Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 439 papers

Network model predicts that CatSper is the main Ca2+ channel in the regulation of sea urchin sperm motility.

  • Jesús Espinal-Enríquez‎ et al.
  • Scientific reports‎
  • 2017‎

Spermatozoa sea urchin swimming behaviour is regulated by small peptides from the egg outer envelope. Speract, such a peptide, after binding to its receptor in Strongylocentrotus purpuratus sperm flagella, triggers a signaling pathway that culminates with a train of intracellular calcium oscillations, correlated with changes in sperm swimming pattern. This pathway has been widely studied but not fully characterized. Recent work on Arbacia punctulata sea urchin spermatozoa has documented the presence of the Ca2+ CatSper channel in their flagella and its involvement in chemotaxis. However, if other calcium channels participate in chemotaxis remains unclear. Here, based on an experimentally-backed logical network model, we conclude that CatSper is fundamental in the S. purpuratus speract-activated sea urchin sperm signaling cascade, although other Ca2+ channels could still be relevant. We also present for the first time experimental corroboration of its active presence in S. purpuratus sperm flagella. We argue, prompted by in silico knock-out calculations, that CatSper is the main generator of calcium oscillations in the signaling pathway and that other calcium channels, if present, have a complementary role. The approach adopted here allows us to unveil processes, which are hard to detect exclusively by experimental procedures.


The evolutionary analysis reveals domain fusion of proteins with Frizzled-like CRD domain.

  • Jun Yan‎ et al.
  • Gene‎
  • 2014‎

Frizzleds (FZDs) are transmembrane receptors in the Wnt signaling pathway and they play pivotal roles in developments. The Frizzled-like extracellular Cysteine-rich domain (Fz-CRD) has been identified in FZDs and other proteins. The origin and evolution of these proteins with Fz-CRD is the main interest of this study. We found that the Fz-CRD exists in FZD, SFRP, RTK, MFRP, CPZ, CORIN, COL18A1 and other proteins. Our systematic analysis revealed that the Fz-CRD domain might have originated in protists and then fused with the Frizzled-like seven-transmembrane domain (7TM) to form the FZD receptors, which duplicated and diversified into about 11 members in Vertebrates. The SFRPs and RTKs with the Fz-CRD were found in sponge and expanded in Vertebrates. Other proteins with Fz-CRD may have emerged during Vertebrate evolution through domain fusion. Moreover, we found a glycosylation site and several conserved motifs in FZDs, which may be related to Wnt interaction. Based on these results, we proposed a model showing that the domain fusion and expansion of Fz-CRD genes occurred in Metazoa and Vertebrates. Our study may help to pave the way for further research on the conservation and diversification of Wnt signaling functions during evolution.


Sea urchin Forkhead gene family: phylogeny and embryonic expression.

  • Qiang Tu‎ et al.
  • Developmental biology‎
  • 2006‎

Transcription factors of the Forkhead (Fox) family have been identified in many metazoans, and play important roles in diverse biological processes. Here we define the set of fox genes present in the sea urchin genome, and survey their usage during development. This genome includes 22 fox genes, only three of which were previously known. Of the 23 fox gene subclasses identified in vertebrate genomes, the Strongylocentrotus purpuratus genome has orthologues of all but four (E, H, R and S). Phylogenetic analysis suggests that one S. purpuratus fox gene is equally related to foxA and foxB of vertebrates; this gene defines a new class. Two other genes appear to be specific to the sea urchin, with respect to the genomes so far sequenced. Fox genes orthologous with those of vertebrates but lacking in arthropod or nematode genomes may be deuterostome-specific (subclasses I, J1, J2, L1, M and Q1), while the majority are pan-bilaterian. All but one of the S. purpuratus fox genes (SpfoxQ1) are expressed during embryogenesis, most in a very specific temporal and spatial manner. The sea urchin fox genes clearly execute many different regulatory functions, and almost all of them participate in the process of embryonic development.


Function of a sea urchin egg Src family kinase in initiating Ca2+ release at fertilization.

  • Andrew F Giusti‎ et al.
  • Developmental biology‎
  • 2003‎

Egg activation at fertilization requires the release of Ca(2+) from the egg's endoplasmic reticulum, and recent evidence has indicated that a Src family kinase (SFK) may function in initiating this signaling pathway in echinoderm eggs. Here, we identify and characterize a SFK from the sea urchin Strongylocentrotus purpuratus, SpSFK1. SpSFK1 RNA is present in eggs, and an antibody made against a SpSFK1 peptide recognizes an approximately 58-kDa egg membrane-associated protein in eggs of S. purpuratus as well as another sea urchin Lytechinus variegatus. Injection of both species of sea urchin eggs with dominant-interfering Src homology 2 domains of SpSFK1 delays and reduces the release of Ca(2+) at fertilization. Injection of an antibody against SpSFK1 into S. purpuratus eggs also causes a small increase in the delay between sperm-egg fusion and Ca(2+) release. In contrast, when injected into eggs of L. variegatus, this same antibody has a dramatic stimulatory effect: it causes PLCgamma-dependent Ca(2+) release like that occurring at fertilization. Correspondingly, in lysates of L. variegatus eggs, but not S. purpuratus eggs, the antibody stimulates SFK activity. Injection of L. variegatus eggs with another antibody that recognizes the L. variegatus egg SFK also causes PLCgamma-dependent Ca(2+) release like that at fertilization. These results indicate that activation of a Src family kinase present in sea urchin eggs is necessary to cause Ca(2+) release at fertilization and is capable of stimulating Ca(2+) release in the unfertilized egg via PLCgamma, as at fertilization.


Genome-wide identification and spatiotemporal expression analysis of cadherin superfamily members in echinoderms.

  • Macie M Chess‎ et al.
  • EvoDevo‎
  • 2023‎

Cadherins are calcium-dependent transmembrane cell-cell adhesion proteins that are essential for metazoan development. They consist of three subfamilies: classical cadherins, which bind catenin, protocadherins, which contain 6-7 calcium-binding repeat domains, and atypical cadherins. Their functions include forming adherens junctions, establishing planar cell polarity (PCP), and regulating cell shape, proliferation, and migration. Because they are basal deuterostomes, echinoderms provide important insights into bilaterian evolution, but their only well-characterized cadherin is G-cadherin, a classical cadherin that is expressed by many embryonic epithelia. We aimed to better characterize echinoderm cadherins by conducting phylogenetic analyses and examining the spatiotemporal expression patterns of cadherin-encoding genes during Strongylocentrotus purpuratus development.


Evolutionary analysis of the cis-regulatory region of the spicule matrix gene SM50 in strongylocentrotid sea urchins.

  • Jenna Walters‎ et al.
  • Developmental biology‎
  • 2008‎

An evolutionary analysis of transcriptional regulation is essential to understanding the molecular basis of phenotypic diversity. The sea urchin is an ideal system in which to explore the functional consequence of variation in cis-regulatory sequences. We are particularly interested in the evolution of genes involved in the patterning and synthesis of its larval skeleton. This study focuses on the cis-regulatory region of SM50, which has already been characterized to a considerable extent in the purple sea urchin, Strongylocentrotus purpuratus. We have isolated the cis-regulatory region from 15 individuals of S. purpuratus as well as seven closely related species in the family Strongylocentrotidae. We have performed a variety of statistical tests and present evidence that the cis-regulatory elements upstream of the SM50 gene have been subject to positive selection along the lineage leading to S. purpuratus. In addition, we have performed electrophoretic mobility shift assays (EMSAs) and demonstrate that nucleotide substitutions within Element C affect the ability of nuclear proteins to bind to this cis-regulatory element among members of the family Strongylocentrotidae. We speculate that such changes in SM50 and other genes could accumulate to produce altered patterns of gene expression with functional consequences during skeleton formation.


Short tandem repeats, segmental duplications, gene deletion, and genomic instability in a rapidly diversified immune gene family.

  • Matan Oren‎ et al.
  • BMC genomics‎
  • 2016‎

Genomic regions with repetitive sequences are considered unstable and prone to swift DNA diversification processes. A highly diverse immune gene family of the sea urchin (Strongylocentrotus purpuratus), called Sp185/333, is composed of clustered genes with similar sequence as well as several types of repeats ranging in size from short tandem repeats (STRs) to large segmental duplications. This repetitive structure may have been the basis for the incorrect assembly of this gene family in the sea urchin genome sequence. Consequently, we have resolved the structure of the family and profiled the members by sequencing selected BAC clones using Illumina and PacBio approaches.


In-depth, high-accuracy proteomics of sea urchin tooth organic matrix.

  • Karlheinz Mann‎ et al.
  • Proteome science‎
  • 2008‎

The organic matrix contained in biominerals plays an important role in regulating mineralization and in determining biomineral properties. However, most components of biomineral matrices remain unknown at present. In sea urchin tooth, which is an important model for developmental biology and biomineralization, only few matrix components have been identified. The recent publication of the Strongylocentrotus purpuratus genome sequence rendered possible not only the identification of genes potentially coding for matrix proteins, but also the direct identification of proteins contained in matrices of skeletal elements by in-depth, high-accuracy proteomic analysis.


AID/APOBEC-like cytidine deaminases are ancient innate immune mediators in invertebrates.

  • Mei-Chen Liu‎ et al.
  • Nature communications‎
  • 2018‎

In the course of both innate and adaptive immunity, cytidine deaminases within the activation induced cytidine deaminase (AID)/apolipoprotein B editing complex (APOBEC) family modulate immune responses by mutating specific nucleic acid sequences of hosts and pathogens. The evolutionary emergence of these mediators, however, seems to coincide precisely with the emergence of adaptive immunity in vertebrates. Here, we show a family of genes in species within two divergent invertebrate phyla-the echinoderm Strongylocentrotus purpuratus and the brachiopod Lingula anatina-that encode proteins with similarities in amino acid sequence and enzymatic activities to the vertebrate AID/APOBECs. The expression of these invertebrate factors is enriched in tissues undergoing constant, direct interactions with microbes and can be induced upon pathogen challenge. Our findings suggest that AID/APOBEC proteins, and their function in immunity, emerged far earlier than previously thought. Thus, cytidine deamination is probably an ancient innate immune mechanism that predates the protostome/deuterostome divergence.


Positionally biased gene loss after whole genome duplication: evidence from human, yeast, and plant.

  • Takashi Makino‎ et al.
  • Genome research‎
  • 2012‎

Whole genome duplication (WGD) has made a significant contribution to many eukaryotic genomes including yeast, plants, and vertebrates. Following WGD, some ohnologs (WGD paralogs) remain in the genome arranged in blocks of conserved gene order and content (paralogons). However, the most common outcome is loss of one of the ohnolog pair. It is unclear what factors, if any, govern gene loss from paralogons. Recent studies have reported physical clustering (genetic linkage) of functionally linked (interacting) genes in the human genome and propose a biological significance for the clustering of interacting genes such as coexpression or preservation of epistatic interactions. Here we conduct a novel test of a hypothesis that functionally linked genes in the same paralogon are preferentially retained in cis after WGD. We compare the number of protein-protein interactions (PPIs) between linked singletons within a paralogon (defined as cis-PPIs) with that of PPIs between singletons across paralogon pairs (defined as trans-PPIs). We find that paralogons in which the number of cis-PPIs is greater than that of trans-PPIs are significantly enriched in human and yeast. The trend is similar in plants, but it is difficult to assess statistical significance due to multiple, overlapping WGD events. Interestingly, human singletons participating in cis-PPIs tend to be classified into "response to stimulus." We uncover strong evidence of biased gene loss after WGD, which further supports the hypothesis of biologically significant gene clusters in eukaryotic genomes. These observations give us new insight for understanding the evolution of genome structure and of protein interaction networks.


How fast is the sessile ciona?

  • Luisa Berná‎ et al.
  • Comparative and functional genomics‎
  • 2009‎

Genomewide analyses of distances between orthologous gene pairs from the ascidian species Ciona intestinalis and Ciona savignyi were compared with those of vertebrates. Combining this data with a detailed and careful use of vertebrate fossil records, we estimated the time of divergence between the two ascidians nearly 180 My. This estimation was obtained after correcting for the different substitution rates found comparing several groups of chordates; indeed we determine here that on average Ciona species evolve 50% faster than vertebrates.


Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution.

  • David V Dylus‎ et al.
  • Genome biology‎
  • 2018‎

Amongst the echinoderms the class Ophiuroidea is of particular interest for its phylogenetic position, ecological importance and developmental and regenerative biology. However, compared to other echinoderms, notably echinoids (sea urchins), relatively little is known about developmental changes in gene expression in ophiuroids. To address this issue, we have generated and assembled a large RNAseq data set of four key stages of development in the brittle star Amphiura filiformis and a de novo reference transcriptome of comparable quality to that of a model echinoderm-the sea urchin Strongylocentrotus purpuratus. Furthermore, we provide access to the new data via a web interface: http://www.echinonet.eu/shiny/Amphiura_filiformis/ .


Current Status of Echinoderm Genome Analysis - What do we Know?

  • Mariko Kondo‎ et al.
  • Current genomics‎
  • 2012‎

Echinoderms have long served as model organisms for a variety of biological research, especially in the field of developmental biology. Although the genome of the purple sea urchin Strongylocentrotus purpuratus has been sequenced, it is the only echinoderm whose whole genome sequence has been reported. Nevertheless, data is rapidly accumulating on the chromosomes and genomic sequences of all five classes of echinoderms, including the mitochondrial genomes and Hox genes. This blossoming new data will be essential for estimating the phylogenetic relationships among echinoderms, and also to examine the underlying mechanisms by which the diverse morphologies of echinoderms have arisen.


Genome-wide signals of positive selection in strongylocentrotid sea urchins.

  • Kord M Kober‎ et al.
  • BMC genomics‎
  • 2017‎

Comparative genomics studies investigating the signals of positive selection among groups of closely related species are still rare and limited in taxonomic breadth. Such studies show great promise in advancing our knowledge about the proportion and the identity of genes experiencing diversifying selection. However, methodological challenges have led to high levels of false positives in past studies. Here, we use the well-annotated genome of the purple sea urchin, Strongylocentrotus purpuratus, as a reference to investigate the signals of positive selection at 6520 single-copy orthologs from nine sea urchin species belonging to the family Strongylocentrotidae paying careful attention to minimizing false positives.


New hypotheses of cell type diversity and novelty from orthology-driven comparative single cell and nuclei transcriptomics in echinoderms.

  • Anne Meyer‎ et al.
  • eLife‎
  • 2023‎

Cell types are the building blocks of metazoan biodiversity and offer a powerful perspective for inferring evolutionary phenomena. With the development of single-cell transcriptomic techniques, new definitions of cell types are emerging. This allows a conceptual reassessment of traditional definitions of novel cell types and their evolution. Research in echinoderms, particularly sea star and sea urchin embryos has contributed significantly to understanding the evolution of novel cell types, through the examination of skeletogenic mesenchyme and pigment cells, which are found in sea urchin larvae, but not sea star larvae. This paper outlines the development of a gene expression atlas for the bat sea star, Patiria miniata, using single nuclear RNA sequencing (snRNA-seq) of embryonic stages. The atlas revealed 23 cell clusters covering all expected cell types from the endoderm, mesoderm, and ectoderm germ layers. In particular, four distinct neural clusters, an immune-like cluster, and distinct right and left coelom clusters were revealed as distinct cell states. A comparison with Strongylocentrotus purpuratus embryo single-cell transcriptomes was performed using 1:1 orthologs to anchor and then compare gene expression patterns. The equivalent of S. purpuratus piwil3+ Cells were not detected in P. miniata, while the Left Coelom of P. miniata has no equivalent cell cluster in S. purpuratus. These differences may reflect changes in developmental timing between these species. While considered novel morphologically, the Pigment Cells of S. purpuratus map to clusters containing Immune-like Mesenchyme and Neural cells of P. miniata, while the Skeletogenic Mesenchyme of S. purpuratus are revealed as orthologous to the Right Coelom cluster of P. miniata. These results suggest a new interpretation of the evolution of these well-studied cell types and a reflection on the definition of novel cell types.


The skeletal proteome of the sea star Patiria miniata and evolution of biomineralization in echinoderms.

  • Rachel L Flores‎ et al.
  • BMC evolutionary biology‎
  • 2017‎

Proteomic studies of skeletal proteins have revealed large, complex mixtures of proteins occluded within the mineral. Many skeletal proteomes contain rapidly evolving proteins with repetitive domains, further complicating our understanding. In echinoderms, proteomic analysis of the skeletal proteomes of mineralized tissues of the sea urchin Strongylocentrotus purpuratus prominently featured spicule matrix proteins with repetitive sequences linked to a C-type lectin domain. A comparative study of the brittle star Ophiocoma wendtii skeletal proteome revealed an order of magnitude fewer proteins containing C-type lectin domains. A number of other proteins conserved in the skeletons of the two groups were identified. Here we report the complete skeletal proteome of the sea star Patiria miniata and compare it to that of the other echinoderm groups.


Expression pattern of polyketide synthase-2 during sea urchin development.

  • Adam Beeble‎ et al.
  • Gene expression patterns : GEP‎
  • 2012‎

Polyketide synthases (PKSs) are a large group of proteins responsible for the biosynthesis of polyketide compounds, which are mainly found in bacteria, fungi, and plants. Polyketides have a wide array of biological functions, including antibiotic, antifungal, predator defense, and light responses. In this study, we describe the developmental expression pattern of pks2, one of two pks found in the sea urchin genome. Throughout development, pks2 expression was restricted to skeletogenic cells and their precursors. Pks2 was first detected during the blastula stage. The transcript level peaked at hatched blastula, when all skeletogenic cell precursors expressed pks2. This was followed by a steady decline in expression in the skeletogenic cells on the aboral side of the embryo. By the prism stage, pks2 expression was limited to only 3-4 skeletogenic cells localized on the oral side.


Expression pattern of vascular endothelial growth factor 2 during sea urchin development.

  • Yulia O Kipryushina‎ et al.
  • Gene expression patterns : GEP‎
  • 2013‎

The VEGF family in the sea urchin is comprised of three members designated Vegf1 through Vegf3. In this study, we found a high level of similarity between the PDGF/VEGF domain of the predicted gene Sp-Vegf2 in the sea urchin Strongylocentrotus purpuratus and the same domain of a gene that we found in a closely related sea urchin, Strongylocentrotus intermedius. The sequence of the Si-Vegf2 cDNA was determined, and the expression of the Si-Vegf2 mRNA throughout early sea urchin development was studied by RT-PCR and in situ hybridization. Also we analyzed phylogenetic relationships of Si-Vegf2 and other members of the PDGF and VEGF families. We have found that the Si-Vegf2 present during the time span from the egg to the 4-arm pluteus stage. This mRNA is uniformly distributed in eggs, cleaving embryos and early blastulae. At the gastrula stage, the Si-Vegf2 transcripts are localized in the ventrolateral clusters of primary mesenchyme cells, and later, at the prism stage, they are detected in the forming apex. At the early pluteus stage, Si-Vegf2 mRNAs are found in two groups of mesenchyme cells in the scheitel region on the apical pole. We have determined that Si-Vegf2 is a mesenchyme-expressed factor but its developmental function is unknown.


The Drosophila melanogaster Ortholog of RFWD3 Functions Independently of RAD51 During DNA Repair.

  • Juan Carvajal-Garcia‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2020‎

Repair of damaged DNA is required for the viability of all organisms. Studies in Drosophila melanogaster, driven by the power of genetic screens, pioneered the discovery and characterization of many genes and pathways involved in DNA repair in animals. However, fewer than half of the alleles identified in these screens have been mapped to a specific gene, leaving a potential for new discoveries in this field. Here we show that the previously uncharacterized mutagen sensitive gene mus302 codes for the Drosophila melanogaster ortholog of the E3 ubiquitin ligase RING finger and WD domain protein 3 (RFWD3). In human cells, RFWD3 promotes ubiquitylation of RPA and RAD51 to facilitate repair of collapsed replication forks and double-strand breaks through homologous recombination. Despite the high similarity in sequence to the human ortholog, our evidence fails to support a role for Mus302 in the repair of these types of damage. Last, we observe that the N-terminal third of RFWD3 is only found in mammals, but not in other vertebrates or invertebrates. We propose that the new N-terminal sequence accounts for the acquisition of a new biological function in mammals that explains the functional differences between the human and the fly orthologs, and that Drosophila Mus302 may retain the ancestral function of the protein.


The 10 sea urchin receptor for egg jelly proteins (SpREJ) are members of the polycystic kidney disease-1 (PKD1) family.

  • H Jayantha Gunaratne‎ et al.
  • BMC genomics‎
  • 2007‎

Mutations in the human polycystic kidney disease-1 (hPKD1) gene result in ~85% of cases of autosomal dominant polycystic kidney disease, the most frequent human monogenic disease. PKD1 proteins are large multidomain proteins involved in a variety of signal transduction mechanisms. Obtaining more information about members of the PKD1 family will help to clarify their functions. Humans have five hPKD1 proteins, whereas sea urchins have 10. The PKD1 proteins of the sea urchin, Strongylocentrotus purpuratus, are referred to as the Receptor for Egg Jelly, or SpREJ proteins. The SpREJ proteins form a subfamily within the PKD1 family. They frequently contain C-type lectin domains, PKD repeats, a REJ domain, a GPS domain, a PLAT/LH2 domain, 1-11 transmembrane segments and a C-terminal coiled-coil domain.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: