎
  • 2019‎

Communicating hydrocephalus is a disease where the cerebral ventricles are enlarged. It is characterized by the absence of detectable cerebrospinal fluid (CSF) outflow obstructions and often with increased CSF pulsatility measured in the cerebral aqueduct (CA). We hypothesize that the cardiac-related pulsatile flow over the CA, with fast systolic outflow and slow diastolic inflow, can generate net pressure effects that could source the ventriculomegaly in these patients. This would require a non-zero cardiac cycle averaged net pressure difference (ΔPnet) over the CA, with higher average pressure in the lateral and third ventricles.


Subcortical volumetric abnormalities in bipolar disorder.

  • D P Hibar‎ et al.
  • Molecular psychiatry‎
  • 2016‎

Considerable uncertainty exists about the defining brain changes associated with bipolar disorder (BD). Understanding and quantifying the sources of uncertainty can help generate novel clinical hypotheses about etiology and assist in the development of biomarkers for indexing disease progression and prognosis. Here we were interested in quantifying case-control differences in intracranial volume (ICV) and each of eight subcortical brain measures: nucleus accumbens, amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus, lateral ventricles. In a large study of 1710 BD patients and 2594 healthy controls, we found consistent volumetric reductions in BD patients for mean hippocampus (Cohen's d=-0.232; P=3.50 × 10-7) and thalamus (d=-0.148; P=4.27 × 10-3) and enlarged lateral ventricles (d=-0.260; P=3.93 × 10-5) in patients. No significant effect of age at illness onset was detected. Stratifying patients based on clinical subtype (BD type I or type II) revealed that BDI patients had significantly larger lateral ventricles and smaller hippocampus and amygdala than controls. However, when comparing BDI and BDII patients directly, we did not detect any significant differences in brain volume. This likely represents similar etiology between BD subtype classifications. Exploratory analyses revealed significantly larger thalamic volumes in patients taking lithium compared with patients not taking lithium. We detected no significant differences between BDII patients and controls in the largest such comparison to date. Findings in this study should be interpreted with caution and with careful consideration of the limitations inherent to meta-analyzed neuroimaging comparisons.


Ventricular features as reliable differentiators between bvFTD and other dementias.

  • Ana L Manera‎ et al.
  • NeuroImage. Clinical‎
  • 2022‎

Lateral ventricles are reliable and sensitive indicators of brain atrophy and disease progression in behavioral variant frontotemporal dementia (bvFTD). We aimed to investigate whether an automated tool using ventricular features could improve diagnostic accuracy in bvFTD across neurodegenerative diseases.


Ventriculomegaly in Cavalier King Charles Spaniels with Chiari-like malformation: relationship with clinical and imaging findings.

  • Federica Tirrito‎ et al.
  • The Journal of veterinary medical science‎
  • 2022‎

The objective of this study was to calculate lateral ventricles dimension in Cavalier King Charles Spaniel dogs with Chiari-like malformation and investigate the association between ventriculomegaly and signalment, clinical signs, ventricular asymmetry, grade of Chiari-like malformation, syringomyelia and index of medullary kinking. Retrospectively, 43 client-owned Cavalier King Charles Spaniels, older than 1 year of age, with magnetic resonance imaging diagnosis of Chiari-like malformation were enrolled. Initial and follow-up (up to 36 months) clinical status was graded. Images were reviewed to quantify the enlargement of lateral ventricles, evaluate ventricular symmetry, grade of Chiari-like malformation, grade of syringomyelia and medullary kinking index. Cases presenting epileptic seizures during the evaluation period were also recorded. The most common initial clinical signs were scratching and neck pain. Ventriculomegaly was identified in 70% of dogs, Chiari-like malformation grade 2 was observed in 77% of cases, ventricular asymmetry and syringomyelia were identified in 54% and 80% of dogs, respectively; the median medullary kinking index was 37.77%. Moreover, 28% of dogs presented epileptic seizures. No significant association was identified between dimension of lateral ventricles and signalment, clinical signs, and imaging findings; no significant association was identified between ventriculomegaly and epilepsy (P≥0.05). In conclusion, the prevalence of ventriculomegaly in Cavalier King Charles Spaniels is high but this finding does not seem related to the severity of clinical signs, presence of Chiari-like malformation, syringomyelia and craniocervical junction abnormalities such as medullary kinking.


Contributing factors to advanced brain aging in depression and anxiety disorders.

  • Laura K M Han‎ et al.
  • Translational psychiatry‎
  • 2021‎

Depression and anxiety are common and often comorbid mental health disorders that represent risk factors for aging-related conditions. Brain aging has shown to be more advanced in patients with major depressive disorder (MDD). Here, we extend prior work by investigating multivariate brain aging in patients with MDD, anxiety disorders, or both, and examine which factors contribute to older-appearing brains. Adults aged 18-57 years from the Netherlands Study of Depression and Anxiety underwent structural MRI. A pretrained brain-age prediction model based on >2000 samples from the ENIGMA consortium was applied to obtain brain-predicted age differences (brain PAD, predicted brain age minus chronological age) in 65 controls and 220 patients with current MDD and/or anxiety. Brain-PAD estimates were associated with clinical, somatic, lifestyle, and biological factors. After correcting for antidepressant use, brain PAD was significantly higher in MDD (+2.78 years, Cohen's d = 0.25, 95% CI -0.10-0.60) and anxiety patients (+2.91 years, Cohen's d = 0.27, 95% CI -0.08-0.61), compared with controls. There were no significant associations with lifestyle or biological stress systems. A multivariable model indicated unique contributions of higher severity of somatic depression symptoms (b = 4.21 years per unit increase on average sum score) and antidepressant use (-2.53 years) to brain PAD. Advanced brain aging in patients with MDD and anxiety was most strongly associated with somatic depressive symptomatology. We also present clinically relevant evidence for a potential neuroprotective antidepressant effect on the brain-PAD metric that requires follow-up in future research.


Metabolic phenotyping of pilomotor seizures in autoimmune encephalitis.

  • Yueqian Sun‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2023‎

Ictal piloerection (IP) is an uncommon symptom in focal epilepsy and is associated with autoimmune encephalitis (AE). However, the networks involved in AE-associated IP are still unclear. To have a better understanding of IP underlying mechanisms, the current study investigated whole-brain metabolic networks for the analysis of AE-associated IP.


Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3-90 years.

  • Danai Dima‎ et al.
  • Human brain mapping‎
  • 2022‎

Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.


p107 regulates neural precursor cells in the mammalian brain.

  • Jacqueline L Vanderluit‎ et al.
  • The Journal of cell biology‎
  • 2004‎

Here we show a novel function for Retinoblastoma family member, p107 in controlling stem cell expansion in the mammalian brain. Adult p107-null mice had elevated numbers of proliferating progenitor cells in their lateral ventricles. In vitro neurosphere assays revealed striking increases in the number of neurosphere forming cells from p107(-/-) brains that exhibited enhanced capacity for self-renewal. An expanded stem cell population in p107-deficient mice was shown in vivo by (a) increased numbers of slowly cycling cells in the lateral ventricles; and (b) accelerated rates of neural precursor repopulation after progenitor ablation. Notch1 was up-regulated in p107(-/-) neurospheres in vitro and brains in vivo. Chromatin immunoprecipitation and p107 overexpression suggest that p107 may modulate the Notch1 pathway. These results demonstrate a novel function for p107 that is distinct from Rb, which is to negatively regulate the number of neural stem cells in the developing and adult brain.


Three-Class Differential Diagnosis among Alzheimer Disease, Frontotemporal Dementia, and Controls.

  • Pradeep Reddy Raamana‎ et al.
  • Frontiers in neurology‎
  • 2014‎

Biomarkers derived from brain magnetic resonance (MR) imaging have promise in being able to assist in the clinical diagnosis of brain pathologies. These have been used in many studies in which the goal has been to distinguish between pathologies such as Alzheimer's disease and healthy aging. However, other dementias, in particular, frontotemporal dementia, also present overlapping pathological brain morphometry patterns. Hence, a classifier that can discriminate morphometric features from a brain MRI from the three classes of normal aging, Alzheimer's disease (AD), and frontotemporal dementia (FTD) would offer considerable utility in aiding in correct group identification. Compared to the conventional use of multiple pair-wise binary classifiers that learn to discriminate between two classes at each stage, we propose a single three-way classification system that can discriminate between three classes at the same time. We present a novel classifier that is able to perform a three-class discrimination test for discriminating among AD, FTD, and normal controls (NC) using volumes, shape invariants, and local displacements (three features) of hippocampi and lateral ventricles (two structures times two hemispheres individually) obtained from brain MR images. In order to quantify its utility in correct discrimination, we optimize the three-class classifier on a training set and evaluate its performance using a separate test set. This is a novel, first-of-its-kind comparative study of multiple individual biomarkers in a three-class setting. Our results demonstrate that local atrophy features in lateral ventricles offer the potential to be a biomarker in discriminating among AD, FTD, and NC in a three-class setting for individual patient classification.


Cloned myogenic cells can transdifferentiate in vivo into neuron-like cells.

  • Rachel Sarig‎ et al.
  • PloS one‎
  • 2010‎

The question of whether intact somatic cells committed to a specific differentiation fate, can be reprogrammed in vivo by exposing them to a different host microenvironment is a matter of controversy. Many reports on transdifferentiation could be explained by fusion with host cells or reflect intrinsic heterogeneity of the donor cell population.


Longitudinal tracking of human fetal cells labeled with super paramagnetic iron oxide nanoparticles in the brain of mice with motor neuron disease.

  • Paolo Bigini‎ et al.
  • PloS one‎
  • 2012‎

Stem Cell (SC) therapy is one of the most promising approaches for the treatment of Amyotrophic Lateral Sclerosis (ALS). Here we employed Super Paramagnetic Iron Oxide nanoparticles (SPIOn) and Hoechst 33258 to track human Amniotic Fluid Cells (hAFCs) after transplantation in the lateral ventricles of wobbler (a murine model of ALS) and healthy mice. By in vitro, in vivo and ex vivo approaches we found that: 1) the main physical parameters of SPIOn were maintained over time; 2) hAFCs efficiently internalized SPIOn into the cytoplasm while Hoechst 33258 labeled nuclei; 3) SPIOn internalization did not alter survival, cell cycle, proliferation, metabolism and phenotype of hAFCs; 4) after transplantation hAFCs rapidly spread to the whole ventricular system, but did not migrate into the brain parenchyma; 5) hAFCs survived for a long time in the ventricles of both wobbler and healthy mice; 6) the transplantation of double-labeled hAFCs did not influence mice survival.


Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms.

  • Robin L Carhart-Harris‎ et al.
  • Scientific reports‎
  • 2017‎

Psilocybin with psychological support is showing promise as a treatment model in psychiatry but its therapeutic mechanisms are poorly understood. Here, cerebral blood flow (CBF) and blood oxygen-level dependent (BOLD) resting-state functional connectivity (RSFC) were measured with functional magnetic resonance imaging (fMRI) before and after treatment with psilocybin (serotonin agonist) for treatment-resistant depression (TRD). Quality pre and post treatment fMRI data were collected from 16 of 19 patients. Decreased depressive symptoms were observed in all 19 patients at 1-week post-treatment and 47% met criteria for response at 5 weeks. Whole-brain analyses revealed post-treatment decreases in CBF in the temporal cortex, including the amygdala. Decreased amygdala CBF correlated with reduced depressive symptoms. Focusing on a priori selected circuitry for RSFC analyses, increased RSFC was observed within the default-mode network (DMN) post-treatment. Increased ventromedial prefrontal cortex-bilateral inferior lateral parietal cortex RSFC was predictive of treatment response at 5-weeks, as was decreased parahippocampal-prefrontal cortex RSFC. These data fill an important knowledge gap regarding the post-treatment brain effects of psilocybin, and are the first in depressed patients. The post-treatment brain changes are different to previously observed acute effects of psilocybin and other 'psychedelics' yet were related to clinical outcomes. A 'reset' therapeutic mechanism is proposed.


Macro- and microstructural changes in cosmonauts' brains after long-duration spaceflight.

  • Steven Jillings‎ et al.
  • Science advances‎
  • 2020‎

Long-duration spaceflight causes widespread physiological changes, although its effect on brain structure remains poorly understood. In this work, we acquired diffusion magnetic resonance imaging to investigate alterations of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) compositions in each voxel, before, shortly after, and 7 months after long-duration spaceflight. We found increased WM in the cerebellum after spaceflight, providing the first clear evidence of sensorimotor neuroplasticity. At the region of interest level, this increase persisted 7 months after return to Earth. We also observe a widespread redistribution of CSF, with concomitant changes in the voxel fractions of adjacent GM. We show that these GM changes are the result of morphological changes rather than net tissue loss, which remained unclear from previous studies. Our study provides evidence of spaceflight-induced neuroplasticity to adapt motor strategies in space and evidence of fluid shift-induced mechanical changes in the brain.


Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis.

  • S Weiss‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 1996‎

Neural stem cells in the lateral ventricles of the adult mouse CNS participate in repopulation of forebrain structures in vivo and are amenable to in vitro expansion by epidermal growth factor (EGF). There have been no reports of stem cells in more caudal brain regions or in the spinal cord of adult mammals. In this study we found that although ineffective alone, EGF and basic fibroblast growth factor (bFGF) cooperated to induce the proliferation, self-renewal, and expansion of neural stem cells isolated from the adult mouse thoracic spinal cord. The proliferating stem cells, in both primary culture and secondary expanded clones, formed spheres of undifferentiated cells that were induced to differentiate into neurons, astrocytes, and oligodendrocytes. Neural stem cells, whose proliferation was dependent on EGF+bFGF, were also isolated from the lumbar/sacral segment of the spinal cord as well as the third and fourth ventricles (but not adjacent brain parenchyma). Although all of the stem cells examined were similarly multipotent and expandable, quantitative analyses demonstrated that the lateral ventricles (EGF-dependent) and lumbar/sacral spinal cord (EGF+bFGF-dependent) yielded the greatest number of these cells. Thus, the spinal cord and the entire ventricular neuroaxis of the adult mammalian CNS contain multipotent stem cells, present at variable frequency and with unique in vitro activation requirements.


Clinical Significance of the CSF Pulsation Flow Sign in the Foramen of Monro on FLAIR in Patients with Aneurysmal SAH -Preliminary Report.

  • Rie Aoki‎ et al.
  • Neurologia medico-chirurgica‎
  • 2019‎

It is known that the cerebrospinal fluid (CSF) pulsation flow sign in the lateral ventricles directly above the foramen of Monro (CPF-M) on axial fluid attenuated inversion recovery (FLAIR) is a normal physiological finding as an artifact of FLAIR. In this study, whether CPF-M can be used as a neuroradiological finding related to pathological conditions in patients with acute aneurysmal subarachnoid hemorrhage (aSAH) was investigated. CPF-M-related clinical features were retrospectively evaluated in 147 aSAH patients who underwent adequate serial MRI examinations without massive intraventricular hemorrhage (IVH) of the lateral ventricle within 48 h of ictus. The frequency of the CPF-M in the control group was 32% (57/178), 33% (40/123), and 38% (45/117) for the normal control, chronic cerebral infarction, and deep white matter lesion (WML) groups, respectively. In aSAH patients, the overall prevalence of the CPF-M was 57% (84/147), significantly higher than in the three control groups. Multivariate analysis showed that age <70 years, lower IVH Hijdra score of the fourth ventricle, absence of T1-FLAIR mismatch, deep WMLs, old infarction, diffuse brain swelling, symptomatic delayed cerebral ischemia (DCI), shunt-dependent chronic hydrocephalus (SDCH), and favorable outcome were significantly associated with the CPF-M. Although limited to SAH patients without massive IVH of the lateral ventricles, one can conclude that, in acute aSAH, the presence of CPF-M on admission MRI suggests that the circulatory dynamics of the CSF from the basal cistern to the ventricles are approximately normal. Thus, this finding may appear to offer an indicator of a good outcome without DCI and SDCH.


A Functional Switch of NuRD Chromatin Remodeling Complex Subunits Regulates Mouse Cortical Development.

  • Justyna Nitarska‎ et al.
  • Cell reports‎
  • 2016‎

Histone modifications and chromatin remodeling represent universal mechanisms by which cells adapt their transcriptional response to rapidly changing environmental conditions. Extensive chromatin remodeling takes place during neuronal development, allowing the transition of pluripotent cells into differentiated neurons. Here, we report that the NuRD complex, which couples ATP-dependent chromatin remodeling with histone deacetylase activity, regulates mouse brain development. Subunit exchange of CHDs, the core ATPase subunits of the NuRD complex, is required for distinct aspects of cortical development. Whereas CHD4 promotes the early proliferation of progenitors, CHD5 facilitates neuronal migration and CHD3 ensures proper layer specification. Inhibition of each CHD leads to defects of neuronal differentiation and migration, which cannot be rescued by expressing heterologous CHDs. Finally, we demonstrate that NuRD complexes containing specific CHDs are recruited to regulatory elements and modulate the expression of genes essential for brain development.


Neurotensin Receptor-1 Identifies a Subset of Ventral Tegmental Dopamine Neurons that Coordinates Energy Balance.

  • Hillary L Woodworth‎ et al.
  • Cell reports‎
  • 2017‎

Dopamine (DA) neurons in the ventral tegmental area (VTA) are heterogeneous and differentially regulate ingestive and locomotor behaviors that affect energy balance. Identification of which VTA DA neurons mediate behaviors that limit weight gain has been hindered, however, by the lack of molecular markers to distinguish VTA DA populations. Here, we identified a specific subset of VTA DA neurons that express neurotensin receptor-1 (NtsR1) and preferentially comprise mesolimbic, but not mesocortical, DA neurons. Genetically targeted ablation of VTA NtsR1 neurons uncouples motivated feeding and physical activity, biasing behavior toward energy expenditure and protecting mice from age-related and diet-induced weight gain. VTA NtsR1 neurons thus represent a molecularly defined subset of DA neurons that are essential for the coordination of energy balance. Modulation of VTA NtsR1 neurons may therefore be useful to promote behaviors that prevent the development of obesity.


Deterministic progenitor behavior and unitary production of neurons in the neocortex.

  • Peng Gao‎ et al.
  • Cell‎
  • 2014‎

Radial glial progenitors (RGPs) are responsible for producing nearly all neocortical neurons. To gain insight into the patterns of RGP division and neuron production, we quantitatively analyzed excitatory neuron genesis in the mouse neocortex using Mosaic Analysis with Double Markers, which provides single-cell resolution of progenitor division patterns and potential in vivo. We found that RGPs progress through a coherent program in which their proliferative potential diminishes in a predictable manner. Upon entry into the neurogenic phase, individual RGPs produce ?8-9 neurons distributed in both deep and superficial layers, indicating a unitary output in neuronal production. Removal of OTX1, a transcription factor transiently expressed in RGPs, results in both deep- and superficial-layer neuron loss and a reduction in neuronal unit size. Moreover, ?1/6 of neurogenic RGPs proceed to produce glia. These results suggest that progenitor behavior and histogenesis in the mammalian neocortex conform to a remarkably orderly and deterministic program.


Decreased CSF clearance and increased brain amyloid in Alzheimer's disease.

  • Yi Li‎ et al.
  • Fluids and barriers of the CNS‎
  • 2022‎

In sporadic Alzheimer's disease (AD), brain amyloid-beta (Aβ) deposition is believed to be a consequence of impaired Aβ clearance, but this relationship is not well established in living humans. CSF clearance, a major feature of brain glymphatic clearance (BGC), has been shown to be abnormal in AD murine models. MRI phase contrast and intrathecally delivered contrast studies have reported reduced CSF flow in AD. Using PET and tau tracer 18F-THK5117, we previously reported that the ventricular CSF clearance of the PET tracer was reduced in AD and associated with elevated brain Aβ levels.


Chronic-Progressive Dopaminergic Deficiency Does Not Induce Midbrain Neurogenesis.

  • Mareike Fauser‎ et al.
  • Cells‎
  • 2021‎

Consecutive adult neurogenesis is a well-known phenomenon in the ventricular-subventricular zone of the lateral wall of the lateral ventricles (V-SVZ) and has been controversially discussed in so-called "non-neurogenic" brain areas such as the periventricular regions (PVRs) of the aqueduct and the fourth ventricle. Dopamine is a known modulator of adult neural stem cell (aNSC) proliferation and dopaminergic neurogenesis in the olfactory bulb, though a possible interplay between local dopaminergic neurodegeneration and induction of aNSC proliferation in mid/hindbrain PVRs is currently enigmatic.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: