Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 191 papers

Pancreatic Cancer Malnutrition and Pancreatic Exocrine Insufficiency in the Course of Chemotherapy in Unresectable Pancreatic Cancer.

  • Mariia Kiriukova‎ et al.
  • Frontiers in medicine‎
  • 2020‎

Background: Malnutrition and cachexia are common in patients with advanced pancreatic ductal adenocarcinoma (PDAC) and have a significant influence on the tolerance and response to treatments. If timely identified, malnourished PDAC patients could be treated to increase their capacity to complete the planned treatments and, therefore, possibly, improve their efficacy. Aims: The aim of this study is to assess the impact of nutritional status, pancreatic exocrine insufficiency (PEI), and other clinical factors on patient outcomes in patients with advanced PDAC. Methods: PAncreatic Cancer MAlnutrition and Pancreatic Exocrine INsufficiency in the Course of Chemotherapy in Unresectable Pancreatic Cancer (PAC-MAIN) is an international multicenter prospective observational cohort study. The nutritional status will be determined by means of Mini-Nutritional Assessment score and laboratory blood tests. PEI will be defined by reduced fecal elastase levels.


Tumor necrosis factor-like weak inducer of apoptosis or Fn14 deficiency reduce elastase perfusion-induced aortic abdominal aneurysm in mice.

  • Carlos Tarín‎ et al.
  • Journal of the American Heart Association‎
  • 2014‎

Abdominal aortic aneurysm (AAA) involves leukocyte recruitment, inflammatory cytokine production, vascular cell apoptosis, neovascularization, and vascular remodeling, all of which contribute to aortic dilatation. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a cytokine implicated in proinflammatory responses, angiogenesis, and matrix degradation but its role in AAA formation is currently unknown.


Extra- and Intraluminal Elastase Induce Morphologically Distinct Abdominal Aortic Aneurysms in Mice and Thus Represent Specific Subtypes of Human Disease.

  • Albert Busch‎ et al.
  • Journal of vascular research‎
  • 2016‎

Topical application of elastase to induce arterial aneurysm formation is an emerging murine model of vascular disease. In the context of aortic abdominal aneurysm (AAA), angiotensin II infusion and porcine pancreatic elastase perfusion models are commonly used today. This study, therefore, compares matrix remodeling, inflammation, and angiogenesis as distinct features of aneurysms in two models treated with intra-/extraluminal elastase. C57BL/6 mice underwent intra-/extraluminal elastase application via laparotomy and were followed up for 4 weeks. Basic histology and immunohistochemistry were performed at different time points along with transmission electron microscopy, PCR analysis, TUNEL assays, and blood analysis. Both models did not differ in aneurysm growth rate, but they showed distinct features and results depending on the way of elastase application. Extraluminal aneurysm induction preserved endothelial cell function and elastic fibers but showed ongoing acute inflammation, mainly in the adventitia. The destruction of elastic layers followed by chronic inflammation was a characteristic of intraluminal elastase perfusion, as well as medial angiogenesis, a key feature in human AAA. Different animal models harbor different features of human AAA and must, therefore, be chosen wisely. External elastase application mimics an acute inflammatory aneurysm, whereas intraluminal elastase perfusion shows chronic inflammation with angiogenesis and endothelial destruction, thus better mimicking human disease.


NOD mice, susceptible to pancreatic autoimmunity, demonstrate delayed growth of pancreatic cancer.

  • James Dooley‎ et al.
  • Oncotarget‎
  • 2017‎

Pancreatic cancer is a high mortality form of cancer, with a median survival only six months. There are multiple associated risk factors associated, most importantly type 2 diabetes, obesity, pancreatitis and smoking. The relative rarity of the disease, however, has made it difficult to dissect causative risk factors, especially with related risk factors. A major unanswered question with important therapeutic implications is the effect of immunological responses on pancreatic cancer formation, with data from other cancers suggesting the potential for local immunological responses to either increase cancer development or increase cancer elimination. Due to the rarity and late diagnosis of pancreatic cancer direct epidemiological evidence is lacking, thus necessitating a reliance on animal models. Here we investigated the relationship between pancreatic autoimmunity and cancer by backcrossing the well characterised Ela1-Tag transgenic model of pancreatic cancer onto the pancreatic autoimmune susceptible NOD mouse strain. Through longitudinal magnetic resonance imaging we found that the NOD genetic background delayed the onset of pancreatic tumours and substantially slowed the growth rate of tumours after development. These results suggest that elevated autoimmune surveillance of the pancreas limits tumour formation and growth, identifying pancreatic cancer as a promising target for immune checkpoint blockade therapies that unleash latent autoimmunity.


Keratinocyte Growth Factor Gene Electroporation into Skeletal Muscle as a Novel Gene Therapeutic Approach for Elastase-Induced Pulmonary Emphysema in Mice.

  • Shuichi Tobinaga‎ et al.
  • Acta histochemica et cytochemica‎
  • 2015‎

Pulmonary emphysema is a progressive disease with airspace destruction and an effective therapy is needed. Keratinocyte growth factor (KGF) promotes pulmonary epithelial proliferation and has the potential to induce lung regeneration. The aim of this study was to determine the possibility of using KGF gene therapy for treatment of a mouse emphysema model induced by porcine pancreatic elastase (PPE). Eight-week-old BALB/c male mice treated with intra-tracheal PPE administration were transfected with 80 μg of a recombinant human KGF (rhKGF)-expressing FLAG-CMV14 plasmid (pKGF-FLAG gene), or with the pFLAG gene expressing plasmid as a control, into the quadriceps muscle by electroporation. In the lung, the expression of proliferating cell nuclear antigen (PCNA) was augmented, and surfactant protein A (SP-A) and KGF receptor (KGFR) were co-expressed in PCNA-positive cells. Moreover, endogenous KGF and KGFR gene expression increased significantly by pKGF-FLAG gene transfection. Arterial blood gas analysis revealed that the PaO2 level was not significantly reduced on day 14 after PPE instillation with pKGF-FLAG gene transfection compared to that of normal mice. These results indicated that KGF gene therapy with electroporation stimulated lung epithelial proliferation and protected depression of pulmonary function in a mouse emphysema model, suggesting a possible method of treating pulmonary emphysema.


Synthesis, DFT and molecular docking of novel (Z)-4-bromo-N-(4-butyl-3 (quinolin-3-yl)thiazol-2(3H)-ylidene)benzamide as elastase inhibitor.

  • Muhammad Naeem Mustafa‎ et al.
  • BMC chemistry‎
  • 2023‎

A new compound, C23H20BrN3OS, containing a quinoline-based iminothiazoline with a thiazoline ring, was synthesized and its crystal and molecular structures were analyzed through single crystal X-ray analysis. The compound belongs to the triclinic system P - 1 space group, with dimensions of a = 9.2304 (6) Å, b = 11.1780 (8) Å, c = 11.3006 (6) Å, α = 107.146 (5)°, β = 93.701 (5)°, γ = 110.435 (6)°, Z = 2 and V = 1025.61 (12) Å3. The crystal structure showed that C-H···N and C-H···O hydrogen bond linkages, forming infinite double chains along the b-axis direction, and enclosing R22(14) and R22(16) ring motifs. The Hirshfeld surface analysis revealed that H…H (44.1%) and H…C/C…H (15.3%) interactions made the most significant contribution. The newly synthesized (Z)-4-bromo-N-(4-butyl-3 (quinolin-3-yl)thiazol-2(3H)-ylidene)benzamide, in comparison to oleanolic acid, exhibited more strong potential against elastase with an inhibition value of 1.21 µM. Additionally, the derivative was evaluated using molecular docking and molecular dynamics simulation studies, which showed that the quinoline based iminothiazoline derivative has the potential to be a novel inhibitor of elastase enzyme. Both theoretical and experimental findings suggested that this compound could have a number of biological activities.


Structurally Related Monoterpenes p-Cymene, Carvacrol and Thymol Isolated from Essential Oil from Leaves of Lippia sidoides Cham. (Verbenaceae) Protect Mice against Elastase-Induced Emphysema.

  • Ellen Games‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

Chronic obstructive pulmonary disease (COPD) is characterized by irreversible airflow obstruction and inflammation. Natural products, such as monoterpenes, displayed anti-inflammatory and anti-oxidant activities and can be used as a source of new compounds to COPD treatment. Our aim was to evaluate, in an elastase-induced pulmonary emphysema in mice, the effects of and underlying mechanisms of three related natural monoterpenes (p-cymene, carvacrol and thymol) isolated from essential oil from leaves Lippia sidoides Cham. (Verbenaceae).


DNA released from neutrophil extracellular traps (NETs) activates pancreatic stellate cells and enhances pancreatic tumor growth.

  • Jennifer L Miller-Ocuin‎ et al.
  • Oncoimmunology‎
  • 2019‎

Neutrophil extracellular trap (NET) formation results in the expulsion of granulocyte proteins and DNA into the extracellular space. This process is mediated by the enzyme peptidyl arginine deiminase 4 (PADI4) and translocation of elastase to the nucleus. NET formation, marked by increased levels of extracellular DNA, promotes pancreatic cancer proliferation and metastasis. Mice deficient in Padi4 demonstrate decreased pancreatic tumor growth, associated with a reduction in circulating extracellular DNA levels, diminished pancreatic stromal activation and improved survival in murine orthotopic pancreatic adenocarcinoma. Transplantation of Padi4-/- bone marrow into genetically engineered mice with Kras driven pancreatic adenocarcinoma (Pdx1-Cre:KrasG12D/+, KC mice) limits the frequency of invasive cancers when compared with syngeneic controls. DNA from neutrophils activates pancreatic stellate cells that form dense, fibrous stroma which can promote and enable tumor proliferation. DNase treatment diminishes murine tumor growth and stromal activation to reverse the effect of NETs within the tumor microenvironment. Furthermore, deletion of the receptor for advanced glycation end products (RAGE) in pancreatic stellate cells abrogates the effects of DNA in promoting stellate cell proliferation and decreases tumor growth. Circulating neutrophil-derived DNA correlates with the stage in patients with pancreatic ductal adenocarcinoma, confirming the role of NETs in human pancreatic cancer. These findings support further investigation into targeting of NETs, PADI4 and extracellular DNA as a potential treatment strategy in patients with pancreatic cancer. Trial Registration: This study reports correlative data from a clinical trial registered with clinicaltrials.gov, NCT01978184 (November 7, 2013).


SerpinB1 Promotes Pancreatic β Cell Proliferation.

  • Abdelfattah El Ouaamari‎ et al.
  • Cell metabolism‎
  • 2016‎

Although compensatory islet hyperplasia in response to insulin resistance is a recognized feature in diabetes, the factor(s) that promote β cell proliferation have been elusive. We previously reported that the liver is a source for such factors in the liver insulin receptor knockout (LIRKO) mouse, an insulin resistance model that manifests islet hyperplasia. Using proteomics we show that serpinB1, a protease inhibitor, which is abundant in the hepatocyte secretome and sera derived from LIRKO mice, is the liver-derived secretory protein that regulates β cell proliferation in humans, mice, and zebrafish. Small-molecule compounds, that partially mimic serpinB1 effects of inhibiting elastase activity, enhanced proliferation of β cells, and mice lacking serpinB1 exhibit attenuated β cell compensation in response to insulin resistance. Finally, SerpinB1 treatment of islets modulated proteins in growth/survival pathways. Together, these data implicate serpinB1 as an endogenous protein that can potentially be harnessed to enhance functional β cell mass in patients with diabetes.


Exocrine pancreatic function in children with Alagille syndrome.

  • Dorota Gliwicz‎ et al.
  • Scientific reports‎
  • 2016‎

Alagille syndrome (AGS) is often associated with symptoms of maldigestion, such as steatorrhea, hypotrophy and growth retardation. Exocrine pancreatic insufficiency was proposed as the underlying cause. We aimed to assess the exocrine pancreatic function with the use of different methods in AGS patients. Concentrations of fecal elastase-1 (FE1) and fecal lipase (FL) activities were measured in 33 children with AGS. The C-mixed triglyceride breath test (MTBT) in a subgroup comprising 15 patients. In all patients studied, FE1 concentrations and FL activities were normal. Abnormal MTBT results were documented in 4 (26.7%) patients. The FE1 and FL levels in MTBT-positive and MTBT-negative children did not differ. The results of this research do not confirm the presence of exocrine pancreatic dysfunction in AGS patients. Routine screening for exocrine pancreatic insufficiency of this group of patients is not necessary.


Lymphatic vessel remodeling and invasion in pancreatic cancer progression.

  • Chia-Ning Shen‎ et al.
  • EBioMedicine‎
  • 2019‎

The lymphatic system is involved in metastasis in pancreatic cancer progression. In cancer staging, lymphatic spread has been used to assess the invasiveness of tumor cells. However, from the endothelium's perspective, the analysis downplays the peri-lesional activities of lymphatic vessels. This unintended bias is largely due to the lack of 3-dimensional (3-D) tissue information to depict the lesion microstructure and vasculature in a global and integrated fashion.


α1,6-Fucosyltransferase (Fut8) is implicated in vulnerability to elastase-induced emphysema in mice and a possible non-invasive predictive marker for disease progression and exacerbations in chronic obstructive pulmonary disease (COPD).

  • Koichiro Kamio‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

Fut8 (α1,6-Fucosyltransferase) heterozygous knock-out (Fut8(+/-)) mice had an increased influx of inflammatory cells into the lungs, and this was associated with an up-regulation of matrix metalloproteinases, MMP-2 and MMP-9, after treatment with porcine pancreatic elastase (PPE), exhibiting an emphysema-prone phenotype as compared with wild type mice (Fut8(+/+)). The present data as well as our previous data on cigarette-smoke-induced emphysema [8] led us to hypothesize that reduced Fut8 levels leads to COPD with increased inflammatory response in humans and is associated with disease progression. To test this hypothesis, symptomatic current or ex-smokers with stable COPD or at risk outpatients were recruited. We investigated the association between serum Fut8 activity and disease severity, including the extent of emphysema (percentage of low-attenuation area; LAA%), airflow limitation, and the annual rate of decline in forced expiratory volume in 1 s (FEV(1)). Association with the exacerbation of COPD was also evaluated over a 3-year period. Serum Fut8 and MMP-9 activity were measured. Fut8 activity significantly increased with age among the at risk patients. In the case of COPD patients, however, the association was not clearly observed. A faster annual decline of FEV(1) was significantly associated with lower Fut8 activity. Patients with lower Fut8 activity experienced exacerbations more frequently. These data suggest that reduced Fut8 activity is associated with the progression of COPD and serum Fut8 activity is a non-invasive predictive biomarker candidate for progression and exacerbation of COPD.


Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis.

  • Moritz Leppkes‎ et al.
  • Nature communications‎
  • 2016‎

Ductal occlusion has been postulated to precipitate focal pancreatic inflammation, while the nature of the primary occluding agents has remained elusive. Neutrophils make use of histone citrullination by peptidyl arginine deiminase-4 (PADI4) in contact to particulate agents to extrude decondensed chromatin as neutrophil extracellular traps (NETs). In high cellular density, NETs form macroscopically visible aggregates. Here we show that such aggregates form inside pancreatic ducts in humans and mice occluding pancreatic ducts and thereby driving pancreatic inflammation. Experimental models indicate that PADI4 is critical for intraductal aggregate formation and that PADI4-deficiency abrogates disease progression. Mechanistically, we identify the pancreatic juice as a strong instigator of neutrophil chromatin extrusion. Characteristic single components of pancreatic juice, such as bicarbonate ions and calcium carbonate crystals, induce aggregated NET formation. Ductal occlusion by aggregated NETs emerges as a pathomechanism with relevance in a plethora of inflammatory conditions involving secretory ducts.


BMP-7 Induces Adult Human Pancreatic Exocrine-to-Endocrine Conversion.

  • Dagmar Klein‎ et al.
  • Diabetes‎
  • 2015‎

The exocrine pancreas can give rise to endocrine insulin-producing cells upon ectopic expression of key transcription factors. However, the need for genetic manipulation remains a translational hurdle for diabetes therapy. Here we report the conversion of adult human nonendocrine pancreatic tissue into endocrine cell types by exposure to bone morphogenetic protein 7. The use of this U.S. Food and Drug Administration-approved agent, without any genetic manipulation, results in the neogenesis of clusters that exhibit high insulin content and glucose responsiveness both in vitro and in vivo. In vitro lineage tracing confirmed that BMP-7-induced insulin-expressing cells arise mainly from extrainsular PDX-1(+), carbonic anhydrase II(-) (mature ductal), elastase 3a (acinar)(-) , and insulin(-) subpopulations. The nongenetic conversion of human pancreatic exocrine cells to endocrine cells is novel and represents a safer and simpler alternative to genetic reprogramming.


Mouse muscle as an ectopic permissive site for human pancreatic development.

  • Carmen Capito‎ et al.
  • Diabetes‎
  • 2013‎

While sporadic human genetic studies have permitted some comparisons between rodent and human pancreatic development, the lack of a robust experimental system has not permitted detailed examination of human pancreatic development. We previously developed a xenograft model of immature human fetal pancreas grafted under the kidney capsule of immune-incompetent mice, which allowed the development of human pancreatic β-cells. Here, we compared the development of human and murine fetal pancreatic grafts either under skeletal muscle epimysium or under the renal capsule. We demonstrated that human pancreatic β-cell development occurs more slowly (weeks) than murine pancreas (days) both by differentiation of pancreatic progenitors and by proliferation of developing β-cells. The superficial location of the skeletal muscle graft and its easier access permitted in vivo lentivirus-mediated gene transfer with a green fluorescent protein-labeled construct under control of the insulin or elastase gene promoter, which targeted β-cells and nonendocrine cells, respectively. This model of engraftment under the skeletal muscle epimysium is a new approach for longitudinal studies, which allows localized manipulation to determine the regulation of human pancreatic development.


TLR4 dependent heparan sulphate-induced pancreatic inflammatory response is IRF3-mediated.

  • Hamid Akbarshahi‎ et al.
  • Journal of translational medicine‎
  • 2011‎

Degraded extracellular matrix can stimulate the innate immune system via the Toll-Like Receptor-4 (TLR4). In the pancreas, syndecan-anchored heparan sulphate (HS) on the ductal epithelium can be cleaved off its protein cores by the proteases (trypsin and elastase) and potentially activate TLR4 signalling.


Snail1 is required for the maintenance of the pancreatic acinar phenotype.

  • Jordina Loubat-Casanovas‎ et al.
  • Oncotarget‎
  • 2016‎

The Snail1 transcriptional factor is required for correct embryonic development, yet its expression in adult animals is very limited and its functional roles are not evident. We have now conditionally inactivated Snail1 in adult mice and analyzed the phenotype of these animals. Snail1 ablation rapidly altered pancreas structure: one month after Snail1 depletion, acinar cells were markedly depleted, and pancreas accumulated adipose tissue. Snail1 expression was not detected in the epithelium but was in pancreatic mesenchymal cells (PMCs). Snail1 ablation in cultured PMCs downregulated the expression of several β-catenin/Tcf-4 target genes, modified the secretome of these cells and decreased their ability to maintain acinar markers in cultured pancreas cells. Finally, Snail1 deficiency modified the phenotype of pancreatic tumors generated in transgenic mice expressing c-myc under the control of the elastase promoter. Specifically, Snail1 depletion did not significantly alter the size of the tumors but accelerated acinar-ductal metaplasia. These results demonstrate that Snail1 is expressed in PMCs and plays a pivotal role in maintaining acinar cells within the pancreas in normal and pathological conditions.


PD2/Paf1 depletion in pancreatic acinar cells promotes acinar-to-ductal metaplasia.

  • Parama Dey‎ et al.
  • Oncotarget‎
  • 2014‎

Pancreatic differentiation 2 (PD2), a PAF (RNA Polymerase II Associated Factor) complex subunit, is overexpressed in pancreatic cancer cells and has demonstrated potential oncogenic property. Here, we report that PD2/Paf1 expression was restricted to acinar cells in the normal murine pancreas, but its expression increased in the ductal cells of KrasG12D/Pdx1Cre (KC) mouse model of pancreatic cancer with increasing age, showing highest expression in neoplastic ductal cells of 50 weeks old mice. PD2/Paf1 was specifically expressed in amylase and CK19 double positive metaplastic ducts, representing intermediate structures during pancreatic acinar-to-ductal metaplasia (ADM). Similar PD2/Paf1 expression was observed in murine pancreas that exhibited ADM-like histology upon cerulein challenge. In normal mice, cerulein-mediated inflammation induced a decrease in PD2/Paf1 expression, which was later restored upon recovery of the pancreatic parenchyma. In KC mice, however, PD2/Paf1 mRNA level continued to decrease with progressive dysplasia and subsequent neoplastic transformation. Additionally, knockdown of PD2/Paf1 in pancreatic acinar cells resulted in the abrogation of Amylase, Elastase and Lipase (acinar marker) mRNA levels with simultaneous increase in CK19 and CAII (ductal marker) transcripts. In conclusion, our studies indicate loss of PD2/Paf1 expression during acinar transdifferentiation in pancreatic cancer initiation and PD2/Paf1 mediated regulation of lineage specific markers.


Assessment of Exocrine Pancreatic Function Following Bariatric/Metabolic Surgery: a Prospective Cohort Study.

  • Gülten Çiçek Okuyan‎ et al.
  • Obesity surgery‎
  • 2023‎

Exocrine pancreatic insufficiency (EPI) can be seen after bariatric/metabolic surgery. Fecal elastase level is a simple test in diagnosing and grading EPI. Quality of life changes in patients with bariatric/metabolic surgery related to gastrointestinal complaints is debated.


miR-29a-deficiency does not modify the course of murine pancreatic acinar carcinoma.

  • James Dooley‎ et al.
  • Oncotarget‎
  • 2017‎

The development of cancers involves the complex dysregulation of multiple cellular processes. With key functions in simultaneous regulation of multiple pathways, microRNA (miR) are thought to have important roles in the oncogenic formation process. miR-29a is among the most abundantly expressed miR in the pancreas. Together with altered expression in pancreatic cancer cell lines and biopsies, and known oncogenic functions in leukemia, this expression data has identified miR-29a as a key candidate for miR involvement in pancreatic cancer biology. Here we used miR-29a-deficient mice and the TAg model of pancreatic acinar carcinoma to functionally test the role of miR-29a in vivo. We found no impact of miR-29a loss on the development or growth of pancreatic tumours, nor on the survival of tumour-bearing mice. These results suggest that, despite differential expression, miR-29a is oncogenically neutral in the pancreatic acinar carcinoma context. If these results are extended to other models of pancreatic cancer, they would reduce the attractiveness of miR-29a as a potential therapeutic target in pancreatic cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: