Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 647 papers

Synergism between clofarabine and decitabine through p53R2: a pharmacodynamic drug-drug interaction modeling.

  • Karen E Thudium‎ et al.
  • Leukemia research‎
  • 2012‎

Clofarabine (CLO), a purine nucleoside analog with promising efficacy in acute myeloid leukemia (AML), inhibits the ribonucleotidereductase, p53R2. We have shown that p53R2 mRNA is up-regulated by decitabine (DEC), another drug with promising activity in AML. We developed a pharmacodynamic model to characterize the interaction between CLO and DEC on an AML cell line and down-regulated p53R2 protein to understand its role. These results confirm a role for p53R2 in both CLO and DEC mechanism of action, demonstrate synergism between these two drugs in this AML model and support the use of this combination in a future clinical trial.


Visualization of network target crosstalk optimizes drug synergism in myocardial ischemia.

  • Xiaojing Wan‎ et al.
  • PloS one‎
  • 2014‎

Numerous drugs and compounds have been validated as protecting against myocardial ischemia (MI), a leading cause of heart failure; however, synergistic possibilities among them have not been systematically explored. Thus, there appears to be significant room for optimization in the field of drug combination therapy for MI. Here, we propose an easy approach for the identification and optimization of MI-related synergistic drug combinations via visualization of the crosstalk between networks of drug targets corresponding to different drugs (each drug has a unique network of targets). As an example, in the present study, 28 target crosstalk networks (TCNs) of random pairwise combinations of 8 MI-related drugs (curcumin, capsaicin, celecoxib, raloxifene, silibinin, sulforaphane, tacrolimus, and tamoxifen) were established to illustrate the proposed method. The TCNs revealed a high likelihood of synergy between curcumin and the other drugs, which was confirmed by in vitro experiments. Further drug combination optimization showed a synergistic protective effect of curcumin, celecoxib, and sililinin in combination against H₂O₂-induced ischemic injury of cardiomyocytes at a relatively low concentration of 500 nM. This result is in agreement with the earlier finding of a denser and modular functional crosstalk between their networks of targets in the regulation of cell apoptosis. Our study offers a simple approach to rapidly search for and optimize potent synergistic drug combinations, which can be used for identifying better MI therapeutic strategies. Some new light was also shed on the characteristic features of drug synergy, suggesting that it is possible to apply this method to other complex human diseases.


Drug Synergism of Anticancer Action in Combination with Favipiravir and Paclitaxel on Neuroblastoma Cells.

  • Hasan Turkez‎ et al.
  • Medicina (Kaunas, Lithuania)‎
  • 2023‎

Background and Objectives: Favipiravir (FPV) is an antiviral medication and has an inhibitory effect on Cytochrome P450 (CYP2C8) protein, which is mainly involved in drug metabolism in the liver, and the expression of this gene is known to be enhanced in neuronal cells. The metabolization of Paclitaxel (PTX), a chemotherapeutic drug used in cancer patients, was analyzed for the first time in the human SH-SY5Y neuroblastoma cell line for monitoring possible synergistic effects when administered with FPV. Materials and Methods: Further, in vitro cytotoxic and genotoxic evaluations of FPV and PTX were also performed using wide concentration ranges in a human fibroblast cell culture (HDFa). Nuclear abnormalities were examined under a fluorescent microscope using the Hoechst 33258 fluorescent staining technique. In addition, the synergistic effects of these two drugs on cultured SH-SY5Y cells were determined by MTT cell viability assay. In addition, the death mechanisms that can occur in SHSY-5Y were revealed by using the flow cytometry technique. Results: Cell viability analyses on the HDFa healthy cell culture showed that both FPV and PTX have inhibitory effects at higher concentrations. On the other hand, there were no significant differences in nuclear abnormality numbers when both of the compounds were applied together. Cell viability analyses showed that FPV and PTX applications have higher cytotoxicity, which indicated synergistic toxicity against the SHSY-5Y cell line. Also, PTX exhibited higher anticancer properties against the neuroblastoma cell line when applied with FPV, as shown in both cytotoxicity and flow cytometry analyses. Conclusions: In light of our findings, the anticancer properties of PTX can be enhanced when the drug application is coupled with FPV exposure. Moreover, these results put forth that the anticancer drug dosage should be evaluated carefully in cancer patients who take COVID-19 treatment with FPV.


Mycobacterium Time-Series Genome Analysis Identifies AAC2' as a Potential Drug Target with Naloxone Showing Potential Bait Drug Synergism.

  • Vidya Niranjan‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

The World Health Organization has put drug resistance in tuberculosis on its list of significant threats, with a critical emphasis on resolving the genetic differences in Mycobacterium tuberculosis. This provides an opportunity for a better understanding of the evolutionary progression leading to anti-microbial resistance. Anti-microbial resistance has a great impact on the economic stability of the global healthcare sector. We performed a timeline genomic analysis from 2003 to 2021 of 578 mycobacterium genomes to understand the pattern underlying genomic variations. Potential drug targets based on functional annotation was subjected to pharmacophore-based screening of FDA-approved phyto-actives. Reaction search, MD simulations, and metadynamics studies were performed. A total of 4,76,063 mutations with a transition/transversion ratio of 0.448 was observed. The top 10 proteins with the least number of mutations were high-confidence drug targets. Aminoglycoside 2'-N-acetyltransferase protein (AAC2'), conferring resistance to aminoglycosides, was shortlisted as a potential drug target based on its function and role in bait drug synergism. Gentamicin-AAC2' binding pose was used as a pharmacophore template to screen 10,570 phyto-actives. A total of 66 potential hits were docked to obtain naloxone as a lead-active with a docking score of -6.317. Naloxone is an FDA-approved drug that rapidly reverses opioid overdose. This is a classic case of a repurposed phyto-active. Naloxone consists of an amine group, but the addition of the acetyl group is unfavorable, with a reaction energy of 612.248 kcal/mol. With gentamicin as a positive control, molecular dynamic simulation studies were performed for 200 ns to check the stability of binding. Metadynamics-based studies were carried out to compare unbinding energy with gentamicin. The unbinding energies were found to be -68 and -74 kcal/mol for naloxone and gentamycin, respectively. This study identifies naloxone as a potential drug candidate for a bait drug synergistic approach against Mycobacterium tuberculosis.


A classification model to predict synergism/antagonism of cytotoxic mixtures using protein-drug docking scores.

  • John C Boik‎ et al.
  • BMC pharmacology‎
  • 2008‎

Safer and more effective mixtures of anticancer drugs are needed, and modeling can assist in this endeavor. This paper describes classification models that were constructed to predict which fixed-ratio mixtures created from a pool of 10 drugs would show a high degree of in-vitro synergism against H460 human lung cancer cells. One of the tested drugs was doxorubicin and the others were natural compounds including quercetin, curcumin, and EGCG. Explanatory variables were based on virtual docking profiles. Docking profiles for the 10 drugs were obtained for 1087 proteins using commercial docking software. The cytotoxicity of all 10 drugs and of 45 of the 1,013 possible mixtures was tested in the laboratory and synergism indices were generated using the MixLow method. Model accuracy was assessed using cross validation, as well as using predictions on a new set of 10 tested mixtures. Results were compared to models where explanatory variables were constructed using the pseudomolecule approach of Sheridan.


Contribution of synergism between PHF8 and HER2 signalling to breast cancer development and drug resistance.

  • Qi Liu‎ et al.
  • EBioMedicine‎
  • 2020‎

HER2 plays a critical role in tumourigenesis and is associated with poor prognosis of patients with HER2-positive breast cancers. Although anti-HER2 drugs are beneficial for treating breast cancer, de novo, or acquired resistance often develops. Epigenetic factors are increasingly targeted for therapy; however, such mechanisms that interact with HER2 signalling are poorly understood.


Meropenem in combination with baicalein exhibits synergism against extensively drug resistant and pan-drug-resistant Acinetobacter baumannii clinical isolates in vitro.

  • Mümtaz Güran‎ et al.
  • Pathogens and disease‎
  • 2023‎

Several studies have demonstrated that the effectiveness of carbapenems against drug-resistant Acinetobacter baumannii infections has been decreasing. Combination therapy with two or more drugs is currently under investigation to overcome the emerging resistance against carbapenems. In this study, we tested the possible synergistic interactions of a potent antibacterial flavonoid, baicalein, with meropenem to illustrate this duo's antibacterial and antibiofilm effects on 15 extensively drug resistant or pan-drug-resistant (XDR/PDR) A. baumannii clinical isolates in vitro. Isolates included in the study were identified with MALDI-TOF MS, and antibiotic resistance patterns were studied according to EUCAST protocols. Carbapenem resistance was confirmed with the modified Hodge test, and resistance genes were also analyzed with genotypical methods. Then, checkerboard and time-kill assays were performed to analyze antibacterial synergism. Additionally, a biofilm inhibition assay was performed for screening the antibiofilm activity. To provide structural and mechanistic insights into baicalein action, protein-ligand docking, and interaction profiling calculations were conducted. Our study shed light on the remarkable potential of the baicalein-meropenem combination, since either synergistic or additive antibacterial activity was observed against every XDR/PDR A. baumannii strain in question. Furthermore, the baicalein-meropenem combination displayed significantly better antibiofilm activity in contrast to standalone use. In silico studies predicted that these positive effects arose from inhibition by baicalein of A. baumannii beta-lactamases and/or penicillin-binding proteins. Overall, our findings highlight the prospective potential benefits of baicalein in combination with meropenem for the treatment of carbapenem-resistant A. baumannii infections.


A high-throughput drug combination screen identifies an anti-glioma synergism between TH588 and PI3K inhibitors.

  • Zhen Chen‎ et al.
  • Cancer cell international‎
  • 2020‎

Glioblastoma multiforme (GBM) is the most common and lethal type of primary brain tumor. More than half of GBMs contain mutation(s) of PTEN/PI3K/AKT, making inhibitors targeting the PI3K pathway very attractive for clinical investigation. However, so far, PI3K/AKT/mTOR inhibitors have not achieved satisfactory therapeutic effects in clinical trials of GBM. In this study, we aimed to develop a high-throughput screening method for high-throughput identification of potential targeted agents that synergize with PI3K inhibitors in GBM.


In vitro Synergism of Six Antituberculosis Agents Against Drug-Resistant Mycobacterium tuberculosis Isolated from Retreatment Tuberculosis Patients.

  • Ruoyan Ying‎ et al.
  • Infection and drug resistance‎
  • 2021‎

Retreatment tuberculosis (TB) has become a major source of drug-resistant TB. In contrast to the combination of isoniazid (INH) and rifampicin (RIF), that of pasiniazid (Pa) and rifabutin (RFB) or rifapentine (RFP) appears to have better activity in vitro against drug-resistant Mycobacterium tuberculosis (MTB), especially when combined with moxifloxacin (MXF). However, there has been limited study of potential synergism among Pa, RFB, RFP, and MXF, or simultaneous comparison with the standard INH and RIF combination.


Fungicidal action of geraniol against Candida albicans is potentiated by abrogated CaCdr1p drug efflux and fluconazole synergism.

  • Shweta Singh‎ et al.
  • PloS one‎
  • 2018‎

Among the several mechanisms of multidrug resistance (MDR), overexpression of drug efflux pumps CaCdr1p and CaMdr1p belonging to ATP binding cassette (ABC) and major facilitator superfamily (MFS) respectively remain the predominant mechanisms of candidal infections. Therefore inhibiting or modulating the function of these transporters continues to draw attention as effective strategy to combat MDR. We have previously reported the antifungal potential of Geraniol (Ger), a natural monoterpenoid from Palmarosa oil, against Candida albicans. Herein, we explored the fungicidal nature of Ger. The Rhodamine 6G (R6G) and Nile red accumulation confirms the specific effect on CaCdr1p. Mechanistic insights with Candida cells overexpressing CaCdr1p and CaMdr1p revealed that Ger specifically modulates CaCdr1p activity. Kinetic studies further unraveled the competitive inhibition of Ger for R6G efflux as evident from increased apparent Km without affecting Vmax value. The effect of Ger on CaCdr1p was substantiated by molecular docking analyses, which depicted in-silico binding affinity of Ger with CaCdr1p and explored that Ger binds to the active site of CaCdr1p with higher binding energy. Although RT-PCR and western blot revealed no change in expressions of CDR1 and CaCdr1p, confocal microscopy images however depicted CaCdr1p mislocalization in presence of Ger. Interestingly, Ger was synergistic (FICI<0.5) with fluconazole (FLC) which is a well known antifungal drug. Furthermore, Ger sensitizes the FLC sensitive and resistant clinical matched pair of isolates Gu4/Gu5 and led to abrogated R6G efflux and depleted ergosterol. Furthermore, Rhodamine B labeling demonstrates altered mitochondrial potential with Ger which suggest possible linkage of dysfunctional mitochondria with CaCdr1p activity. We also estimated phenotypic virulence marker extracellular phospholipase activity which was considerably diminished along with inhibited cell adherence and biofilm biomass. Lastly, antifungal efficacy of Ger was demonstrated by enhanced survival of Caenorhabditis elegans model and negligible hemolytic activity (20%). Together, modulation of efflux pump activity by Ger and FLC synergism represent a promising approach for combinatorial treatment of candidiasis.


Synthesis and Conformational Analysis of FR901464-Based RNA Splicing Modulators and Their Synergism in Drug-Resistant Cancers.

  • Jacob P Beard‎ et al.
  • Journal of medicinal chemistry‎
  • 2023‎

FR901464 is a cytotoxic natural product that binds splicing factor 3B subunit 1 (SF3B1) and PHD finger protein 5A (PHF5A), the components of the human spliceosome. The amide-containing tetrahydropyran ring binds SF3B1, and it remains unclear how the substituents on the ring contribute to the binding. Here, we synthesized meayamycin D, an analogue of FR901464, and three additional analogues to probe the conformation through methyl scanning. We discovered that the amide-containing tetrahydropyran ring assumes only one of the two possible chair conformations and that methylation of the nitrogen distorts the chair form, dramatically reducing cytotoxicity. Meayamycin D induced alternative splicing of MCL-1, showed strong synergism with venetoclax in drug-resistant lung cancer cells, and was cancer-specific over normal cells. Meayamycin D incorporates an alkyl ether and shows a long half-life in mouse plasma. The characteristics of meayamycin D may provide an approach to designing other bioactive L-shaped molecules.


Prediction of Drug Synergism between Peptides and Antineoplastic Drugs Paclitaxel, 5-Fluorouracil, and Doxorubicin Using In Silico Approaches.

  • Nuno Vale‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Chemotherapy is the main treatment for most early-stage cancers; nevertheless, its efficacy is usually limited by drug resistance, toxicity, and tumor heterogeneity. Cell-penetrating peptides (CPPs) are small peptide sequences that can be used to increase the delivery rate of chemotherapeutic drugs to the tumor site, therefore contributing to overcoming these problems and enhancing the efficacy of chemotherapy. The drug combination is another promising strategy to overcome the aforementioned problems since the combined drugs can synergize through interconnected biological processes and target different pathways simultaneously. Here, we hypothesized that different peptides (P1-P4) could be used to enhance the delivery of chemotherapeutic agents into three different cancer cells (HT-29, MCF-7, and PC-3). In silico studies were performed to simulate the pharmacokinetic (PK) parameters of each peptide and antineoplastic agent to help predict synergistic interactions in vitro. These simulations predicted peptides P2-P4 to have higher bioavailability and lower Tmax, as well as the chemotherapeutic agent 5-fluorouracil (5-FU) to have enhanced permeability properties over other antineoplastic agents, with P3 having prominent accumulation in the colon. In vitro studies were then performed to evaluate the combination of each peptide with the chemotherapeutic agents as well as to assess the nature of drug interactions through the quantification of the Combination Index (CI). Our findings in MCF-7 and PC-3 cancer cells demonstrated that the combination of these peptides with paclitaxel (PTX) and doxorubicin (DOXO), respectively, is not advantageous over a single treatment with the chemotherapeutic agent. In the case of HT-29 colorectal cancer cells, the combination of P2-P4 with 5-FU resulted in synergistic cytotoxic effects, as predicted by the in silico simulations. Taken together, these findings demonstrate that these CPP6-conjugates can be used as adjuvant agents to increase the delivery of 5-FU into HT-29 colorectal cancer cells. Moreover, these results support the use of in silico approaches for the prediction of the interaction between drugs in combination therapy for cancer.


Anticancer Properties of the Antipsychotic Drug Chlorpromazine and Its Synergism With Temozolomide in Restraining Human Glioblastoma Proliferation In Vitro.

  • Silvia Matteoni‎ et al.
  • Frontiers in oncology‎
  • 2021‎

The extremely poor prognosis of patients affected by glioblastoma (GBM, grade IV glioma) prompts the search for new and more effective therapies. In this regard, drug repurposing or repositioning can represent a safe, swift, and inexpensive way to bring novel pharmacological approaches from bench to bedside. Chlorpromazine, a medication used since six decades for the therapy of psychiatric disorders, shows in vitro several features that make it eligible for repositioning in cancer therapy. Using six GBM cell lines, three of which growing as patient-derived neurospheres and displaying stem-like properties, we found that chlorpromazine was able to inhibit viability in an apoptosis-independent way, induce hyperdiploidy, reduce cloning efficiency as well as neurosphere formation and downregulate the expression of stemness genes in all these cell lines. Notably, chlorpromazine synergized with temozolomide, the first-line therapeutic in GBM patients, in hindering GBM cell viability, and both drugs strongly cooperated in reducing cloning efficiency and inducing cell death in vitro for all the GBM cell lines assayed. These results prompted us to start a Phase II clinical trial on GBM patients (EudraCT # 2019-001988-75; ClinicalTrials.gov Identifier: NCT04224441) by adding chlorpromazine to temozolomide in the adjuvant phase of the standard first-line therapeutic protocol.


Synergism interaction between genetic polymorphisms in drug metabolizing enzymes and NSAIDs on upper gastrointestinal haemorrhage: a multicenter case-control study.

  • Narmeen Mallah‎ et al.
  • Annals of medicine‎
  • 2022‎

Interindividual genetic variations contribute to differences in patients' response to drugs as well as to the development of certain disorders. Patients who use non-steroidal anti-inflammatory drugs (NSAIDs) may develop serious gastrointestinal disorders, mainly upper gastrointestinal haemorrhage (UGIH). Studies about the interaction between NSAIDs and genetic variations on the risk of UGIH are scarce. Therefore, we investigated the effect of 16 single nucleotide polymorphisms (SNPs) involved in drug metabolism on the risk of NSAIDs-induced UGIH.


Photothermally responsive theranostic nanocomposites for near-infrared light triggered drug release and enhanced synergism of photothermo-chemotherapy for gastric cancer.

  • Taicheng Zhou‎ et al.
  • Bioengineering & translational medicine‎
  • 2023‎

Near-infrared (NIR) photothermal therapy plays a critical role in the cancer treatment and diagnosis as a promising carcinoma treatment modalities nowadays. However, development of clinical application has been greatly limited due to the inefficient drug release and low tumor accumulation. Herein, we designed a NIR-light triggered indocyanine green (ICG)-based PCL core/P(MEO2MA-b-HMAM) shell nanocomposites (PPH@ICG) and evaluated their therapeutic effects in vitro and in vivo. The anticancer drug 5-fluorouracil (5Fu) and the photothermal agent ICG were loaded into a thermo-sensitive micelle (PPH@5Fu@ICG) by self-assembly. The nanoparticles formed were characterized using transmission electron microscopy, dynamic light scattering, and fluorescence spectra. The thermo-sensitive copolymer (PPH@5Fu@ICG) showed a great temperature-controlled drug release response with lower critical solution temperature. In vitro cellular uptake and TEM imaging proved that PPH@5Fu@ICG nanoparticles can home into the lysosomal compartments under NIR. Moreover, in gastric tumor-bearing nude mice, PPH@5Fu@ICG + NIR group exhibited excellent improvement in antitumor efficacy based on the NIR-triggered thermo-chemotherapy synergy, both in vitro and in vivo. In summary, the proposed strategy of synergistic photo-hyperthermia chemotherapy effectively reduced the 5Fu dose, toxic or side effect, which could serve as a secure and efficient approach for cancer theranostics.


Chalcones, stilbenes and ketones have anti-infective properties via inhibition of bacterial drug-efflux and consequential synergism with antimicrobial agents.

  • Lauren Hellewell‎ et al.
  • Access microbiology‎
  • 2020‎

With antimicrobial resistance creating a major public health crisis, the designing of novel antimicrobial compounds that effectively combat bacterial infection is becoming increasingly critical. Interdisciplinary approaches integrate the best features of whole-cell phenotypic evaluation to validate novel therapeutic targets and discover new leads to combat antimicrobial resistance. In this project, whole-cell phenotypic evaluation such as testing inhibitors on bacterial growth, viability, efflux pump, biofilm formation and their interaction with other drugs were performed on a panel of Gram-positive, Gram-negative and acid-fast group of bacterial species. This enabled additional antimicrobial activities of compounds belonging to the flavonoid family including ketones, chalcones and stilbenes, to be identified. Flavonoids have received renewed attention in literature over the past decade, and a variety of beneficial effects of these compounds have been illuminated, including anti-cancer, anti-inflammatory, anti-tumour as well as anti-fungal and anti-bacterial. However, their mechanisms of action are yet to be identified. In this paper, we found that the compounds belonging to the flavonoid family exerted a range of anti-infective properties being identified as novel efflux pump inhibitors, whilst offering the opportunity to be used in combination therapy. The compound 2-phenylacetophenone displayed broad-spectrum efflux pump inhibition activity, whilst trans-chalcone, displayed potent activity against Gram-negative and mycobacterial efflux pumps causing inhibition higher than known potent efflux pump inhibitors, verapamil and chlorpromazine. Drug-drug interaction studies also highlighted that 2-phenylacetophenone not only has the potential to work additively with known antibacterial agents that affect the cell-wall and DNA replication but also trans-chalcone has the potential to work synergistically with anti-tubercular agents. Overall, this paper shows how whole-cell phenotypic analysis allows for the discovery of new antimicrobial agents and their consequent mode of action whilst offering the opportunity for compounds to be repurposed, in order to contribute in the fight against antimicrobial resistance.


Synergism of cationic antimicrobial peptide WLBU2 with antibacterial agents against biofilms of multi-drug resistant Acinetobacter baumannii and Klebsiella pneumoniae.

  • Samer Swedan‎ et al.
  • Infection and drug resistance‎
  • 2019‎

The activity of the cationic antimicrobial peptide WLBU2 was evaluated against planktonic cells and biofilms of multi-drug resistant (MDR) Acinetobacter baumannii and Klebsiella pneumoniae, alone and in combination with classical antimicrobial agents.


Synergism and rules of the new combination drug Yiqijiedu formulae (YQJD) on ischemic stroke based on amino acids (AAs) metabolism.

  • Jian Gao‎ et al.
  • Scientific reports‎
  • 2014‎

The use of combination drugs is considered to be a promising strategy to control complex diseases such as ischemic stroke. The detection of metabolites has been used as a versatile tool to reveal the potential mechanism of diverse diseases. In this study, the levels of 12 endogenous AAs were simultaneously determined quantitatively in the MCAO rat brain using RRLC-QQQ method. Seven AAs were chosen as the potential biomarkers, and using PLS-DA analysis, the effects of the new combination drug YQJD, which is composed of ginsenosides, berberine, and jasminoidin, on those 7 AAs were evaluated. Four AAs, glutamic acid, homocysteine, methionine, and tryptophan, which changed significantly in the YQJD-treated groups compared to the vehicle groups (P < 0.05), were identified and designated as the AAs to use to further explore the synergism of YQJD. The result of a PCA showed that the combination of these three drugs exhibits the strongest synergistic effect compared to other combination groups and that ginsenosides might play a pivotal role, especially when combined with jasminoidin. We successfully explored the synergetic mechanism of multi-component and provided a new method for evaluating the integrated effects of combination drugs in the treatment of complex diseases.


Selective strong synergism of Ruxolitinib and second generation tyrosine kinase inhibitors to overcome bone marrow stroma related drug resistance in chronic myelogenous leukemia.

  • Concetta Quintarelli‎ et al.
  • Leukemia research‎
  • 2014‎

The IC50 of TKIs is significantly increased when BCR-ABL+ K562 cell line is cultured in stroma conditioned media produced by BM mesenchymal cells. In particular, while the Imatinib IC50 in the stromal co-cultures was well above the in vivo through levels of the drug, the IC50s of second generation TKIs were still below their through levels. Moreover, we provide a formal comparison of the synergy between first and second generation TKIs with the JAK inhibitor Ruxolitinib to overcome BM stroma related TKI resistance. Taken together, our data provide a rationale for the therapeutic combination of TKIs and Ruxolitinib with the aim to eradicate primary BCR-ABL+ cells homed in BM niches.


Synergism of antihypertensives and cholinesterase inhibitors in Alzheimer's disease.

  • Ziheng Hu‎ et al.
  • Alzheimer's & dementia (New York, N. Y.)‎
  • 2018‎

We investigated the effect of antihypertensive (aHTN) medications and cholinesterase inhibitors (ChEIs) on the cognitive decline in patients with Alzheimer's disease (AD) and analyzed synergism by chemogenomics systems pharmacology mapping.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: