Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 598 papers

Endogenous µ-opioid receptor activity in the lateral and capsular subdivisions of the right central nucleus of the amygdala prevents chronic postoperative pain.

  • Andrew H Cooper‎ et al.
  • Journal of neuroscience research‎
  • 2022‎

Tissue injury induces a long-lasting latent sensitization (LS) of spinal nociceptive signaling that is kept in remission by an opposing µ-opioid receptor (MOR) constitutive activity. To test the hypothesis that supraspinal sites become engaged, we induced hindpaw inflammation, waited 3 weeks for mechanical hypersensitivity to resolve, and then injected the opioid receptor inhibitors naltrexone, CTOP or β-funaltrexamine subcutaneously, and/or into the cerebral ventricles. Intracerebroventricular injection of each inhibitor reinstated hypersensitivity and produced somatic signs of withdrawal, indicative of LS and endogenous opioid dependence, respectively. In naïve or sham controls, systemic naloxone (3 mg/kg) produced conditioned place aversion, and systemic naltrexone (3 mg/kg) increased Fos expression in the central nucleus of the amygdala (CeA). In LS animals tested 3 weeks after plantar incision, systemic naltrexone reinstated mechanical hypersensitivity and produced an even greater increase in Fos than in sham controls, particularly in the capsular subdivision of the right CeA. One third of Fos+ profiles co-expressed protein kinase C delta (PKCδ), and 35% of PKCδ neurons co-expressed tdTomato+ in Oprm1Cre ::tdTomato transgenic mice. CeA microinjection of naltrexone (1 µg) reinstated mechanical hypersensitivity only in male mice and did not produce signs of somatic withdrawal. Intra-CeA injection of the MOR-selective inhibitor CTAP (300 ng) reinstated hypersensitivity in both male and female mice. We conclude that MORs in the capsular subdivision of the right CeA prevent the transition from acute to chronic postoperative pain.


Studies of cerebrospinal fluid flow and penetration into brain following lateral ventricle and cisterna magna injections of the tracer [14C]inulin in rat.

  • M G Proescholdt‎ et al.
  • Neuroscience‎
  • 2000‎

Parasynaptic communication, also termed volume transmission, has been suggested as an important means to mediate information transfer within the central nervous system. The purpose of the present study was to visualize by autoradiography the available channels for fluid movement within the extracellular space following injection of the inert extracellular marker [14C]inulin into the lateral ventricle or cisterna magna. Bolus injections of 5 microl of 1 microCi of [14C]inulin were made in awake rats via chronically implanted cannulae. After survival times ranging from 5 min to 4 h, brains were processed for in vivo autoradiography. At 5 min the tracer distributed throughout the ventricles, subarachnoid spaces and cisterns "downstream" of the injection sites. Penetration into the brain from these sites was complex with preferential entry along the ventral side of the brain, especially into the hypothalamus and brainstem. By 4 h virtually the entire brain was labeled irrespective of the site of tracer application. Sustained tracer entry from subarachnoid spaces suggests that some areas act as depots to trap circulating material. This mechanism may contribute to the pattern of deep penetration at later time-points. The spatial and temporal characteristics of fluid movement throughout the brain are instructive in the interpretation of many experimental procedures involving injection of molecules into the cerebrospinal fluid.


Proliferation and Glia-Directed Differentiation of Neural Stem Cells in the Subventricular Zone of the Lateral Ventricle and the Migratory Pathway to the Lesions after Cortical Devascularization of Adult Rats.

  • Feng Wan‎ et al.
  • BioMed research international‎
  • 2016‎

We investigated the effects of cortical devascularization on the proliferation, differentiation, and migration of neural stem cells (NSCs) in the subventricular zone (SVZ) of the lateral ventricle of adult rats. 60 adult male Wistar rats were randomly divided into control group and devascularized group. At 15 and 30 days after cerebral cortices were devascularized, rats were euthanized and immunohistochemical analysis was performed. The number of PCNA-, Vimentin-, and GFAP-positive cells in the bilateral SVZ of the lateral wall and the superior wall of the lateral ventricles of 15- and 30-day devascularized groups increased significantly compared with the control group (P < 0.05 and P < 0.01). The area density of PCNA-, Vimentin-, and GFAP-positive cells in cortical lesions of 15- and 30-day devascularized groups increased significantly compared with the control group (P < 0.05 and P < 0.01). PCNA-, GFAP-, and Vimentin-positive cells in the SVZ migrated through the rostral migratory stream (RMS), and PCNA-, GFAP-, and Vimentin-positive cells from both the ipsilateral and contralateral dorsolateral SVZ (dl-SVZ) migrated into the corpus callosum (CC) and accumulated, forming a migratory pathway within the CC to the lesioned site. Our study suggested that cortical devascularization induced proliferation, glia-directed differentiation, and migration of NSCs from the SVZ through the RMS or directly to the corpus callosum and finally migrating radially to cortical lesions. This may play a significant role in neural repair.


Effects of Aftermarket Electronic Cigarette Pods on Device Power Output and Nicotine, Carbonyl, and ROS Emissions.

  • Soha Talih‎ et al.
  • Chemical research in toxicology‎
  • 2023‎

Aftermarket pods designed to operate with prevalent electronic nicotine delivery system (ENDS) products such as JUUL are marketed as low-cost alternatives that allow the use of banned flavored liquids. Subtle differences in the design or construction of aftermarket pods may intrinsically modify the performance of the ENDS device and the resulting nicotine and toxicant emissions relative to the original equipment manufacturer's product. In this study, we examined the electrical output of a JUUL battery and the aerosol emissions when four different brands of aftermarket pods filled with an analytical-grade mixture of propylene glycol, glycerol, and nicotine were attached to it and puffed by machine. The aerosol emissions examined included total particulate matter (TPM), nicotine, carbonyl compounds (CCs), and reactive oxygen species (ROS). We also compared the puff-resolved power and TPM outputs of JUUL and aftermarket pods. We found that all aftermarket pods drew significantly greater electrical power from the JUUL battery during puffing and had different electrical resistances and resistivity. In addition, unlike the case with the original pods, we found that with the aftermarket pods, the power provided by the battery did not vary greatly with flow rate or puff number, suggesting impairment of the temperature control circuitry of the JUUL device when used with the aftermarket pods. The greater power output with the aftermarket pods resulted in up to three times greater aerosol and nicotine output than the original product. ROS and CC emissions varied widely across brands. These results highlight that the use of aftermarket pods can greatly modify the performance and emissions of ENDS. Consumers and public health authorities should be made aware of the potential increase in the level of toxicant exposure when aftermarket pods are employed.


Assessing pulsatile waveforms of paravascular cerebrospinal fluid dynamics within the glymphatic pathways using dynamic diffusion-weighted imaging (dDWI).

  • Qiuting Wen‎ et al.
  • NeuroImage‎
  • 2022‎

Cerebrospinal fluid (CSF) in the paravascular spaces of the surface arteries (sPVS) is a vital pathway in brain waste clearance. Arterial pulsations may be the driving force of the paravascular flow, but its pulsatile pattern remains poorly characterized, and no clinically practical method for measuring its dynamics in the human brain is available. In this work, we introduce an imaging and quantification framework for in-vivo non-invasive assessment of pulsatile fluid dynamics in the sPVS. It used dynamic Diffusion-Weighted Imaging (dDWI) at a lower b-values of 150s/mm2 and retrospective gating to detect the slow flow of CSF while suppressing the fast flow of adjacent arterial blood. The waveform of CSF flow over a cardiac cycle was revealed by synchronizing the measurements with the heartbeat. A data-driven approach was developed to identify sPVS and allow automatic quantification of the whole-brain fluid waveforms. We applied dDWI to twenty-five participants aged 18-82 y/o. Results demonstrated that the fluid waveforms across the brain showed an explicit cardiac-cycle dependency, in good agreement with the vascular pumping hypothesis. Furthermore, the shape of the CSF waveforms closely resembled the pressure waveforms of the artery wall, suggesting that CSF dynamics is tightly related to artery wall mechanics. Finally, the CSF waveforms in aging participants revealed a strong age effect, with a significantly wider systolic peak observed in the older relative to younger participants. The peak widening may be associated with compromised vascular compliance and vessel wall stiffening in the older brain. Overall, the results demonstrate the feasibility, reproducibility, and sensitivity of dDWI for detecting sPVS fluid dynamics of the human brain. Our preliminary data suggest age-related alterations of the paravascular pumping. With an acquisition time of under six minutes, dDWI can be readily applied to study fluid dynamics in normal physiological conditions and cerebrovascular/neurodegenerative diseases.


Enhancement of Benzene Emissions in Special Combinations of Electronic Nicotine Delivery System Liquid Mixtures.

  • Fatima El Hajj Moussa‎ et al.
  • Chemical research in toxicology‎
  • 2024‎

Electronic nicotine delivery systems (ENDS) are battery-powered devices introduced to the market as safer alternatives to combustible cigarettes. Upon heating the electronic liquid (e-liquid), aerosols are released, including several toxicants, such as volatile organic compounds (VOCs). Benzene has been given great attention as a major component of the VOCs group as it increases cancer risk upon inhalation. In this study, several basic e-liquids were tested for benzene emissions. The Aerosol Lab Vaping Instrument was used to generate aerosols from ENDS composed of different e-liquid combinations: vegetable glycerin (VG), propylene glycol (PG), nicotine (nic), and benzoic acid (BA). The tested mixtures included PG, PG + nic + BA, VG, VG + nic + BA, 30/70 PG/VG, and 30/70 PG/VG + nic + BA. A carboxen polydimethylsiloxane fiber for a solid-phase microextraction was placed in a gas cell to trap benzene emitted from a Sub-Ohm Minibox C device. Benzene was adsorbed on the fiber during the puffing process and for an extra 15 min until it reached equilibrium, and then it was determined using gas chromatography-mass spectrometry. Benzene was quantified in VG but not in PG or the 30/70 PG/VG mixtures. However, benzene concentration increased in all tested mixtures upon the addition of nicotine benzoate salt. Interestingly, benzene was emitted at the highest concentration when BA was added to PG. However, lower concentrations were found in the 30/70 PG/VG and VG mixtures with BA. Both VG and BA are sources of benzene. Enhanced emissions, however, are mostly noticeable when BA is mixed with PG and not VG.


4-Aminopyridine ameliorates mobility but not disease course in an animal model of multiple sclerosis.

  • Kerstin Göbel‎ et al.
  • Experimental neurology‎
  • 2013‎

Neuropathological changes following demyelination in multiple sclerosis (MS) lead to a reorganization of axolemmal channels that causes conduction changes including conduction failure. Pharmacological modulation of voltage-sensitive potassium channels (K(V)) has been found to improve conduction in experimentally induced demyelination and produces symptomatic improvement in MS patients. Here we used an animal model of autoimmune inflammatory neurodegeneration, namely experimental autoimmune encephalomyelitis (EAE), to test the influence of the K(V)-inhibitor 4-aminopyridine (4-AP) on various disease and immune parameters as well as mobility in MOG₃₅₋₅₅ immunized C57Bl/6 mice. We challenged the hypothesis that 4-AP exerts relevant immunomodulatory or neuroprotective properties. Neither prophylactic nor therapeutic treatment with 4-AP altered disease incidence or disease course of EAE. Histopathological signs of demyelination and neuronal damage as well as MRI imaging of brain volume changes were unaltered. While application of 4-AP significantly reduced the standing outward current of stimulated CD4(+) T cells compared to controls, it failed to impact intracellular calcium concentrations in these cells. Compatibly, KV channel inhibition neither influenced CD4(+) T cell effector functions (proliferation, IL17 or IFNγ production). Importantly however, despite equal disease severity scores 4-AP treated animals showed improved mobility as assessed by 2 independent methods, 1) foot print and 2) rotarod analysis (0.332 ± 0.03, n=7 versus 0.399 ± 0.08, n=14, p<0.001, respectively). Our data suggest that 4-AP while having no apparent immunomodulatory or direct neuroprotective effects, significantly ameliorates conduction abnormalities thereby improving gait and coordination. Improvement of mobility in this experimental model supports trial data and clinical experience with 4-AP in the symptomatic treatment of MS.


Correlation between tomographic scales and vasospasm and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage.

  • Milagros Gomez Haedo‎ et al.
  • Critical care science‎
  • 2023‎

To determine the prevalence of sonographic vasospasm and delayed ischemic deficit in patients with aneurysmal subarachnoid hemorrhage, to evaluate the correlation between different tomographic scales and these complications, and to study prognostic factors in this group of patients.


Meta-analysis of regional white matter volume in bipolar disorder with replication in an independent sample using coordinates, T-maps, and individual MRI data.

  • Stefania Pezzoli‎ et al.
  • Neuroscience and biobehavioral reviews‎
  • 2018‎

Converging evidence suggests that bipolar disorder (BD) is associated with white matter (WM) abnormalities. Meta-analyses of voxel based morphometry (VBM) data is commonly performed using published coordinates, however this method is limited since it ignores non-significant data. Obtaining statistical maps from studies (T-maps) as well as raw MRI datasets increases accuracy and allows for a comprehensive analysis of clinical variables. We obtained coordinate data (7-studies), T-Maps (12-studies, including unpublished data) and raw MRI datasets (5-studies) and analysed the 24 studies using Seed-based d Mapping (SDM). A VBM analysis was conducted to verify the results in an independent sample. The meta-analysis revealed decreased WM volume in the posterior corpus callosum extending to WM in the posterior cingulate cortex. This region was significantly reduced in volume in BD patients in the independent dataset (p=0.003) but there was no association with clinical variables. We identified a robust WM volume abnormality in BD patients that may represent a trait marker of the disease and used a novel methodology to validate the findings.


Impacts of spaceflight experience on human brain structure.

  • Heather R McGregor‎ et al.
  • Scientific reports‎
  • 2023‎

Spaceflight induces widespread changes in human brain morphology. It is unclear if these brain changes differ with varying mission duration or spaceflight experience history (i.e., novice or experienced, number of prior missions, time between missions). Here we addressed this issue by quantifying regional voxelwise changes in brain gray matter volume, white matter microstructure, extracellular free water (FW) distribution, and ventricular volume from pre- to post-flight in a sample of 30 astronauts. We found that longer missions were associated with greater expansion of the right lateral and third ventricles, with the majority of expansion occurring during the first 6 months in space then appearing to taper off for longer missions. Longer inter-mission intervals were associated with greater expansion of the ventricles following flight; crew with less than 3 years of time to recover between successive flights showed little to no enlargement of the lateral and third ventricles. These findings demonstrate that ventricle expansion continues with spaceflight with increasing mission duration, and inter-mission intervals less than 3 years may not allow sufficient time for the ventricles to fully recover their compensatory capacity. These findings illustrate some potential plateaus in and boundaries of human brain changes with spaceflight.


Long-term cognitive and somatic outcomes of enzyme replacement therapy in untransplanted Hurler syndrome.

  • Julie B Eisengart‎ et al.
  • Molecular genetics and metabolism reports‎
  • 2017‎

Mucopolysaccharidosis type I (MPS I) was added to the Recommended Uniform Screening Panel for newborn screening in 2016, highlighting recognition that early treatment of MPS I is critical to stem progressive, irreversible disease manifestations. Enzyme replacement therapy (ERT) is an approved treatment for all MPS I phenotypes, but because the severe form (MPS IH, Hurler syndrome) involves rapid neurocognitive decline, the impermeable blood-brain-barrier is considered an obstacle for ERT. Instead, hematopoietic cell transplantation (HCT) has long been recommended, as it is believed to be the only therapy that arrests neurocognitive decline. Yet ERT monotherapy has never been compared to HCT, because it is unethically unacceptable to evaluate a therapeutic alternative to one shown to treat Central Nervous System (CNS) disease. An unusual opportunity to address this question is presented with this clinical report of a 16-year-old female with MPS IH treated only with ERT since her diagnosis at age 2. Neurological functioning was stable until cervical spinal cord compression at age 8, hydrocephalus at age 11, and neurocognitive declines beginning at age 10. Somatic disease burden is significant for first degree AV block, restrictive lung disease, bilateral hearing loss, severe corneal clouding, joint pain/limitations requiring mobility assistance, and short stature. This patient's extended survival and prolonged intact neurocognitive functioning depart from the untreated natural history of MPS IH. Disease burden typically controlled by HCT emerged. Although not anticipated to provide benefit for CNS disease, ERT may have provided some amelioration or slowing of neurocognitive deterioration.


Melatonin reduces β-amyloid accumulation and improves short-term memory in streptozotocin-induced sporadic Alzheimer's disease model.

  • Marcos K Andrade‎ et al.
  • IBRO neuroscience reports‎
  • 2023‎

Melatonin is a hormone secreted by the pineal gland, it can be associated with circadian rhythms, aging and neuroprotection. Melatonin levels are decreased in sporadic Alzheimer's disease (sAD) patients, which suggests a relationship between the melatonergic system and sAD. Melatonin may reduce inflammation, oxidative stress, TAU protein hyperphosphorylation, and the formation of β-amyloid (Aβ) aggregates. Therefore, the objective of this work was to investigate the impact of treatment with 10 mg/kg of melatonin (i.p) in the animal model of sAD induced by the intracerebroventricular (ICV) infusion of 3 mg/kg of streptozotocin (STZ). ICV-STZ causes changes in the brain of rats similar to those found in patients with sAD. These changes include; progressive memory decline, the formation of neurofibrillary tangles, senile plaques, disturbances in glucose metabolism, insulin resistance and even reactive astrogliosis characterized by the upregulation of glucose levels and glial fibrillary acidic protein (GFAP). The results show that ICV-STZ caused short-term spatial memory impairment in rats after 30 days of STZ infusion without locomotor impairment which was evaluated on day 27 post-injury. Furthermore, we observed that a prolonged 30-day treatment with melatonin can improve the cognitive impairment of animals in the Y-maze test, but not in the object location test. Finally, we demonstrated that animals receiving ICV-STZ have high levels of Aβ and GFAP in the hippocampus and that treatment with melatonin reduces Aβ levels but does not reduce GFAP levels, concluding that melatonin may be useful to control the progression of amyloid pathology in the brain.


A change in brain white matter after shunt surgery in idiopathic normal pressure hydrocephalus: a tract-based spatial statistics study.

  • Shigenori Kanno‎ et al.
  • Fluids and barriers of the CNS‎
  • 2017‎

The aim of this study was to elucidate changes in cerebral white matter after shunt surgery in idiopathic normal pressure hydrocephalus (INPH) using diffusion tensor imaging (DTI).


Intraventricular cerebrospinal fluid temperature analysis using MR diffusion-weighted imaging thermometry in Parkinson's disease patients, multiple system atrophy patients, and healthy subjects.

  • Kaoru Sumida‎ et al.
  • Brain and behavior‎
  • 2015‎

We examined the temperature of the intraventricular cerebrospinal fluid (Tv) in patients with Parkinson's disease (PD) and those with multiple system atrophy (MSA) in comparison with healthy subjects, and we examined normal changes in this temperature with aging.


Anatomical Involvement of the Subventricular Zone Predicts Poor Survival Outcome in Low-Grade Astrocytomas.

  • Shuai Liu‎ et al.
  • PloS one‎
  • 2016‎

The subventricular zone (SVZ) has been implicated in the origination, development, and biological behavior of gliomas. Tumor-SVZ contact is also postulated to be a poor prognostic factor in glioblastomas. We aimed to evaluate the prognostic consequence of the anatomical involvement of low-grade gliomas with the SVZ. To that end, we reviewed 143 patients with diffuse astrocytomas, and tumor lesions were manually delineated on magnetic resonance images. We initially investigated the prognostic role of SVZ contact in all patients. Additionally, we investigated the influence of the anatomical proximity of the tumor lesion centroids to the SVZ in the SVZ-involved patient cohorts, as well as location within the SVZ. We found SVZ contact with tumors to be a significant prognostic factor of overall survival in all patients with diffuse astrocytomas (p = 0.027). In the SVZ-involved cohort, a shorter distance from the tumor centroid to the SVZ (≤30 mm) correlated with shorter overall survival (p = 0.022) on univariate analysis. However, there was no significant difference in overall survival with respect to the SVZ region involved with the tumor (p = 0.930). Multivariate analysis showed that a shorter distance between the tumor centroid and the SVZ (p = 0.039) was significantly associated with poor overall survival in SVZ-involved patients. Hence, this study helps establish the prognostic role of the anatomical interaction of tumors with the SVZ in low-grade astrocytomas.


Changes in intrinsic local connectivity after reading intervention in children with autism.

  • Jose O Maximo‎ et al.
  • Brain and language‎
  • 2017‎

Most of the existing behavioral and cognitive intervention programs in autism spectrum disorders (ASD) have not been tested at the neurobiological level, thus falling short of finding quantifiable neurobiological changes underlying behavioral improvement. The current study takes a translational neuroimaging approach to test the impact of a structured visual imagery-based reading intervention on improving reading comprehension and assessing its underlying local neural circuitry. Behavioral and resting state functional MRI (rs-fMRI) data were collected from children with ASD who were randomly assigned to an Experimental group (ASD-EXP; n=14) and a Wait-list control group (ASD-WLC; n=14). Participants went through an established reading intervention training program (Visualizing and Verbalizing for language comprehension and thinking or V/V; 4-h per day, 10-weeks, 200h of face-to-face instruction). Local functional connectivity was examined using a connection density approach from graph theory focusing on brain areas considered part of the Reading Network. The main results are as follows: (I) the ASD-EXP group showed significant improvement, compared to the ASD-WLC group, in their reading comprehension ability evidenced from change in comprehension scores; (II) the ASD-EXP group showed increased local brain connectivity in Reading Network regions compared to the ASD-WLC group post-intervention; (III) intervention-related changes in local brain connectivity were observed in the ASD-EXP from pre to post-intervention; and (IV) improvement in language comprehension significantly predicted changes in local connectivity. The findings of this study provide novel insights into brain plasticity in children with developmental disorders using targeted intervention programs.


Internal capsule size associated with outcome in first-episode schizophrenia.

  • Thomas Wobrock‎ et al.
  • European archives of psychiatry and clinical neuroscience‎
  • 2009‎

Subtle structural brain abnormalities are an established finding in first-episode psychosis. Nevertheless their relationship to the clinical course of schizophrenia is controversially discussed. In a multicentre study 45 first-episode schizophrenia patients (FE-SZ) underwent standardized MRI scanning and were followed up to 1 year. In 32 FE-SZ volumetric measurement of three regions of interests (ROIs) potentially associated with disease course, hippocampus, lateral ventricle and the anterior limb of the internal capsule (ALIC) could be performed. The subgroups of FE-SZ with good (12 patients) and poor outcome (11 patients), defined by a clinically relevant change of the PANSS score, were compared with regard to these volumetric measures. Multivariate analysis of covariance revealed a significant reduced maximal cross sectional area of the left ALIC in FE-SZ with clinically relevant deterioration compared to those with stable psychopathology. There were no differences in the other selected ROIs between the two subgroups. In conclusion, reduced maximal area of ALIC, which can be interpreted as a disturbance of fronto-thalamic connectivity, is associated with poor outcome during the 1 year course of first-episode schizophrenia.


Corticospinal tract abnormalities and ventricular dilatation: A transdiagnostic comparative tractography study.

  • Alessia Sarica‎ et al.
  • NeuroImage. Clinical‎
  • 2021‎

Microstructural alterations of corticospinal tract (CST) have been found in idiopathic normal pressure hydrocephalus (iNPH). No study, however, investigated the effect of ventricular dilatation on CST in Progressive Supranuclear Palsy (PSP).


In vivo MRI analysis of an inflammatory injury in the developing brain.

  • G A Lodygensky‎ et al.
  • Brain, behavior, and immunity‎
  • 2010‎

Cerebral periventricular white matter injury stands as a leading cause of cognitive, behavioral and motor impairment in preterm infants. There is epidemiological and histopathological evidence demonstrating the role of prenatal or neonatal inflammation in brain injury in preterm infants. In order to define the effect of an inflammatory insult in the developing brain on magnetic resonance (MR) imaging, we obtained high resolution conventional and diffusion MR images of the brain of rat pups after an inflammatory injury. Rat pups were subjected on postnatal day 5 (P5) to a stereotaxic injection of lipopolysaccharide in the corpus callosum and then imaged at 11.7 T on days 0, 2 and 4 following the injury. They were subsequently sacrificed for immunohistochemistry. Diffusion tensor imaging (DTI) acquired at high spatial resolution showed an initial reduction of the apparent diffusion coefficient (ADC) in the white matter. This was followed by an increase in ADC value and in T2 relaxation time constant in the white matter, with an associated increase of radial diffusivity of the corpus callosum, and a 10-fold increase in ventricular size. On histology, these MR changes corresponded to widespread astrogliosis, and decreased proportion of the section areas containing cresyl violet positive stain. The increase in radial diffusivity, typically attributed to myelin loss, occurred in this case despite the absence of myelin at this developmental stage.


A multi-reader comparison of normal-appearing white matter normalization techniques for perfusion and diffusion MRI in brain tumors.

  • Nicholas S Cho‎ et al.
  • Neuroradiology‎
  • 2023‎

There remains no consensus normal-appearing white matter (NAWM) normalization method to compute normalized relative cerebral blood volume (nrCBV) and apparent diffusion coefficient (nADC) in brain tumors. This reader study explored nrCBV and nADC differences using different NAWM normalization methods.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: