Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 5 showing 81 ~ 100 papers out of 598 papers

Ventriculomegaly associated with ependymal gliosis and declines in barrier integrity in the aging human and mouse brain.

  • Brett A Shook‎ et al.
  • Aging cell‎
  • 2014‎

Age-associated ventriculomegaly is typically attributed to neurodegeneration; however, additional factors might initiate or contribute to progressive ventricular expansion. By directly linking postmortem human MRI sequences with histological features of periventricular tissue, we show that substantial lateral ventricle surface gliosis is associated with ventriculomegaly. To examine whether loss of ependymal cell coverage resulting in ventricle surface glial scarring can lead directly to ventricle enlargement independent of any other injury or degenerative loss, we modeled in mice the glial scarring found along the lateral ventricle surface in aged humans. Neuraminidase, which cleaves glycosidic linkages of apical adherens junction proteins, was administered intracerebroventricularly to denude areas of ependymal cells. Substantial ependymal cell loss resulted in reactive gliosis rather than stem cell-mediated regenerative repair of the ventricle lining, and the gliotic regions showed morphologic and phenotypic characteristics similar to those found in aged humans. Increased levels of aquaporin-4, indicative of edema, observed in regions of periventricular gliosis in human tissue were also replicated in our mouse model. 3D modeling together with volume measurements revealed that mice with ventricle surface scarring developed expanded ventricles, independent of neurodegeneration. Through a comprehensive, comparative analysis of the lateral ventricles and associated periventricular tissue in aged humans and mouse, followed by modeling of surface gliosis in mice, we have demonstrated a direct link between lateral ventricle surface gliosis and ventricle enlargement. These studies highlight the importance of maintaining an intact ependymal cell lining throughout aging.


Quasi-diffusion magnetic resonance imaging (QDI): A fast, high b-value diffusion imaging technique.

  • Thomas R Barrick‎ et al.
  • NeuroImage‎
  • 2020‎

To enable application of non-Gaussian diffusion magnetic resonance imaging (dMRI) techniques in large-scale clinical trials and facilitate translation to clinical practice there is a requirement for fast, high contrast, techniques that are sensitive to changes in tissue structure which provide diagnostic signatures at the early stages of disease. Here we describe a new way to compress the acquisition of multi-shell b-value diffusion data, Quasi-Diffusion MRI (QDI), which provides a probe of subvoxel tissue complexity using short acquisition times (1-4 ​min). We also describe a coherent framework for multi-directional diffusion gradient acquisition and data processing that allows computation of rotationally invariant quasi-diffusion tensor imaging (QDTI) maps. QDI is a quantitative technique that is based on a special case of the Continuous Time Random Walk model of diffusion dynamics and assumes the presence of non-Gaussian diffusion properties within tissue microstructure. QDI parameterises the diffusion signal attenuation according to the rate of decay (i.e. diffusion coefficient, D in mm2 s-1) and the shape of the power law tail (i.e. the fractional exponent, α). QDI provides analogous tissue contrast to Diffusional Kurtosis Imaging (DKI) by calculation of normalised entropy of the parameterised diffusion signal decay curve, Hn, but does so without the limitations of a maximum b-value. We show that QDI generates images with superior tissue contrast to conventional diffusion imaging within clinically acceptable acquisition times of between 84 and 228 ​s. We show that QDI provides clinically meaningful images in cerebral small vessel disease and brain tumour case studies. Our initial findings suggest that QDI may be added to routine conventional dMRI acquisitions allowing simple application in clinical trials and translation to the clinical arena.


Hydrocephalus in Nfix-/- Mice Is Underpinned by Changes in Ependymal Cell Physiology.

  • Danyon Harkins‎ et al.
  • Cells‎
  • 2022‎

Nuclear factor one X (NFIX) is a transcription factor required for normal ependymal development. Constitutive loss of Nfix in mice (Nfix-/-) is associated with hydrocephalus and sloughing of the dorsal ependyma within the lateral ventricles. Previous studies have implicated NFIX in the transcriptional regulation of genes encoding for factors essential to ependymal development. However, the cellular and molecular mechanisms underpinning hydrocephalus in Nfix-/- mice are unknown. To investigate the role of NFIX in hydrocephalus, we examined ependymal cells in brains from postnatal Nfix-/- and control (Nfix+/+) mice using a combination of confocal and electron microscopy. This revealed that the ependymal cells in Nfix-/- mice exhibited abnormal cilia structure and disrupted localisation of adhesion proteins. Furthermore, we modelled ependymal cell adhesion using epithelial cell culture and revealed changes in extracellular matrix and adherens junction gene expression following knockdown of NFIX. Finally, the ablation of Nfix from ependymal cells in the adult brain using a conditional approach culminated in enlarged ventricles, sloughing of ependymal cells from the lateral ventricles and abnormal localisation of adhesion proteins, which are phenotypes observed during development. Collectively, these data demonstrate a pivotal role for NFIX in the regulation of cell adhesion within ependymal cells of the lateral ventricles.


Adhesio interthalamica in individuals at high-risk for developing psychosis and patients with psychotic disorders.

  • Tsutomu Takahashi‎ et al.
  • Progress in neuro-psychopharmacology & biological psychiatry‎
  • 2008‎

Abnormal neurodevelopment in midline structures such as the adhesio interthalamica (AI) has been reported in psychotic disorders, but it is unknown whether individuals at risk for the disorder share the AI findings observed in patients with florid psychosis. Magnetic resonance imaging of 162 patients with first-episode psychosis (FEP), 89 patients with chronic schizophrenia, 135 individuals at ultra high-risk (UHR) of psychosis (of whom 39 later developed psychosis), and 87 healthy controls were used to investigate the length and prevalence of the AI. The relation of the AI length to lateral ventricular enlargement was also explored. The patients with FEP and chronic schizophrenia as well as UHR individuals had a shorter AI than the controls, but there was no difference in the AI findings between the UHR individuals who did and did not subsequently develop psychosis. There was a negative correlation between the AI length and lateral ventricular volume in all the diagnostic groups. The absence of the AI was more common in the chronic schizophrenia patients when compared with all other groups. These results support the notion that the AI absence or shorter length could be a neurodevelopmental marker related to vulnerability to psychopathology, but also suggest that schizophrenia patients may manifest progressive brain changes related to ongoing atrophy of the AI after the onset.


Brain ageing in schizophrenia: evidence from 26 international cohorts via the ENIGMA Schizophrenia consortium.

  • Constantinos Constantinides‎ et al.
  • Molecular psychiatry‎
  • 2023‎

Schizophrenia (SZ) is associated with an increased risk of life-long cognitive impairments, age-related chronic disease, and premature mortality. We investigated evidence for advanced brain ageing in adult SZ patients, and whether this was associated with clinical characteristics in a prospective meta-analytic study conducted by the ENIGMA Schizophrenia Working Group. The study included data from 26 cohorts worldwide, with a total of 2803 SZ patients (mean age 34.2 years; range 18-72 years; 67% male) and 2598 healthy controls (mean age 33.8 years, range 18-73 years, 55% male). Brain-predicted age was individually estimated using a model trained on independent data based on 68 measures of cortical thickness and surface area, 7 subcortical volumes, lateral ventricular volumes and total intracranial volume, all derived from T1-weighted brain magnetic resonance imaging (MRI) scans. Deviations from a healthy brain ageing trajectory were assessed by the difference between brain-predicted age and chronological age (brain-predicted age difference [brain-PAD]). On average, SZ patients showed a higher brain-PAD of +3.55 years (95% CI: 2.91, 4.19; I2 = 57.53%) compared to controls, after adjusting for age, sex and site (Cohen's d = 0.48). Among SZ patients, brain-PAD was not associated with specific clinical characteristics (age of onset, duration of illness, symptom severity, or antipsychotic use and dose). This large-scale collaborative study suggests advanced structural brain ageing in SZ. Longitudinal studies of SZ and a range of mental and somatic health outcomes will help to further evaluate the clinical implications of increased brain-PAD and its ability to be influenced by interventions.


White Matter Hyperintensity Regression: Comparison of Brain Atrophy and Cognitive Profiles with Progression and Stable Groups.

  • Omar M Al-Janabi‎ et al.
  • Brain sciences‎
  • 2019‎

Subcortical white matter hyperintensities (WMHs) in the aging population frequently represent vascular injury that may lead to cognitive impairment. WMH progression is well described, but the factors underlying WMH regression remain poorly understood. A sample of 351 participants from the Alzheimer's Disease Neuroimaging Initiative 2 (ADNI2) was explored who had WMH volumetric quantification, structural brain measures, and cognitive measures (memory and executive function) at baseline and after approximately 2 years. Selected participants were categorized into three groups based on WMH change over time, including those that demonstrated regression (n = 96; 25.5%), stability (n = 72; 19.1%), and progression (n = 209; 55.4%). There were no significant differences in age, education, sex, or cognitive status between groups. Analysis of variance demonstrated significant differences in atrophy between the progression and both regression (p = 0.004) and stable groups (p = 0.012). Memory assessments improved over time in the regression and stable groups but declined in the progression group (p = 0.003; p = 0.018). WMH regression is associated with decreased brain atrophy and improvement in memory performance over two years compared to those with WMH progression, in whom memory and brain atrophy worsened. These data suggest that WMHs are dynamic and associated with changes in atrophy and cognition.


Distinct alterations in white matter properties and organization related to maternal treatment initiation in neonates exposed to HIV but uninfected.

  • Ndivhuwo Magondo‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

HIV exposed-uninfected (HEU) infants and children are at risk of developmental delays as compared to uninfected unexposed (HUU) populations. The effects of exposure to in utero HIV and ART regimens on the HEU the developing brain are not well understood. In a cohort of 2-week-old newborns, we used diffusion tensor imaging (DTI) tractography and graph theory to examine the influence of HIV and ART exposure in utero on neonate white matter integrity and organisation. The cohort included HEU infants born to mothers who started ART before conception (HEUpre) and after conception (HEUpost), as well as HUU infants from the same community. We investigated HIV exposure and ART duration group differences in DTI metrics (fractional anisotropy (FA) and mean diffusivity (MD)) and graph measures across white matter. We found increased MD in white matter connections involving the thalamus and limbic system in the HEUpre group compared to HUU. We further identified reduced nodal efficiency in the basal ganglia. Within the HEUpost group, we observed reduced FA in cortical-subcortical and cerebellar connections as well as decreased transitivity in the hindbrain area compared to HUU. Overall, our analysis demonstrated distinct alterations in white matter integrity related to the timing of maternal ART initiation that influence regional brain network properties.


Prediction of childhood brain outcomes in infants born preterm using neonatal MRI and concurrent clinical biomarkers (PREBO-6): study protocol for a prospective cohort study.

  • Joanne M George‎ et al.
  • BMJ open‎
  • 2020‎

Infants born very preterm are at risk of adverse neurodevelopmental outcomes, including cognitive deficits, motor impairments and cerebral palsy. Earlier identification enables targeted early interventions to be implemented with the aim of improving outcomes.


The spatial structure of resting state connectivity stability on the scale of minutes.

  • Javier Gonzalez-Castillo‎ et al.
  • Frontiers in neuroscience‎
  • 2014‎

Resting state functional MRI (rsfMRI) connectivity patterns are not temporally stable, but fluctuate in time at scales shorter than most common rest scan durations (5-10 min). Consequently, connectivity patterns for two different portions of the same scan can differ drastically. To better characterize this temporal variability and understand how it is spatially distributed across the brain, we scanned subjects continuously for 60 min, at a temporal resolution of 1 s, while they rested inside the scanner. We then computed connectivity matrices between functionally-defined regions of interest for non-overlapping 1 min windows, and classified connections according to their strength, polarity, and variability. We found that the most stable connections correspond primarily to inter-hemispheric connections between left/right homologous ROIs. However, only 32% of all within-network connections were classified as most stable. This shows that resting state networks have some long-term stability, but confirms the flexible configuration of these networks, particularly those related to higher order cognitive functions. The most variable connections correspond primarily to inter-hemispheric, across-network connections between non-homologous regions in occipital and frontal cortex. Finally we found a series of connections with negative average correlation, but further analyses revealed that such average negative correlations may be related to the removal of CSF signals during pre-processing. Using the same dataset, we also evaluated how similarity of within-subject whole-brain connectivity matrices changes as a function of window duration (used here as a proxy for scan duration). Our results suggest scanning for a minimum of 10 min to optimize within-subject reproducibility of connectivity patterns across the entire brain, rather than a few predefined networks.


Diffusion histogram profiles predict molecular features of grade 4 in histologically lower-grade adult diffuse gliomas following WHO classification 2021.

  • Ryo Kurokawa‎ et al.
  • European radiology‎
  • 2024‎

In the latest World Health Organization classification 2021, grade 4 adult diffuse gliomas can be diagnosed with several molecular features even without histological evidence of necrosis or microvascular proliferation. We aimed to explore whole tumor histogram-derived apparent diffusion coefficient (ADC) histogram profiles for differentiating between the presence (Mol-4) and absence (Mol-2/3) of grade 4 molecular features in histologically lower-grade gliomas.


Neonatal 6-OHDA lesion model in mouse induces Attention-Deficit/ Hyperactivity Disorder (ADHD)-like behaviour.

  • Otmane Bouchatta‎ et al.
  • Scientific reports‎
  • 2018‎

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by impaired attention, impulsivity and hyperactivity. The "neonatal 6-hydroxydopamine" (6-OHDA) lesion is a commonly used model of ADHD in rat. However, a comprehensive assessment of ADHD-like symptoms is still missing, and data in mouse remain largely unavailable. Our aim was to analyse symptoms of ADHD in the mouse neonatal 6-OHDA model. 6-OHDA mice exhibited the major ADHD-like symptoms, i.e. hyperactivity (open field), attention deficit and impulsivity (five-choice serial reaction time task). Further, the model revealed discrete co-existing symptoms, i.e. anxiety-like (elevated plus maze test) and antisocial (social interaction) behaviours and decreased cognitive functioning (novel object recognition). The efficacy of methylphenidate, a classical psychostimulant used in the treatment of ADHD, was also evaluated. A histological analysis further supports the model validity by indicating dopamine depletion, changes in cortical thickness and abnormalities in anterior cingulate cortex neurons. A principal component analysis of the behaviour profile confirms that the 6-OHDA mouse model displayed good face and predictive validity. We conclude that neonatal dopamine depletion results in behavioural and morphological changes similar to those seen in patients and therefore could be used as a model for studying ADHD pathophysiological mechanisms and identifying therapeutic targets.


Infants with congenital heart defects have reduced brain volumes.

  • Mikkel B Skotting‎ et al.
  • Scientific reports‎
  • 2021‎

Children with congenital heart defects (CHDs) have increased risk of cognitive disabilities for reasons not fully understood. Previous studies have indicated signs of disrupted fetal brain growth from mid-gestation measured with ultrasound and magnetic resonance imaging (MRI) and infants with CHDs have decreased brain volumes at birth. We measured the total and regional brain volumes of infants with and without CHDs using MRI to investigate, if certain areas of the brain are at particular risk of disrupted growth. MRI brain volumetry analyses were performed on 20 infants; 10 with- (postmenstrual age 39-54 weeks, mean 44 weeks + 5 days) and 10 without CHDs (postmenstrual age 39-52 weeks, mean 43 weeks + 5 days). In six infants with- and eight infants without CHDs grey and white matter were also differentiated. Infants with CHDs had smaller brains (48 ml smaller; 95% CI, 6.1-90; p = 0.03), cerebrums (37.8 ml smaller; 95% CI, 0.8-74.8; p = 0.04), and cerebral grey matter (25.8 ml smaller; 95% CI, 3.5-48; p = 0.03) than infants without CHD. Brain volume differences observed within weeks after birth in children with CHDs confirm that the brain impact, which increase the risk of cognitive disabilities, may begin during pregnancy.


Regulation of cerebrospinal fluid production by caffeine consumption.

  • Myoung-Eun Han‎ et al.
  • BMC neuroscience‎
  • 2009‎

Caffeine is the most commonly consumed psycho-stimulant in the world. The effects of caffeine on the body have been extensively studied; however, its effect on the structure of the brain has not been investigated to date.


Choroid plexus volume in multiple sclerosis can be estimated on structural MRI avoiding contrast injection.

  • Valentina Visani‎ et al.
  • European radiology experimental‎
  • 2024‎

We compared choroid plexus (ChP) manual segmentation on non-contrast-enhanced (non-CE) sequences and reference standard CE T1- weighted (T1w) sequences in 61 multiple sclerosis patients prospectively included. ChP was separately segmented on T1w, T2-weighted (T2w) fluid-attenuated inversion-recovery (FLAIR), and CE-T1w sequences. Inter-rater variability assessed on 10 subjects showed high reproducibility between sequences measured by intraclass correlation coefficient (T1w 0.93, FLAIR 0.93, CE-T1w 0.99). CE-T1w showed higher signal-to-noise ratio and contrast-to-noise ratio (CE-T1w 23.77 and 18.49, T1w 13.73 and 7.44, FLAIR 13.09 and 10.77, respectively). Manual segmentation of ChP resulted 3.073 ± 0.563 mL (mean ± standard deviation) on T1w, 3.787 ± 0.679 mL on FLAIR, and 2.984 ± 0.506 mL on CE-T1w images, with an error of 28.02 ± 19.02% for FLAIR and 3.52 ± 12.61% for T1w. FLAIR overestimated ChP volume compared to CE-T1w (p < 0.001). The Dice similarity coefficient of CE-T1w versus T1w and FLAIR was 0.67 ± 0.05 and 0.68 ± 0.05, respectively. Spatial error distribution per slice was calculated after nonlinear coregistration to the standard MNI152 space and showed a heterogeneous profile along the ChP especially near the fornix and the hippocampus. Quantitative analyses suggest T1w as a surrogate of CE-T1w to estimate ChP volume.Relevance statement To estimate the ChP volume, CE-T1w can be replaced by non-CE T1w sequences because the error is acceptable, while FLAIR overestimates the ChP volume. This encourages the development of automatic tools for ChP segmentation, also improving the understanding of the role of the ChP volume in multiple sclerosis, promoting longitudinal studies.Key points • CE-T1w sequences are considered the reference standard for ChP manual segmentation.• FLAIR sequences showed a higher CNR than T1w sequences but overestimated the ChP volume.• Non-CE T1w sequences can be a surrogate of CE-T1w sequences for manual segmentation of ChP.


Stage-Specific Brain Aging in First-Episode Schizophrenia and Treatment-Resistant Schizophrenia.

  • Woo-Sung Kim‎ et al.
  • The international journal of neuropsychopharmacology‎
  • 2023‎

Brain age is a popular brain-based biomarker that offers a powerful strategy for using neuroscience in clinical practice. We investigated the brain-predicted age difference (PAD) in patients with schizophrenia (SCZ), first-episode schizophrenia spectrum disorders (FE-SSDs), and treatment-resistant schizophrenia (TRS) using structural magnetic resonance imaging data. The association between brain-PAD and clinical parameters was also assessed.


Neuroblast protuberances in the subventricular zone of the regenerative MRL/MpJ mouse.

  • Kasey L Baker‎ et al.
  • The Journal of comparative neurology‎
  • 2006‎

The MRL mouse is unique in its capacity for regenerative healing of wounds. This regenerative ability includes complete closure, with little scarring, of wounds to the ear pinna and repair of cardiac muscle, without fibrosis, following cryoinjury. Here, we examine whether neurogenic zones within the MRL brain show enhanced regenerative capacity. The largest neurogenic zone in the adult brain, the subventricular zone (SVZ), lies adjacent to the lateral wall of the lateral ventricle and is responsible for replacement of interneuron populations within the olfactory bulb. Initial gross observation of the anterior forebrain in MRL mice revealed enlarged lateral ventricles; however, little neurodegeneration was detected within the SVZ or surrounding tissues. Instead, increased proliferation within the SVZ was observed, based on incorporation of the thymidine analogue bromodeoxyuridine. Closer examination using electron microscopy revealed that a significant number of SVZ astrocytes interpolated within the ependyma and established contact with the ventricle. In addition, subependymal, protuberant nests of cells, consisting primarily of neuroblasts, were found along the anterior SVZ of MRL mice. Whole mounts of the lateral wall of the lateral ventricle stained for the neuroblast marker doublecortin revealed normal formation of chains of migratory neuroblasts along the entire wall and introduction of enhanced green fluorescent protein-tagged retrovirus into the lateral ventricles confirmed that newly generated neuroblasts were able to track into the olfactory bulb.


Lrig1 expression prospectively identifies stem cells in the ventricular-subventricular zone that are neurogenic throughout adult life.

  • Hyung-Song Nam‎ et al.
  • Neural development‎
  • 2020‎

Leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1) regulates stem cell quiescence. As a marker, it identifies stem cells in multiple organs of the mouse. We had detected Lrig1 expression in cultured Id1high neural stem cells obtained from the lateral walls lining the lateral ventricles of the adult mouse brain. Thus, we investigated whether Lrig1 expression also identifies stem cells in that region in vivo.


Cortical iron disrupts functional connectivity networks supporting working memory performance in older adults.

  • Valentinos Zachariou‎ et al.
  • NeuroImage‎
  • 2020‎

Excessive brain iron negatively affects working memory and related processes but the impact of cortical iron on task-relevant, cortical brain networks is unknown. We hypothesized that high cortical iron concentration may disrupt functional circuitry within cortical networks supporting working memory performance. Fifty-five healthy older adults completed an N-Back working memory paradigm while functional magnetic resonance imaging (fMRI) was performed. Participants also underwent quantitative susceptibility mapping (QSM) imaging for assessment of non-heme brain iron concentration. Additionally, pseudo continuous arterial spin labeling scans were obtained to control for potential contributions of cerebral blood volume and structural brain images were used to control for contributions of brain volume. Task performance was positively correlated with strength of task-based functional connectivity (tFC) between brain regions of the frontoparietal working memory network. However, higher cortical iron concentration was associated with lower tFC within this frontoparietal network and with poorer working memory performance after controlling for both cerebral blood flow and brain volume. Our results suggest that high cortical iron concentration disrupts communication within frontoparietal networks supporting working memory and is associated with reduced working memory performance in older adults.


Area-Specific Regulation of Quiescent Neural Stem Cells by Notch3 in the Adult Mouse Subependymal Zone.

  • Hiroki Kawai‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

In the adult mammalian brain, neural stem cells (NSCs) generate new neurons throughout the mammal's lifetime. The balance between quiescence and active cell division among NSCs is crucial in producing appropriate numbers of neurons while maintaining the stem cell pool for a long period. The Notch signaling pathway plays a central role in both maintaining quiescent NSCs (qNSCs) and promoting cell division of active NSCs (aNSCs), although no one knows how this pathway regulates these apparently opposite functions. Notch1 has been shown to promote proliferation of aNSCs without affecting qNSCs in the adult mouse subependymal zone (SEZ). In this study, we found that Notch3 is expressed to a higher extent in qNSCs than in aNSCs while Notch1 is preferentially expressed in aNSCs and transit-amplifying progenitors in the adult mouse SEZ. Furthermore, Notch3 is selectively expressed in the lateral and ventral walls of the SEZ. Knockdown of Notch3 in the lateral wall of the adult SEZ increased the division of NSCs. Moreover, deletion of the Notch3 gene resulted in significant reduction of qNSCs specifically in the lateral and ventral walls, compared with the medial and dorsal walls, of the lateral ventricles. Notch3 deletion also reduced the number of qNSCs activated after antimitotic cytosine β-D-arabinofuranoside (Ara-C) treatment. Importantly, Notch3 deletion preferentially reduced specific subtypes of newborn neurons in the olfactory bulb derived from the lateral walls of the SEZ. These results indicate that Notch isoforms differentially control the quiescent and proliferative steps of adult SEZ NSCs in a domain-specific manner.SIGNIFICANCE STATEMENT In the adult mammalian brain, the subependymal zone (SEZ) of the lateral ventricles is the largest neurogenic niche, where neural stem cells (NSCs) generate neurons. In this study, we found that Notch3 plays an important role in the maintenance of quiescent NSCs (qNSCs), while Notch1 has been reported to act as a regulator of actively cycling NSCs. Furthermore, we found that Notch3 is specifically expressed in qNSCs located in the lateral and ventral walls of the lateral ventricles and regulates neuronal production of NSCs in a region-specific manner. Our results indicate that Notch3, by maintaining the quiescence of a subpopulation of NSCs, confers a region-specific heterogeneity among NSCs in the adult SEZ.


Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes.

  • Marilia Kimie Shimabukuro‎ et al.
  • Scientific reports‎
  • 2016‎

We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN(+) LLC. Some cortical NeuN(+) neurons, GFAP(+) glia limitans astrocytes, Iba-1(+) microglia and S100β(+) ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: