Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 5 showing 81 ~ 100 papers out of 647 papers

Bactericidal Synergism between Phage YC#06 and Antibiotics: a Combination Strategy to Target Multidrug-Resistant Acinetobacter baumannii In Vitro and In Vivo.

  • Jun Luo‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Phage-antibiotic combination (PAC) therapy is a potential new alternative to treat infections caused by pathogenic bacteria, particularly those caused by antibiotic-resistant bacteria. In the present study, phage YC#06 against highly multidrug-resistant Acinetobacter baumannii 4015 was isolated, identified, and characterized. Compared with antibiotics alone, the time-kill experiments in vitro showed that YC#06 and antibiotic mixtures that include the chloramphenicol, imipenem, and cefotaxime combination could produce phage-antibiotic synergy (PAS), which reduced the ultimate effective concentration of antibiotics. No phage-resistant bacteria have been isolated during the whole time-kill experiments in vitro. Of note, PAS was dose dependent, requiring a moderate phage dose to achieve maximum PAS effect. In addition, PAS could effectively inhibit biofilm formation and remove mature biofilms in vitro. Furthermore, PAS between the combination of YC#06 and antibiotic mixtures in vivo was validated using a zebrafish infection model. Overall, the results of this study demonstrate that PAC could be a viable strategy to treat infection caused by high-level multidrug-resistant Acinetobacter baumannii or other drug-resistant bacteria through switching to other types of phage and antibiotic mixtures. IMPORTANCE The treatment of multidrug-resistant bacterial infection is an urgent clinical problem. The combination of bacteriophages and antibiotics could produce synergistic bactericidal effects, which could reduce the emergence of antibiotic resistance and antibiotic consumption in antibiotic-sensitive bacteria, restore efficacy to antibiotics in antibiotic-resistant bacteria, and prevent the occurrence of phage-resistant bacteria. Phage-antibiotic combination (PAC) might be a potential new alternative for clinical treatment of multidrug-resistant bacterial infections.


Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models.

  • María Virtudes Céspedes‎ et al.
  • Disease models & mechanisms‎
  • 2016‎

We explored whether the combination of lurbinectedin (PM01183) with the antimetabolite gemcitabine could result in a synergistic antitumor effect in pancreatic ductal adenocarcinoma (PDA) mouse models. We also studied the contribution of lurbinectedin to this synergism. This drug presents a dual pharmacological effect that contributes to its in vivo antitumor activity: (i) specific binding to DNA minor grooves, inhibiting active transcription and DNA repair; and (ii) specific depletion of tumor-associated macrophages (TAMs). We evaluated the in vivo antitumor activity of lurbinectedin and gemcitabine as single agents and in combination in SW-1990 and MIA PaCa-2 cell-line xenografts and in patient-derived PDA models (AVATAR). Lurbinectedin-gemcitabine combination induced a synergistic effect on both MIA PaCa-2 [combination index (CI)=0.66] and SW-1990 (CI=0.80) tumor xenografts. It also induced complete tumor remissions in four out of six patient-derived PDA xenografts. This synergism was associated with enhanced DNA damage (anti-γ-H2AX), cell cycle blockage, caspase-3 activation and apoptosis. In addition to the enhanced DNA damage, which is a consequence of the interaction of the two drugs with the DNA, lurbinectedin induced TAM depletion leading to cytidine deaminase (CDA) downregulation in PDA tumors. This effect could, in turn, induce an increase of gemcitabine-mediated DNA damage that was especially relevant in high-density TAM tumors. These results show that lurbinectedin can be used to develop 'molecularly targeted' combination strategies.


Design, economical synthesis and antiplasmodial evaluation of vanillin derived allylated chalcones and their marked synergism with artemisinin against chloroquine resistant strains of Plasmodium falciparum.

  • Nandini Sharma‎ et al.
  • European journal of medicinal chemistry‎
  • 2014‎

The in vitro blood stage antiplasmodial activity of a series of allylated chalcones based on the licochalcone A as lead molecule was investigated against chloroquine (CQ) sensitive Pf3D7 and CQ resistant PfINDO strains of Plasmodium falciparum using SYBR Green I assay. Of the forty two chalcones tested, eight showed IC50 ≤ 5 μM. Structure-activity relationship (SAR) studies revealed 9 {1-(4-Chlorophenyl)-3-[3-methoxy-4-(prop-2-en-1-yloxy)phenyl]-prop-2-en-1-one} as the most potent (IC50: 2.5 μM) against Pf3D7 with resistance indices of 1.2 and 6.6 against PfDd2 and PfINDO strains, respectively. Later on, the synergistic effects 9 with standard antimalarials {artemisinin (ART) and chloroquine (CQ)} were studied in order to provide the basis for the selection of the best partner drug. In vitro combinations of 9 with ART showed strong synergy against PfINDO (ΣFIC50: 0.31-0.72) but additive to slight antagonistic effects (ΣFIC50: 1.97-2.64) against Pf3D7. ΣFIC50 0.31 of ART+9 combination corresponded to a 320 fold and 3 fold reduction in IC50 of 9 and ART, respectively. Similar combinations of 9 with CQ showed synergy to additivity to mild antagonism against the two strains {ΣFIC50: 0.668-2.269 (PfINDO); 1.45-2.83 (Pf3D7)}. Drug exposure followed by drug withdrawal indicated that 9 taken alone at IC100 killed rings, trophozoites and schizonts of P. falciparum. The combination of ART and 9 (1X ΣFIC100) selectively inhibited the growth of rings while the 2X ΣFIC100 combination of the same caused killing of rings without affecting trophozoites and schizonts. In contrast, the 1X combination of CQ and 9 (ΣFIC100: 0.5) killed rings and trophozoites. DNA fragmentation and loss of mitochondrial membrane potential (ΔΨm) in the 9 treated P. falciparum culture indicated apoptotic death in malaria parasites. Prediction of ADME properties revealed that most of the molecules did not violate Lipinski's parameters and have low TPSA value suggesting good absorption. The results suggest the promising drug-like properties of 9 against CQ resistant Pf and propensity for synergy with classical antimalarial drugs together with easy and economical synthesis.


Synergisms of genome and metabolism stabilizing antitumor therapy (GMSAT) in human breast and colon cancer cell lines: a novel approach to screen for synergism.

  • Jérôme Ruhnau‎ et al.
  • BMC cancer‎
  • 2020‎

Despite an improvement of prognosis in breast and colon cancer, the outcome of the metastatic disease is still severe. Microevolution of cancer cells often leads to drug resistance and tumor-recurrence. To target the driving forces of the tumor microevolution, we focused on synergistic drug combinations of selected compounds. The aim is to prevent the tumor from evolving in order to stabilize disease remission. To identify synergisms in a high number of compounds, we propose here a three-step concept that is cost efficient, independent of high-throughput machines and reliable in its predictions.


Cisplatin, glutathione and the third wheel: a copper-(1,10-phenanthroline) complex modulates cisplatin-GSH interactions from antagonism to synergism in cancer cells resistant to cisplatin.

  • Sarah Vascellari‎ et al.
  • RSC advances‎
  • 2019‎

The antagonistic effect of glutathione (GSH) against the cytotoxicity of cisplatin was observed in both wild type and cisplatin-resistant human leukaemia and ovarian carcinoma cell lines. The simultaneous presence of the cytotoxic copper complex [Cu(phen)2(OH2)](ClO4)2 (C0) restored the sensitivity of the cells to cisplatin, and, at selected concentrations, led to strong synergistic effects. The C0-cisplatin-glutathione system showed a synergistic toxic effect even in the presence of 1000 μM GSH. The three-drug cocktail exerted a higher potency against leukemic cells than against freshly isolated lymphocytes from healthy donors. Compared to actively proliferating normal lymphocytes, leukaemia cells were much more susceptible to the cytocide effect of the three-drug combination and underwent the dying process(es) much faster. When the ovarian carcinoma cells were treated with cisplatin, alone or in combination with C0, late apoptotic effects were mainly observed, suggesting that DNA interactions with the C0-cisplatin complex trigger a process of programmed cell death. In contrast, the ternary combination induced apoptotic effects similar to that shown by C0 in single treatment, that is, early apoptosis. One possible explanation is that C0 and cisplatin compete for GSH-binding in the culture medium. GSH in combination with C0 and cisplatin caused a significant induction of the apoptotic process(es), through a pathway which does not compromise the integrity of the plasma membrane of cells.


Antitumoral synergism between a copper(II) complex and cisplatin improves in vitro and in vivo anticancer activity against melanoma, lung and breast cancer cells.

  • D Mariani‎ et al.
  • Biochimica et biophysica acta. General subjects‎
  • 2021‎

Intrinsic resistance of cancer cells is a major concern for the success of chemotherapy, and this undesirable feature stimulates further research into the design of new compounds and/or alternative multiple drug chemotherapy protocols.


Allosteric cross-talk in chromatin can mediate drug-drug synergy.

  • Zenita Adhireksan‎ et al.
  • Nature communications‎
  • 2017‎

Exploitation of drug-drug synergism and allostery could yield superior therapies by capitalizing on the immensely diverse, but highly specific, potential associated with the biological macromolecular landscape. Here we describe a drug-drug synergy mediated by allosteric cross-talk in chromatin, whereby the binding of one drug alters the activity of the second. We found two unrelated drugs, RAPTA-T and auranofin, that yield a synergistic activity in killing cancer cells, which coincides with a substantially greater number of chromatin adducts formed by one of the compounds when adducts from the other agent are also present. We show that this occurs through an allosteric mechanism within the nucleosome, whereby defined histone adducts of one drug promote reaction of the other drug at a distant, specific histone site. This opens up possibilities for epigenetic targeting and suggests that allosteric modulation in nucleosomes may have biological relevance and potential for therapeutic interventions.


Antimicrobial Constituents from Machaerium Pers.: Inhibitory Activities and Synergism of Machaeriols and Machaeridiols against Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus faecium, and Permeabilized Gram-Negative Pathogens.

  • Ilias Muhammad‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Two new epimeric bibenzylated monoterpenes machaerifurogerol (1a) and 5-epi-machaerifurogerol (1b), and four known isoflavonoids (+)-vestitol (2), 7-O-methylvestitol (3), (+)-medicarpin (4), and 3,8-dihydroxy-9-methoxypterocarpan (5) were isolated from Machaerium Pers. This plant was previously assigned as Machaerium multiflorum Spruce, from which machaeriols A-D (6-9) and machaeridiols A-C (10-12) were reported, and all were then re-isolated, except the minor compound 9, for a comprehensive antimicrobial activity evaluation. Structures of the isolated compounds were determined by full NMR and mass spectroscopic data. Among the isolated compounds, the mixture 10 + 11 was the most active with an MIC value of 1.25 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA) strains BAA 1696, -1708, -1717, -33591, and vancomycin-resistant Enterococcus faecium (VRE 700221) and E. faecalis (VRE 51299) and vancomycin-sensitive E. faecalis (VSE 29212). Compounds 6-8 and 10-12 were found to be more potent against MRSA 1708, and 6, 11, and 12 against VRE 700221, than the drug control ciprofloxacin and vancomycin. A combination study using an in vitro Checkerboard method was carried out for machaeriols (7 or 8) and machaeridiols (11 or 12), which exhibited a strong synergistic activity of 12 + 8 (MIC 0.156 and 0.625 µg/mL), with >32- and >8-fold reduction of MIC's, compared to 12, against MRSA 1708 and -1717, respectively. In the presence of sub-inhibitory concentrations on polymyxin B nonapeptide (PMBN), compounds 10 + 11, 11, 12, and 8 showed activity in the range of 0.5-8 µg/mL for two strains of Acinetobacter baumannii, 2-16 µg/mL against Pseudomonas aeruginosa PAO1, and 2 µg/mL against Escherichia coli NCTC 12923, but were inactive (MIC > 64 µg/mL) against the two isolates of Klebsiella pneumoniae.


Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads.

  • William Sinko‎ et al.
  • Journal of medicinal chemistry‎
  • 2014‎

There is a significant need for new antibiotics due to the rise in drug resistance. Drugs such as methicillin and vancomycin target bacterial cell wall biosynthesis, but methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have now arisen and are of major concern. Inhibitors acting on new targets in cell wall biosynthesis are thus of particular interest since they might also restore sensitivity to existing drugs, and the cis-prenyl transferase undecaprenyl diphosphate synthase (UPPS), essential for lipid I, lipid II, and thus, peptidoglycan biosynthesis, is one such target. We used 12 UPPS crystal structures to validate virtual screening models and then assayed 100 virtual hits (from 450,000 compounds) against UPPS from S. aureus and Escherichia coli. The most promising inhibitors (IC50 ∼2 μM, Ki ∼300 nM) had activity against MRSA, Listeria monocytogenes, Bacillus anthracis, and a vancomycin-resistant Enterococcus sp. with MIC or IC50 values in the 0.25-4 μg/mL range. Moreover, one compound (1), a rhodanine with close structural similarity to the commercial diabetes drug epalrestat, exhibited good activity as well as a fractional inhibitory concentration index (FICI) of 0.1 with methicillin against the community-acquired MRSA USA300 strain, indicating strong synergism.


Biochemical analyses of a novel thermostable GH5 endo β-1,4-mannanase with minor β-1,4-glucosidic cleavage activity from Bacillus sp. KW1 and its synergism with a commercial α-galactosidase on galactomannan hydrolysis.

  • Xi Chen‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

A novel GH5 endo-1,4-β-mannanase (BaMan5A) was identified from Bacillus sp. KW1, it shares the highest sequence identity (86%) with another characterized Bacillus endo-1,4-β-mannanase. The recombinant BaMan5A displayed maximum activity at pH 7.0 and 70 °C, it was stable at a broad pH range (pH 3.5-11.0) after 12-h incubation at 25 °C, and exhibited good thermostability, retaining about 100% and 85% activity after incubating at 60 °C for 12 h and 65 °C for 8 h, respectively. The results of polysaccharide hydrolysis revealed that the enzyme can only hydrolyze mannan substrates, including carob galactomannan, konjac glucomannan, 1,4-β-D-mannan, locust bean gum, and guar gum, yielding mannose, mannobiose, mannotriose, and some other oligosaccharides. The best substrate was carob galactomannan, the corresponding specific activity and Km value were 10,886 μmol/min/μmol and 3.31 mg/mL, respectively. Interestingly, BaMan5A was capable to hydrolyze both manno-oligosaccharides and cello-oligosaccharides, including mannotetraose, mannopentaose, mannohexaose, cellopentaose and cellohexaose. Furthermore, BaMan5A acted synergistically with a commercial α-galactosidase (CbAgal) on galactomannan depolymerization, a best synergy degree of 1.58 was achieved after optimizing enzyme ratios. This study not only expands the diversity of Bacillus GH5 β-mannanase, but also discloses the potential of BaMan5A in industrial application.


NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning.

  • Xing Chen‎ et al.
  • PLoS computational biology‎
  • 2016‎

Fungal infection has become one of the leading causes of hospital-acquired infections with high mortality rates. Furthermore, drug resistance is common for fungus-causing diseases. Synergistic drug combinations could provide an effective strategy to overcome drug resistance. Meanwhile, synergistic drug combinations can increase treatment efficacy and decrease drug dosage to avoid toxicity. Therefore, computational prediction of synergistic drug combinations for fungus-causing diseases becomes attractive. In this study, we proposed similar nature of drug combinations: principal drugs which obtain synergistic effect with similar adjuvant drugs are often similar and vice versa. Furthermore, we developed a novel algorithm termed Network-based Laplacian regularized Least Square Synergistic drug combination prediction (NLLSS) to predict potential synergistic drug combinations by integrating different kinds of information such as known synergistic drug combinations, drug-target interactions, and drug chemical structures. We applied NLLSS to predict antifungal synergistic drug combinations and showed that it achieved excellent performance both in terms of cross validation and independent prediction. Finally, we performed biological experiments for fungal pathogen Candida albicans to confirm 7 out of 13 predicted antifungal synergistic drug combinations. NLLSS provides an efficient strategy to identify potential synergistic antifungal combinations.


Modeling breast cancer proliferation, drug synergies, and alternating therapies.

  • Wei He‎ et al.
  • iScience‎
  • 2023‎

Estrogen receptor positive (ER+) breast cancer is responsive to a number of targeted therapies used clinically. Unfortunately, the continuous application of targeted therapy often results in resistance, driving the consideration of combination and alternating therapies. Toward this end, we developed a mathematical model that can simulate various mono, combination, and alternating therapies for ER + breast cancer cells at different doses over long time scales. The model is used to look for optimal drug combinations and predicts a significant synergism between Cdk4/6 inhibitors in combination with the anti-estrogen fulvestrant, which may help explain the clinical success of adding Cdk4/6 inhibitors to anti-estrogen therapy. Furthermore, the model is used to optimize an alternating treatment protocol so it works as well as monotherapy while using less total drug dose.


Azvudine, a novel nucleoside reverse transcriptase inhibitor showed good drug combination features and better inhibition on drug-resistant strains than lamivudine in vitro.

  • Rui-Rui Wang‎ et al.
  • PloS one‎
  • 2014‎

Azvudine is a novel nucleoside reverse transcriptase inhibitor with antiviral activity on human immunodeficiency virus, hepatitis B virus and hepatitis C virus. Here we reported the in vitro activity of azvudine against HIV-1 and HIV-2 when used alone or in combination with other antiretroviral drugs and its drug resistance features. Azvudine exerted highly potent inhibition on HIV-1 (EC(50)s ranging from 0.03 to 6.92 nM) and HIV-2 (EC(50)s ranging from 0.018 to 0.025 nM). It also showed synergism in combination with six approved anti-HIV drugs on both C8166 and PBMC. In combination assay, the concentrations of azvudine used were 1000 or 500 fold lower than other drugs. Azvudine also showed potent inhibition on NRTI-resistant strains (L74V and T69N). Although M184V caused 250 fold reduction in susceptibility, azvudine remained active at nanomolar range. In in vitro induced resistant assay, the frequency of M184I mutation increased with induction time which suggests M184I as the key mutation in azvudine treatment. As control, lamivudine treatment resulted in a higher frequency of M184I/V given the same induction time and higher occurrence of M184V was found. Molecular modeling analysis suggests that steric hindrance is more pronounced in mutant M184I than M184V due to the azido group of azvudine. The present data demonstrates the potential of azvudine as a complementary drug to current anti-HIV drugs. M184I should be the key mutation, however, azvudine still remains active on HIV-1LAI-M184V at nanomolar range.


Antiepileptic drug combinations--have newer agents altered clinical outcomes?

  • Linda J Stephen‎ et al.
  • Epilepsy research‎
  • 2012‎

In 2000, 332 (20.5%) of 1617 patients registered with the Western Infirmary Epilepsy Unit required antiepileptic drug (AED) polytherapy to remain seizure-free for at least 1 year. The analysis was repeated 10 years later. Of 2379 seizure-free patients, 20.4% (n=486 - 254 women, 232 men, aged 18-95 years [median age 49 years]) were receiving combination therapy. Two AEDs were taken by 395 (81.3%) patients in 2010, and by 287 (86.4%) in 2000. Sodium valproate with lamotrigine was the commonest of 64 successful pairings. As a combination, mean daily doses of both AEDs were lower (n=96; sodium valproate 1200 mg, lamotrigine 155 mg) than when sodium valproate was taken with carbamazepine or levetiracetam (n=42; 1621 mg; p<0.001), and lamotrigine was combined with topiramate or levetiracetam (n=33; 430 mg; p<0.001), suggesting possible synergism. In 2010, a higher percentage of patients (n=85) remained seizure-free on 3 AEDs (17.5% in 2010, 12.7% in 2000) in 57 separate regimens. Only 0.9% (n=3) of patients in 2000, and 1.2% (n=6) in 2010 responded to 4 AEDs. Levetiracetam (n=109; 10.2%) and topiramate (n=81; 7.6%) were the newer agents most commonly represented in successful combinations. These data tend to imply that drug substitution rather than addition has largely led to these marginally improved results. In the last decade, when used as adjunctive therapies, newer agents appear not to have impacted substantially on the likelihood of producing seizure freedom. An alternative approach to AED development may be required to change this disappointing scenario.


Machine learning methods, databases and tools for drug combination prediction.

  • Lianlian Wu‎ et al.
  • Briefings in bioinformatics‎
  • 2022‎

Combination therapy has shown an obvious efficacy on complex diseases and can greatly reduce the development of drug resistance. However, even with high-throughput screens, experimental methods are insufficient to explore novel drug combinations. In order to reduce the search space of drug combinations, there is an urgent need to develop more efficient computational methods to predict novel drug combinations. In recent decades, more and more machine learning (ML) algorithms have been applied to improve the predictive performance. The object of this study is to introduce and discuss the recent applications of ML methods and the widely used databases in drug combination prediction. In this study, we first describe the concept and controversy of synergism between drug combinations. Then, we investigate various publicly available data resources and tools for prediction tasks. Next, ML methods including classic ML and deep learning methods applied in drug combination prediction are introduced. Finally, we summarize the challenges to ML methods in prediction tasks and provide a discussion on future work.


Chitosan Nanoparticles as a Mucoadhesive Drug Delivery System for Ocular Administration.

  • Mariana M Silva‎ et al.
  • Marine drugs‎
  • 2017‎

Pharmaceutical approaches based on nanotechnologies and the development of eye drops composed of the mucoadhesive polymers chitosan and hyaluronic acid are emerging strategies for the efficient treatment of ocular diseases. These innovative nanoparticulate systems aim to increase drugs' bioavailability at the ocular surface. For the successful development of these systems, the evaluation of mucoahesiveness (the interaction between the ocular delivery system and mucins present on the eye) is of utmost importance. In this context, the aim of the present work was to investigate the mucoadhesivity of a novel nanoparticle eye drop formulation containing an antibiotic (ceftazidime) intended to treat eye infections. Eye drop formulations comprised a polymer (hydroxypropyl) methyl cellulose (HPMC) 0.75% (w/v) in an isotonic solution incorporating chitosan/sodium tripolyphosphate (TPP)-hyaluronic acid-based nanoparticles containing ceftazidime. The viscosity of the nanoparticles, and the gels incorporating the nanoparticles were characterized in contact with mucin at different mass ratios, allowing the calculation of the rheological synergism parameter (∆η). Results showed that at different nanoparticle eye formulation:mucin weight ratios, a minimum in viscosity occurred which resulted in a negative rheological synergism. Additionally, the results highlighted the mucoadhesivity of the novel ocular formulation and its ability to interact with the ocular surface, thus increasing the drug residence time in the eye. Moreover, the in vitro release and permeation studies showed a prolonged drug release profile from the chitosan/TPP-hyaluronic acid nanoparticles gel formulation. Furthermore, the gel formulations were not cytotoxic on ARPE-19 and HEK293T cell lines, evaluated by the metabolic and membrane integrity tests. The formulation was stable and the drug active, as shown by microbiological studies. In conclusion, chitosan/TPP-hyaluronic acid nanoparticle eye drop formulations are a promising platform for ocular drug delivery with enhanced mucoadhesive properties.


Highly synergistic drug combination prevents vaginal HIV infection in humanized mice.

  • Marc M Baum‎ et al.
  • Scientific reports‎
  • 2020‎

The HIV-1 epidemic remains an urgent global health concern. Young women are disproportionately at risk of acquiring the virus. A range of highly effective, female-controlled, discrete vaginal products therefore is needed to help curb the epidemic. Oral tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) are effective in HIV-1 pre-exposure prophylaxis (PrEP) and form a promising basis for a vaginal product. Here, we evaluate TDF and FTC in combination with the broadly neutralizing antibody VRC01-N using a highly reproducible humanized mouse model. The agents were vaginally dosed individually and in combination, and the efficacy of HIV-1 prevention was analyzed using the established, rigorous median-effect model. Surprisingly, the triple combination showed a high degree of synergism, unprecedented for in vivo HIV-1 PrEP, leading to a possible fivefold dose reduction for some of the agents. Vaginal administration of the TDF-FTC-VRC01-N combination holds significant promise for HIV-1 PrEP.


Identification of synergistic drug combinations using breast cancer patient-derived xenografts.

  • Tia H Turner‎ et al.
  • Scientific reports‎
  • 2020‎

Compared with other breast cancer subtypes, triple-negative breast cancer (TNBC) is associated with relatively poor outcomes due to its metastatic propensity, frequent failure to respond to chemotherapy, and lack of alternative, targeted treatment options, despite decades of major research efforts. Our studies sought to identify promising targeted therapeutic candidates for TNBC through in vitro screening of 1,363 drugs in patient-derived xenograft (PDX) models. Using this approach, we generated a dataset that can be used to assess and compare responses of various breast cancer PDXs to many different drugs. Through a series of further drug screening assays and two-drug combination testing, we identified that the combination of afatinib (epidermal growth factor receptor (EGFR) inhibitor) and YM155 (inhibitor of baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5; survivin) expression) is synergistically cytotoxic across multiple models of basal-like TNBC and reduces PDX mammary tumor growth in vivo. We found that YM155 reduces EGFR expression in TNBC cells, shedding light on its potential mechanism of synergism with afatinib. Both EGFR and BIRC5 are highly expressed in basal-like PDXs, cell lines, and patients, and high expression of both genes reduces metastasis-free survival, suggesting that co-targeting of these proteins holds promise for potential clinical success in TNBC.


Synergistic Drug Combinations Prevent Resistance in ALK+ Anaplastic Large Cell Lymphoma.

  • Giulia Arosio‎ et al.
  • Cancers‎
  • 2021‎

Anaplastic lymphoma kinase-positive (ALK+) anaplastic large-cell lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma characterized by expression of the oncogenic NPM/ALK fusion protein. When resistant or relapsed to front-line chemotherapy, ALK+ ALCL prognosis is very poor. In these patients, the ALK inhibitor crizotinib achieves high response rates, however 30-40% of them develop further resistance to crizotinib monotherapy, indicating that new therapeutic approaches are needed in this population. We here investigated the efficacy of upfront rational drug combinations to prevent the rise of resistant ALCL, in vitro and in vivo. Different combinations of crizotinib with CHOP chemotherapy, decitabine and trametinib, or with second-generation ALK inhibitors, were investigated. We found that in most cases combined treatments completely suppressed the emergence of resistant cells and were more effective than single drugs in the long-term control of lymphoma cells expansion, by inducing deeper inhibition of oncogenic signaling and higher rates of apoptosis. Combinations showed strong synergism in different ALK-dependent cell lines and better tumor growth inhibition in mice. We propose that drug combinations that include an ALK inhibitor should be considered for first-line treatments in ALK+ ALCL.


Abacavir, an anti-HIV-1 drug, targets TDP1-deficient adult T cell leukemia.

  • Kohei Tada‎ et al.
  • Science advances‎
  • 2015‎

Adult T cell leukemia (ATL) is an aggressive T cell malignancy caused by human T cell leukemia virus type 1 (HTLV-1) and has a poor prognosis. We analyzed the cytotoxic effects of various nucleoside analog reverse transcriptase inhibitors (NRTIs) for HIV-1 on ATL cells and found that abacavir potently and selectively kills ATL cells. Although NRTIs have minimal genotoxicities on host cells, the therapeutic concentration of abacavir induced numerous DNA double-strand breaks (DSBs) in the chromosomal DNA of ATL cells. DSBs persisted over time in ATL cells but not in other cell lines, suggesting impaired DNA repair. We found that the reduced expression of tyrosyl-DNA phosphodiesterase 1 (TDP1), a repair enzyme, is attributable to the cytotoxic effect of abacavir on ATL cells. We also showed that TDP1 removes abacavir from DNA ends in vitro. These results suggest a model in which ATL cells with reduced TDP1 expression are unable to excise abacavir incorporated into genomic DNA, leading to irreparable DSBs. On the basis of the above mechanism, we propose abacavir as a promising chemotherapeutic agent for ATL.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: