Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 191 papers

Opposing roles for SNAP23 in secretion in exocrine and endocrine pancreatic cells.

  • Masataka Kunii‎ et al.
  • The Journal of cell biology‎
  • 2016‎

The membrane fusion of secretory granules with plasma membranes is crucial for the exocytosis of hormones and enzymes. Secretion disorders can cause various diseases such as diabetes or pancreatitis. Synaptosomal-associated protein 23 (SNAP23), a soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE) molecule, is essential for secretory granule fusion in several cell lines. However, the in vivo functions of SNAP23 in endocrine and exocrine tissues remain unclear. In this study, we show opposing roles for SNAP23 in secretion in pancreatic exocrine and endocrine cells. The loss of SNAP23 in the exocrine and endocrine pancreas resulted in decreased and increased fusion of granules to the plasma membrane after stimulation, respectively. Furthermore, we identified a low molecular weight compound, MF286, that binds specifically to SNAP23 and promotes insulin secretion in mice. Our results demonstrate opposing roles for SNAP23 in the secretion mechanisms of the endocrine and exocrine pancreas and reveal that the SNAP23-binding compound MF286 may be a promising drug for diabetes treatment.


No Functional Role for microRNA-342 in a Mouse Model of Pancreatic Acinar Carcinoma.

  • James Dooley‎ et al.
  • Frontiers in oncology‎
  • 2017‎

The intronic microRNA (miR)-342 has been proposed as a potent tumor-suppressor gene. miR-342 is found to be downregulated or epigenetically silenced in multiple different tumor sites, and this loss of expression permits the upregulation of several key oncogenic pathways. In several different cell lines, lower miR-342 expression results in enhanced proliferation and metastasis potential, both in vitro and in xenogenic transplant conditions. Here, we sought to determine the function of miR-342 in an in vivo spontaneous cancer model, using the Ela1-TAg transgenic model of pancreatic acinar carcinoma. Through longitudinal magnetic resonance imaging monitoring of Ela1-TAg transgenic mice, either wild-type or knockout for miR-342, we found no role for miR-342 in the development, growth rate, or pathogenicity of pancreatic acinar carcinoma. These results indicate the importance of assessing miR function in the complex physiology of in vivo model systems and indicate that further functional testing of miR-342 is required before concluding it is a bona fide tumor-suppressor-miR.


Deficient Endoplasmic Reticulum Acetyl-CoA Import in Pancreatic Acinar Cells Leads to Chronic Pancreatitis.

  • Michelle M Cooley‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2021‎

Maintaining endoplasmic reticulum (ER) proteostasis is essential for pancreatic acinar cell function. Under conditions of severe ER stress, activation of pathogenic unfolded protein response pathways plays a central role in the development and progression of pancreatitis. Less is known, however, of the consequence of perturbing ER-associated post-translational protein modifications on pancreatic outcomes. Here, we examined the role of the ER acetyl-CoA transporter AT-1 on pancreatic homeostasis.


Neutrophils and neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic tumors.

  • Yohei Hisada‎ et al.
  • Haematologica‎
  • 2020‎

Pancreatic cancer is associated with a high incidence of venous thromboembolism. Neutrophils have been shown to contribute to thrombosis in part by releasing neutrophil extracellular traps (NET). A recent study showed that increased plasma levels of the NET biomarker, citrullinated histone H3 (H3Cit), are associated with venous thromboembolism in patients with pancreatic and lung cancer but not in those with other types of cancer, including breast cancer. In this study, we examined the contribution of neutrophils and NET to venous thrombosis in nude mice bearing human pancreatic tumors. We found that tumor-bearing mice had increased circulating neutrophil counts and levels of granulocyte-colony stimulating factor, neutrophil elastase, H3Cit and cell-free DNA compared with controls. In addition, thrombi from tumor-bearing mice contained increased levels of the neutrophil marker Ly6G, as well as higher levels of H3Cit and cell-free DNA. Thrombi from tumor-bearing mice also had denser fibrin with thinner fibers consistent with increased thrombin generation. Importantly, either neutrophil depletion or administration of DNase I reduced the thrombus size in tumor-bearing but not in control mice. Our results, together with clinical data, suggest that neutrophils and NET contribute to venous thrombosis in patients with pancreatic cancer.


Murine Pancreatic Acinar Cell Carcinoma Growth Kinetics Are Independent of Dietary Vitamin D Deficiency or Supplementation.

  • James Dooley‎ et al.
  • Frontiers in oncology‎
  • 2017‎

Vitamin D has been proposed as a therapeutic strategy in pancreatic cancer, yet evidence for an effect of dietary vitamin D on pancreatic cancer is ambiguous, with conflicting data from human epidemiological and intervention studies. Here, we tested the role of dietary vitamin D in the in vivo context of the well-characterized Ela1-TAg transgenic mouse model of pancreatic acinar cell carcinoma. Through longitudinal magnetic resonance imaging of mice under conditions of either dietary vitamin D deficiency (<5 IU/kg vitamin D) or excess (76,500 IU/kg vitamin D), compared to control diet (1,500 IU/kg vitamin D), we measured the effect of variation of dietary vitamin D on tumor kinetics. No measurable impact of dietary vitamin D was found on pancreatic acinar cell carcinoma development, growth or mortality, casting further doubt on the already equivocal data supporting potential therapeutic use in humans. The lack of any detectable effect of vitamin D, within the physiological range of dietary deficiency or supplementation, in this model further erodes confidence in vitamin D as an effective antitumor therapeutic in pancreatic acinar cell carcinoma.


Ptf1a inactivation in adult pancreatic acinar cells causes apoptosis through activation of the endoplasmic reticulum stress pathway.

  • Morito Sakikubo‎ et al.
  • Scientific reports‎
  • 2018‎

Pancreas transcription factor 1 subunit alpha (PTF1A) is one of the key regulators in pancreatogenesis. In adults, it transcribes digestive enzymes, but its other functions remain largely unknown. Recent conditional knockout studies using Ptf1aCreER/floxed heterozygous mouse models have found PTF1A contributes to the identity maintenance of acinar cells and prevents tumorigenesis caused by the oncogenic gene Kras. However, Ptf1a heterozygote is known to behave differently from homozygote. To elucidate the effects of Ptf1a homozygous loss, we prepared Elastase-CreERTM; Ptf1afloxed/floxed mice and found that homozygous Ptf1a deletion in adult acinar cells causes severe apoptosis. Electron microscopy revealed endoplasmic reticulum (ER) stress, a known cause of unfolded protein responses (UPR). We confirmed that UPR was upregulated by the activating transcription factor 6 (ATF6) and protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) pathways, but not the inositol requiring enzyme 1 (IRE1) pathway. Furthermore, we detected the expression of CCAAT-enhancer-binding protein (C/EBP) homologous protein (CHOP), a pro-apoptotic factor, indicating the apoptosis was induced through UPR. Our homozygous model helps clarify the role PTF1A has on the homeostasis and pathogenesis of exocrine pancreas in mice.


Rab27A Is Present in Mouse Pancreatic Acinar Cells and Is Required for Digestive Enzyme Secretion.

  • Yanan Hou‎ et al.
  • PloS one‎
  • 2015‎

The small G-protein Rab27A has been shown to regulate the intracellular trafficking of secretory granules in various cell types. However, the presence, subcellular localization and functional impact of Rab27A on digestive enzyme secretion by mouse pancreatic acinar cells are poorly understood. Ashen mice, which lack the expression of Rab27A due to a spontaneous mutation, were used to investigate the function of Rab27A in pancreatic acinar cells. Isolated pancreatic acini were prepared from wild-type or ashen mouse pancreas by collagenase digestion, and CCK- or carbachol-induced amylase secretion was measured. Secretion occurring through the major-regulated secretory pathway, which is characterized by zymogen granules secretion, was visualized by Dextran-Texas Red labeling of exocytotic granules. The minor-regulated secretory pathway, which operates through the endosomal/lysosomal pathway, was characterized by luminal cell surface labeling of lysosomal associated membrane protein 1 (LAMP1). Compared to wild-type, expression of Rab27B was slightly increased in ashen mouse acini, while Rab3D and digestive enzymes (amylase, lipase, chymotrypsin and elastase) were not affected. Localization of Rab27B, Rab3D and amylase by immunofluorescence was similar in both wild-type and ashen acinar cells. The GTP-bound states of Rab27B and Rab3D in wild-type and ashen mouse acini also remained similar in amount. In contrast, acini from ashen mice showed decreased amylase release induced by CCK- or carbachol. Rab27A deficiency reduced the apical cell surface labeling of LAMP1, but did not affect that of Dextran-Texas Red incorporation into the fusion pockets at luminal surface. These results show that Rab27A is present in mouse pancreatic acinar cells and mainly regulates secretion through the minor-regulated pathway.


Conversion of the death inhibitor ARC to a killer activates pancreatic β cell death in diabetes.

  • Wendy M McKimpson‎ et al.
  • Developmental cell‎
  • 2021‎

Loss of insulin-secreting pancreatic β cells through apoptosis contributes to the progression of type 2 diabetes, but underlying mechanisms remain elusive. Here, we identify a pathway in which the cell death inhibitor ARC paradoxically becomes a killer during diabetes. While cytoplasmic ARC maintains β cell viability and pancreatic architecture, a pool of ARC relocates to the nucleus to induce β cell apoptosis in humans with diabetes and several pathophysiologically distinct mouse models. β cell death results through the coordinate downregulation of serpins (serine protease inhibitors) not previously known to be synthesized and secreted by β cells. Loss of the serpin α1-antitrypsin from the extracellular space unleashes elastase, triggering the disruption of β cell anchorage and subsequent cell death. Administration of α1-antitrypsin to mice with diabetes prevents β cell death and metabolic abnormalities. These data uncover a pathway for β cell loss in type 2 diabetes and identify an FDA-approved drug that may impede progression of this syndrome.


Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN.

  • Jens T Siveke‎ et al.
  • Cancer cell‎
  • 2007‎

Growth factors have been implicated in pancreatic carcinogenesis. In this study we analyzed the effect of Tgfa overexpression in addition to mutant Kras(G12D) by crossing Elastase-Tgfa mice with p48(+/Cre);Kras(+/LSL-G12D) mice. We show that concomitant expression of TGFalpha and Kras(G12D) accelerates the progression of mPanIN lesions to metastatic pancreatic cancer and leads to the development of cystic papillary lesions resembling human intraductal papillary mucinous neoplasms (IPMN). Microarray data in mice revealed an IPMN signature and IPMNs expressed MUC1 and MUC5AC but not MUC2, similar to human pancreatobiliary IPMNs. Invasive ductal adenocarcinoma developed from PanINs and IPMNs, suggesting precursor lines for both lesion types in this model. In conclusion, Egfr signaling in synergy with oncogenic Kras may be a prerequisite for IPMN development and progression to pancreatic cancer.


The c-myc and PyMT oncogenes induce different tumor types in a somatic mouse model for pancreatic cancer.

  • Brian C Lewis‎ et al.
  • Genes & development‎
  • 2003‎

We have generated a mouse model for pancreatic cancer through the somatic delivery of oncogene-bearing avian retroviruses to mice that express TVA, the receptor for avian leukosis sarcoma virus subgroup A (ALSV-A), under the control of the elastase promoter. Delivery of ALSV-A-based RCAS vectors encoding either mouse polyoma virus middle T antigen (PyMT) or c-Myc to elastase-tv-a transgenic, Ink4a/Arf null mice induced the formation of pancreatic tumors. RCAS-PyMT induced pancreatic tumors with the histologic features of acinar or ductal carcinomas. The induced pancreatic lesions express Pdx1, a marker for pancreas progenitor cells, and many tumors express markers for both exocrine and endocrine cell lineages, suggesting that the tumors may be derived from progenitor cells. In contrast, RCAS-c-myc induced endocrine tumors exclusively, as determined by histology and detection of differentiation markers. Thus, specific oncogenes can induce the formation of different pancreatic tumor types in a single transgenic line, most likely from one or more types of multipotential progenitor cells. Our model appears to be useful for elucidating the genetic alterations, target cells, and signaling pathways that are important in the genesis of different types of pancreatic cancer.


Loss of complex O-glycosylation impairs exocrine pancreatic function and induces MODY8-like diabetes in mice.

  • Gerrit Wolters-Eisfeld‎ et al.
  • Experimental & molecular medicine‎
  • 2018‎

Cosmc is ubiquitously expressed and acts as a specific molecular chaperone assisting the folding and stability of core 1 synthase. Thus, it plays a crucial role in the biosynthesis of O-linked glycosylation of proteins. Here, we show that ablation of Cosmc in the exocrine pancreas of mice causes expression of truncated O-glycans (Tn antigen), resulting in exocrine pancreatic insufficiency with decreased activities of digestive enzymes and diabetes. To understand the molecular causes of the pleiotropic phenotype, we used Vicia villosa agglutinin to enrich Tn antigen-modified proteins from Cosmc-KO pancreatic lysates and performed a proteomic analysis. Interestingly, a variety of proteins were identified, of which bile salt-activated lipase (also denoted carboxyl-ester lipase, Cel) was the most abundant. In humans, frameshift mutations in CEL cause maturity-onset diabetes of the young type 8 (MODY8), a monogenic syndrome of diabetes and pancreatic exocrine dysfunction. Here, we provide data suggesting that differentially O-glycosylated Cel could negatively affect beta cell function. Taken together, our findings demonstrate the importance of correct O-glycan formation for normal exocrine and endocrine pancreatic function, implying that aberrant O-glycans might be relevant for pathogenic mechanisms of the pancreas.


Targeted inhibition of pancreatic acinar cell calcineurin is a novel strategy to prevent post-ERCP pancreatitis.

  • Abrahim I Orabi‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2017‎

There is a pressing need to develop effective preventative therapies for post-ERCP pancreatitis (PEP). We demonstrated that early PEP events are induced through the calcium-activated phosphatase calcineurin and that global calcineurin deletion abolishes PEP in mice. A crucial question is whether acinar cell calcineurin controls the initiation of PEP in vivo.


Genetic deletion of Rab27B in pancreatic acinar cells affects granules size and has inhibitory effects on amylase secretion.

  • Yanan Hou‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Small G protein Rab27B is expressed in various secretory cell types and plays a role in mediating secretion. In pancreatic acinar cells, Rab27B was found to be expressed on the zymogen granule membrane and by overexpression to regulate the secretion of zymogen granules. However, the effect of Rab27B deletion on the physiology of pancreatic acinar cells is unknown. In the current study, we utilized the Rab27B KO mouse model to better understand the role of Rab27B in the secretion of pancreatic acinar cells. Our data show that Rab27B deficiency had no obvious effects on the expression of major digestive enzymes and other closely related proteins, e.g. similar small G proteins, such as Rab3D and Rab27A, and putative downstream effectors. The overall morphology of acinar cells was not changed in the knockout pancreas. However, the size of zymogen granules was decreased in KO acinar cells, suggesting a role of Rab27B in regulating the maturation of secretory granules. The secretion of digestive enzymes was moderately decreased in KO acini, compared with the WT control. These data indicate that Rab27B is involved at a different steps of zymogen granule maturation and secretion, which is distinct from that of Rab3D.


GATA6 mutations cause a broad phenotypic spectrum of diabetes from pancreatic agenesis to adult-onset diabetes without exocrine insufficiency.

  • Elisa De Franco‎ et al.
  • Diabetes‎
  • 2013‎

We recently reported de novo GATA6 mutations as the most common cause of pancreatic agenesis, accounting for 15 of 27 (56%) patients with insulin-treated neonatal diabetes and exocrine pancreatic insufficiency requiring enzyme replacement therapy. We investigated the role of GATA6 mutations in 171 subjects with neonatal diabetes of unknown genetic etiology from a cohort of 795 patients with neonatal diabetes. Mutations in known genes had been confirmed in 624 patients (including 15 GATA6 mutations). Sequencing of the remaining 171 patients identified nine new case subjects (24 of 795, 3%). Pancreatic agenesis was present in 21 case subjects (six new); two patients had permanent neonatal diabetes with no enzyme supplementation and one had transient neonatal diabetes. Four parents with heterozygous GATA6 mutations were diagnosed with diabetes outside the neonatal period (12-46 years). Subclinical exocrine insufficiency was demonstrated by low fecal elastase in three of four diabetic patients who did not receive enzyme supplementation. One parent with a mosaic mutation was not diabetic but had a heart malformation. Extrapancreatic features were observed in all 24 probands and three parents, with congenital heart defects most frequent (83%). Heterozygous GATA6 mutations cause a wide spectrum of diabetes manifestations, ranging from pancreatic agenesis to adult-onset diabetes with subclinical or no exocrine insufficiency.


Activation of WNT/β-Catenin Signaling Enhances Pancreatic Cancer Development and the Malignant Potential Via Up-regulation of Cyr61.

  • Makoto Sano‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2016‎

Pancreatic ductal adenocarcinoma (PDAC), a poor prognostic cancer, commonly develops following activating mutations in the KRAS oncogene. Activation of WNT signaling is also commonly observed in PDAC. To ascertain the impact of postnatal activation of WNT-stimulated signaling pathways in PDAC development, we combined the Elastase-tva-based RCAS-TVA pancreatic cancer model with the established LSL-KrasG12D, Ptf1a-cre model. Delivery of RCAS viruses encoding β-cateninS37A and WNT1 stimulated the progression of premalignant pancreatic intraepithelial neoplasias (PanIN) and PDAC development. Moreover, mice injected with RCAS-β-cateninS37A or RCAS-Wnt1 had reduced survival relative to RCAS-GFP-injected controls (P<.05). Ectopic expression of active β-catenin, or its DNA-binding partner TCF4, enhanced transformation associated phenotypes in PDAC cells. In contrast, these phenotypes were significantly impaired by the introduction of ICAT, an inhibitor of the β-catenin/TCF4 interaction. By gene expression profiling, we identified Cyr61 as a target molecule of the WNT/β-catenin signaling pathway in pancreatic cancer cells. Nuclear β-catenin and CYR61 expression were predominantly detected in moderately to poorly differentiated murine and human PDAC. Indeed, nuclear β-catenin- and CYR61-positive PDAC patients demonstrated poor prognosis (P<.01). Knockdown of CYR61 in a β-catenin-activated pancreatic cancer cell line reduced soft agar, migration and invasion activity. Together, these data suggest that the WNT/β-catenin signaling pathway enhances pancreatic cancer development and malignancy in part via up-regulation of CYR61.


Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer.

  • Huocong Huang‎ et al.
  • Cancer cell‎
  • 2022‎

Recent studies have identified a unique cancer-associated fibroblast (CAF) population termed antigen-presenting CAFs (apCAFs), characterized by the expression of major histocompatibility complex class II molecules, suggesting a function in regulating tumor immunity. Here, by integrating multiple single-cell RNA-sequencing studies and performing robust lineage-tracing assays, we find that apCAFs are derived from mesothelial cells. During pancreatic cancer progression, mesothelial cells form apCAFs by downregulating mesothelial features and gaining fibroblastic features, a process induced by interleukin-1 and transforming growth factor β. apCAFs directly ligate and induce naive CD4+ T cells into regulatory T cells (Tregs) in an antigen-specific manner. Moreover, treatment with an antibody targeting the mesothelial cell marker mesothelin can effectively inhibit mesothelial cell to apCAF transition and Treg formation induced by apCAFs. Taken together, our study elucidates how mesothelial cells may contribute to immune evasion in pancreatic cancer and provides insight on strategies to enhance cancer immune therapy.


Association of postnatal severe acute malnutrition with pancreatic exocrine and endocrine function in children and adults: a systematic review.

  • Farzana Ferdous‎ et al.
  • The British journal of nutrition‎
  • 2022‎

Severe acute malnutrition may lead both concurrently and subsequently to malabsorption and impaired glucose metabolism from pancreatic dysfunction. We conducted a systematic review to investigate the associations of current and prior postnatal wasting malnutrition with pancreatic endocrine and exocrine functions in humans. We searched PubMed, Google Scholar, Web of Science and reference lists of retrieved articles, limited to articles in English published before 1 February 2022. We included sixty-eight articles, mostly cross-sectional or cohort studies from twenty-nine countries including 592 530 participants, of which 325 998 were from a single study. Many were small clinical studies from decades ago and rated poor quality. Exocrine pancreas function, indicated by duodenal fluid or serum enzymes, or faecal elastase, was generally impaired in malnutrition. Insulin production was usually low in malnourished children and adults. Glucose disappearance during oral and intravenous glucose tolerance tests was variable. Upon treatment of malnutrition, most abnormalities improved but frequently not to control levels. Famine survivors studied decades later showed ongoing impaired glucose tolerance with some evidence of sex differences. The similar findings from anorexia nervosa, famine survivors and poverty- or infection-associated malnutrition in low- and middle-income countries (LMIC) lend credence to results being due to malnutrition itself. Research using large, well-documented cohorts and considering sexes separately, is needed to improve prevention and treatment of exocrine and endocrine pancreas abnormalities in LMIC with a high burden of malnutrition and diabetes.


A Small-Sized Population of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Shows High Stemness Properties and Therapeutic Benefit.

  • Miyeon Kim‎ et al.
  • Stem cells international‎
  • 2020‎

Mesenchymal stem cells (MSCs) represent a promising means to promote tissue regeneration. However, the heterogeneity of MSCs impedes their use for regenerative medicine. Further investigation of this phenotype is required to develop cell therapies with improved clinical efficacy. Here, a small-sized population of human umbilical cord blood-derived MSCs (UCB-MSCs) was isolated using a filter and centrifuge system to analyze its stem cell characteristics. Consequently, this population showed higher cell growth and lower senescence. Additionally, it exhibited diverse stem cell properties including differentiation, stemness, and adhesion, as compared to those of the population before isolation. Using cell surface protein array or sorting analysis, both EGFR and CD49f were identified as markers associated with the small-sized population. Accordingly, suppression of these surface proteins abolished the superior characteristics of this population. Moreover, compared to that with large or nonisolated populations, the small-sized population showed greater therapeutic efficacy by promoting the engraftment potential of infused cells and reducing lung damage in an emphysema mouse model. Therefore, the isolation of this small-sized population of UCB-MSCs could be a simple and effective way to enhance the efficacy of cell therapy.


RNA interference targeting STIM1 suppresses vascular smooth muscle cell proliferation and neointima formation in the rat.

  • Fleur C Aubart‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2009‎

Our objective was to study the expression and function of stromal interaction molecule 1 (STIM1), an endoplasmic reticulum protein recently identified as the calcium sensor that regulated Ca(2+)-released activated channels in T cells. STIM1 was found to be upregulated in serum-induced proliferating human coronary artery smooth muscle cells (hCASMCs) as well as in the neointima of injured rat carotid arteries. Growth factors-induced proliferation was significantly lower in hCASMC transfected with STIM1 siRNA than in those transfected with scrambled siRNA (increase relative to 0.1% S: 116 +/- 12% and 184 +/- 16%, respectively, P < 0.01). To assess the role of STIM1 in preventing vascular smooth muscle cells (VSMCs) proliferation in vivo, we infected balloon-injured rat carotid arteries with an adenoviral vector expressing a short hairpin (sh) RNA against rat STIM1 mRNA (Ad-shSTIM1). Intima/media ratios reflecting the degree of restenosis were significantly lower in Ad-shSTIM1- infected arteries than in Ad-shLuciferase-infected arteries (0.34 +/- 0.02 vs. 0.92 +/- 0.11, P < 0.006). Finally, we demonstrated that silencing STIM1 prevents activation of the transcription factor NFAT (nuclear factor of activated T cell). In conclusion, STIM1 appears as a major regulator of in vitro and in vivo VSMC proliferation, representing a novel and original pharmacological target for prominent vascular proliferative diseases.


X-Ray Dark-field Imaging to Depict Acute Lung Inflammation in Mice.

  • Katharina Hellbach‎ et al.
  • Scientific reports‎
  • 2018‎

The aim of this study was to evaluate the feasibility of early stage imaging of acute lung inflammation in mice using grating-based X-ray dark-field imaging in vivo. Acute lung inflammation was induced in mice by orotracheal instillation of porcine pancreatic elastase. Control mice received orotracheal instillation of PBS. Mice were imaged immediately before and 1 day after the application of elastase or PBS to assess acute changes in pulmonary structure due to lung inflammation. Subsequently, 6 mice from each group were sacrificed and their lungs were lavaged and explanted for histological analysis. A further 7, 14 and 21 days later the remaining mice were imaged again. All images were acquired with a prototype grating-based small-animal scanner to generate dark-field and transmission radiographs. Lavage confirmed that mice in the experimental group had developed acute lung inflammation one day after administration of elastase. Acute lung inflammation was visible as a striking decrease in signal intensity of the pulmonary parenchyma on dark-field images at day 1. Quantitative analysis confirmed that dark-field signal intensity at day 1 was significantly lower than signal intensities measured at the remaining timepoints, confirming that acute lung inflammation can be depicted in vivo with dark-field radiography.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: