Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 1,083 papers

Subtype-dependent difference of glucose transporter 1 and hexokinase II expression in craniopharyngioma: an immunohistochemical study.

  • Naoto Mukada‎ et al.
  • Scientific reports‎
  • 2021‎

Papillary craniopharyngiomas are characterized by the BRAF V600E mutation. Enhancement of glucose metabolism may be involved in the downstream of the BRAF V600E mutation in many types of tumors. Glucose metabolism was investigated in craniopharyngioma using immunohistochemical analysis. The study included 29 cases of craniopharyngioma (18 adamantinomatous type [ACP], 11 papillary type [PCP]). Immunohistochemical analysis was performed with anti-glucose transporter-1 (GLUT-1), anti-hexokinase-II (HK-II), anti-BRAF V600E, and anti-beta-catenin antibodies. Expressions of GLUT-1 and HK-II were evaluated using a semiquantitative 4-tiered scale as 0, 1+, 2+, 3+, and divided into negative (0 or 1+) or positive (2+ or 3+) group. GLUT-1 expression level was significantly higher in PCPs than ACPs (0, 1+, 2+, 3+ = 2, 12, 4, 0 cases in ACP, respectively, 0, 1+, 2+, 3+ = 0, 2, 5, 4 in PCP, p = 0.001), and most PCPs were classified into positive group (positive rate, 22.2% [4/18] in ACP, 81.8% [9/11] in PCP; p = 0.003). HK-II expression was also conspicuous in PCPs (0, 1+, 2+, 3+ = 7, 9, 2, 0 cases in ACP, 0, 3, 3, 5 in PCP; p = 0.001), and most of them divided into positive group (positive rate, 11.1% [2/18] in ACP, 72.7% [8/11] in PCP; p = 0.001). Expression patterns of BRAF V600E and beta-catenin reflected the clinicopathological subtypes. Both GLUT-1 and HK-II expressions were prominent in PCP. Glucose metabolism might be more enhanced in PCP than ACP. PCP may use the glucose metabolic system downstream of the BRAF V600E mutant protein.


Clinical relevance between sodium-glucose co-transporter 2 inhibitors and lipid profiles in Asian patients with type 2 diabetes mellitus: a systematic review with a meta-analysis of randomized controlled trials.

  • Junichi Mukai‎ et al.
  • Journal of pharmaceutical health care and sciences‎
  • 2020‎

Few systematic reviews have examined the effects of sodium-glucose co-transporter 2 inhibitors (SGLT2is) on lipid profiles in Asian patients with type 2 diabetes mellitus. We conducted a systematic review with a meta-analysis to summarize the available literature and confirm the effects of SGLT2is on lipid profiles in these patients.


A small-molecule pan-class I glucose transporter inhibitor reduces cancer cell proliferation in vitro and tumor growth in vivo by targeting glucose-based metabolism.

  • Pratik Shriwas‎ et al.
  • Cancer & metabolism‎
  • 2021‎

Cancer cells drastically increase the uptake of glucose and glucose metabolism by overexpressing class I glucose transporters (GLUT1-4) to meet their energy and biomass synthesis needs and are very sensitive and vulnerable to glucose deprivation. Although targeting glucose uptake via GLUTs has been an attractive anticancer strategy, the relative anticancer efficacy of multi-GLUT targeting or single GLUT targeting is unclear. Here, we report DRB18, a synthetic small molecule, is a potent anticancer compound whose pan-class I GLUT inhibition is superior to single GLUT targeting.


New insights into the resistance mechanism for the BceAB-type transporter SaNsrFP.

  • Julia Gottstein‎ et al.
  • Scientific reports‎
  • 2022‎

Treatment of bacterial infections is one of the major challenges of our time due to the evolved resistance mechanisms of pathogens against antibiotics. To circumvent this problem, it is necessary to understand the mode of action of the drug and the mechanism of resistance of the pathogen. One of the most potent antibiotic targets is peptidoglycan (PGN) biosynthesis, as this is an exclusively occurring and critical feature of bacteria. Lipid II is an essential PGN precursor synthesized in the cytosol and flipped into the outer leaflet of the membrane prior to its incorporation into nascent PGN. Antimicrobial peptides (AMPs), such as nisin and colistin, targeting PGN synthesis are considered promising weapons against multidrug-resistant bacteria. However, human pathogenic bacteria that were also resistant to these compounds evolved by the expression of an ATP-binding cassette transporter of the bacitracin efflux (BceAB) type localized in the membrane. In the human pathogen Streptococcus agalactiae, the BceAB transporter SaNsrFP is known to confer resistance to the antimicrobial peptide nisin. The exact mechanism of action for SaNsrFP is poorly understood. For a detailed characterization of the resistance mechanism, we heterologously expressed SaNsrFP in Lactococcus lactis. We demonstrated that SaNsrFP conferred resistance not only to nisin but also to a structurally diverse group of antimicrobial PGN-targeting compounds such as ramoplanin, lysobactin, or bacitracin/(Zn)-bacitracin. Growth experiments revealed that SaNsrFP-producing cells exhibited normal behavior when treated with nisin and/or bacitracin, in contrast to the nonproducing cells, for which growth was significantly reduced. We further detected the accumulation of PGN precursors in the cytoplasm after treating the cells with bacitracin. This did not appear when SaNsrFP was produced. Whole-cell proteomic protein experiments verified that the presence of SaNsrFP in L. lactis resulted in higher production of several proteins associated with cell wall modification. These included, for example, the N-acetylmuramic acid-6-phosphate etherase MurQ and UDP-glucose 4-epimerase. Analysis of components of the cell wall of SaNsrFP-producing cells implied that the transporter is involved in cell wall modification. Since we used an ATP-deficient mutant of the transporter as a comparison, we can show that SaNsrFP and its inactive mutant do not show the same phenotype, albeit expressed at similar levels, which demonstrates the ATP dependency of the mediated resistance processes. Taken together, our data agree to a target protection mechanism and imply a direct involvement of SaNsrFP in resistance by shielding the membrane-localized target of these antimicrobial peptides, resulting in modification of the cell wall.


Glucose transporter 1-expressing proinflammatory monocytes are elevated in combination antiretroviral therapy-treated and untreated HIV+ subjects.

  • Clovis S Palmer‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 2014‎

Monocyte activation during HIV-1 infection is associated with increased plasma levels of inflammatory markers and increased risk for premature development of age-related diseases. Because activated monocytes primarily use glucose to support cellular metabolism, we hypothesized that chronic monocyte activation during HIV-1 infection induces a hypermetabolic response with increased glucose uptake. To test this hypothesis, we evaluated glucose transporter 1 (Glut1) expression and glucose uptake by monocyte subpopulations in HIV-seropositive (HIV(+)) treatment-naive individuals (n = 17), HIV(+) individuals on combination antiretroviral therapy with viral loads below detection (n = 11), and HIV-seronegative (HIV(-)) individuals (n = 16). Surface expression of Glut1 and cellular uptake of the fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)-2 deoxyglucose were analyzed by flow cytometry on monocyte subpopulations. Irrespective of treatment status, monocytes from HIV(+) persons had significantly increased surface expression of Glut1 compared with those from HIV(-) controls. Nonclassical (CD14(+)CD16(++)) and intermediate (CD14(++)CD16(+)) monocyte subpopulations showed higher Glut1 expression than did classical (CD14(++)CD16(-)) monocytes. Intermediate monocytes from treatment-naive HIV(+) individuals also showed increased uptake of 2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)-2 deoxyglucose compared with those from HIV(-) controls. Our results show that HIV infection is associated with increased glucose metabolism in monocytes and that Glut1 expression by proinflammatory monocytes is a potential marker of inflammation in HIV-infected subjects. However, the possibility exists whereby other Gluts such as Glut3 and Glut4 may also support the influx of glucose into activated and inflammatory monocyte populations.


Dehydroeburicoic Acid from Antrodia camphorata Prevents the Diabetic and Dyslipidemic State via Modulation of Glucose Transporter 4, Peroxisome Proliferator-Activated Receptor α Expression and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice.

  • Yueh-Hsiung Kuo‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

This study investigated the potential effects of dehydroeburicoic acid (TT), a triterpenoid compound from Antrodia camphorata, in vitro and examined the effects and mechanisms of TT on glucose and lipid homeostasis in high-fat-diet (HFD)-fed mice. The in vitro study examined the effects of a MeOH crude extract (CruE) of A. camphorata and Antcin K (AnK; the main constituent of fruiting body of this mushroom) on membrane glucose transporter 4 (GLUT4) and phospho-Akt in C2C12 myoblasts cells. The in vitro study demonstrated that treatment with CruE, AnK and TT increased the membrane levels of glucose transporter 4 (GLUT4) and phospho-Akt at different concentrations. The animal experiments were performed for 12 weeks. Diabetic mice were randomly divided into six groups after 8 weeks of HFD-induction and treated with daily oral gavage doses of TT (at three dose levels), fenofibrate (Feno) (at 0.25 g/kg body weight), metformin (Metf) (at 0.3 g/kg body weight) or vehicle for another 4 weeks while on an HFD diet. HFD-fed mice exhibited increased blood glucose levels. TT treatment dramatically lowered blood glucose levels by 34.2%~43.4%, which was comparable to the antidiabetic agent-Metf (36.5%). TT-treated mice reduced the HFD-induced hyperglycemia, hypertriglyceridemia, hyperinsulinemia, hyperleptinemia, and hypercholesterolemia. Membrane levels of GLUT4 were significantly higher in CruE-treated groups in vitro. Skeletal muscle membrane levels of GLUT4 were significantly higher in TT-treated mice. These groups of mice also displayed lower mRNA levels of glucose-6-phosphatase (G6 Pase), an inhibitor of hepatic glucose production. The combination of these agents produced a net hypoglycemic effect in TT-treated mice. TT treatment enhanced the expressions of hepatic and skeletal muscle AMP-activated protein kinase (AMPK) phosphorylation in mice. TT-treated mice exhibited enhanced expression of hepatic fatty acid oxidation enzymes, including peroxisome proliferator-activated receptor α (PPARα) and increased mRNA levels of carnitine palmitoyl transferase Ia (CPT-1a). These mice also exhibited decreased expression levels of lipogenic fatty acid synthase (FAS) in liver and adipose tissue and reduced mRNA levels of hepatic adipocyte fatty acid binding protein 2 (aP2) and glycerol-3-phosphate acyltransferase (GPAT). These alterations resulted in a reduction in fat stores within the liver and lower triglyceride levels in blood. Our results demonstrate that TT is an excellent therapeutic approach for the treatment of type 2 diabetes and hypertriglyceridemia.


A randomized controlled trial comparing the effects of dapagliflozin and DPP-4 inhibitors on glucose variability and metabolic parameters in patients with type 2 diabetes mellitus on insulin.

  • Hiroshi Nomoto‎ et al.
  • Diabetology & metabolic syndrome‎
  • 2017‎

Dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium-glucose co-transporter 2 (SGLT2) inhibitors improve hyperglycemia, and the usefulness of co-administration of DPP-4 inhibitors and insulin therapy has been well established. However, it has been still uncertain whether combination therapy of SGLT2 inhibitors and insulin is superior to that of DPP-4 inhibitors and the latter. Therefore, we investigated the superiority of dapagliflozin on glucose fluctuation compared with DPP-4 inhibitors in patients with type 2 diabetes mellitus (T2DM) on insulin using a continuous glucose monitoring (CGM) system.


Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1.

  • Arvid Suls‎ et al.
  • Brain : a journal of neurology‎
  • 2008‎

Paroxysmal exercise-induced dyskinesia (PED) can occur in isolation or in association with epilepsy, but the genetic causes and pathophysiological mechanisms are still poorly understood. We performed a clinical evaluation and genetic analysis in a five-generation family with co-occurrence of PED and epilepsy (n = 39), suggesting that this combination represents a clinical entity. Based on a whole genome linkage analysis we screened SLC2A1, encoding the glucose transporter of the blood-brain-barrier, GLUT1 and identified heterozygous missense and frameshift mutations segregating in this and three other nuclear families with a similar phenotype. PED was characterized by choreoathetosis, dystonia or both, affecting mainly the legs. Predominant epileptic seizure types were primary generalized. A median CSF/blood glucose ratio of 0.52 (normal >0.60) in the patients and a reduced glucose uptake by mutated transporters compared with the wild-type as determined in Xenopus oocytes confirmed a pathogenic role of these mutations. Functional imaging studies implicated alterations in glucose metabolism in the corticostriate pathways in the pathophysiology of PED and in the frontal lobe cortex in the pathophysiology of epileptic seizures. Three patients were successfully treated with a ketogenic diet. In conclusion, co-occurring PED and epilepsy can be due to autosomal dominant heterozygous SLC2A1 mutations, expanding the phenotypic spectrum associated with GLUT1 deficiency and providing a potential new treatment option for this clinical syndrome.


Assessing Human Genetic Variations in Glucose Transporter SLC2A10 and Their Role in Altering Structural and Functional Properties.

  • Michael T Zimmermann‎ et al.
  • Frontiers in genetics‎
  • 2018‎

Purpose: Demand is increasing for clinical genomic sequencing to provide diagnoses for patients presenting phenotypes indicative of genetic diseases, but for whom routine genetic testing failed to yield a diagnosis. DNA-based testing using high-throughput technologies often identifies variants with insufficient evidence to determine whether they are disease-causal or benign, leading to categorization as variants of uncertain significance (VUS). Methods: We used molecular modeling and simulation to generate specific hypotheses for the molecular effects of variants in the human glucose transporter, GLUT10 (SLC2A10). Similar to many disease-relevant membrane proteins, no experimentally derived 3D structure exists. An atomic model was generated and used to evaluate multiple variants, including pathogenic, benign, and VUS. Results: These analyses yielded detailed mechanistic data, not currently predictable from sequence, including altered protein stability, charge distribution of ligand binding surfaces, and shifts toward or away from transport-competent conformations. Consideration of the two major conformations of GLUT10 was important as variants have conformation-specific effects. We generated detailed molecular hypotheses for the functional impact of variants in GLUT10 and propose means to determine their pathogenicity. Conclusion: The type of workflow we present here is valuable for increasing the throughput and resolution with which VUS effects can be assessed and interpreted.


Monocarboxylate Transporter 4 Is a Therapeutic Target in Non-small Cell Lung Cancer with Aerobic Glycolysis Preference.

  • Ting-Chun Kuo‎ et al.
  • Molecular therapy oncolytics‎
  • 2020‎

Targeting metabolic reprogramming is an emerging strategy in cancer therapy. However, clinical attempts to target metabolic reprogramming have been proved to be challenging, with metabolic heterogeneity of cancer being one of many reasons that causes treatment failure. Here, we stratified non-small cell lung cancer (NSCLC) cells, mainly lung adenocarcinoma, based on their metabolic phenotypes and demonstrated that the aerobic glycolysis-preference NSCLC cell subtype was resistant to the OXPHOS-targeting inhibitors. We identified that monocarboxylate transporter 4 (MCT4), a lactate transporter, was highly expressed in the aerobic glycolysis-preference subtype with function supporting the proliferation of these cells. Glucose could induce the expression of MCT4 in these cells through a ΔNp63α and Sp1-dependent pathway. Next, we showed that knockdown of MCT4 increased intracellular lactate concentration and induced a reactive oxygen species (ROS)-dependent cellular apoptosis in the aerobic glycolysis-preference NSCLC cell subtype. By scanning a panel of monoclonal antibodies with MCT4 neutralizing activity, we further identified a MCT4 immunoglobulin M (IgM) monoclonal antibody showing capable anti-proliferation efficacy on the aerobic glycolysis-preference NSCLC cell subtype. Our findings indicate that the metabolic heterogeneity is a critical factor for NSCLC therapy and manipulating the expression or function of MCT4 can be an effective strategy in targeting the aerobic glycolysis-preference NSCLC cell subtype.


Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion.

  • Kirsten F Howlett‎ et al.
  • Physiological reports‎
  • 2013‎

To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30-60% of normal (CON) and approximately 5-10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake.


Favourable effect of the sodium-glucose co-transporter-2 inhibitor canagliflozin plus the dipeptidyl peptidase-4 inhibitor teneligliptin in combination on glycaemic fluctuation: An open-label, prospective, randomized, parallel-group comparison trial (the CALMER study).

  • Kyu Yong Cho‎ et al.
  • Diabetes, obesity & metabolism‎
  • 2020‎

This multicentre, prospective, randomized, open-label, blinded-endpoint, parallel-group, short-term (4-5 weeks) controlled trial was conducted to investigate the superiority of the effect of reducing mean amplitude of glycaemic excursions (MAGE) during meal tolerance tests (MTTs) for the combination of dipeptidyl peptidase-4 (DPP-4) inhibitor and sodium-glucose co-transporter-2 (SGLT2) inhibitor compared with SGLT2 inhibitor monotherapy. Ninety-nine patients with type 2 diabetes who were taking teneligliptin (20 mg/d) were randomized to one of the following two groups: those who switched to 100 mg/d of canagliflozin (SWITCH group) or those who added 100 mg/d of canagliflozin (COMB group). MAGE in the COMB group was significantly decreased compared with that in the SWITCH group (COMB 117.5 ± 39.8 to 92.2 ± 28.0 mg/dL vs SWITCH 110.7 ± 29.8 to 104.2 ± 27.6 mg/dL; P<0.01). Mean blood glucose decreased significantly during MTTs in both groups, although the extent of the reduction was significantly greater in the COMB group (COMB 142.3 ± 28.7 to 119.5 ± 25.1 mg/dL vs SWITCH 146.4 ± 25.5 to 135.5 ± 22.4 mg/dL; P < 0.01). SGLT2 inhibitor combined with DPP-4 inhibitor therapy strongly reduced glycaemic fluctuation compared with SGLT2 inhibitor monotherapy.


Effects of Secretome from Fat Tissues on Ion Currents of Cardiomyocyte Modulated by Sodium-Glucose Transporter 2 Inhibitor.

  • Shih-Jie Jhuo‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Sodium-glucose transporter 2 (SGLT2) inhibitors were shown to decrease mortality from cardiovascular diseases in the EMPA-REG trial. However, the effects of empagliflozin (EMPA) for cardiac arrhythmia are not yet clarified. A total of 20 C57BL/6J mice were divided into four groups: (1) The control group were fed standard chow, (2) the metabolic syndrome (MS) group were fed a high-fat diet, (3) the empagliflozin (EMPA) group were fed a high-fat diet and empagliflozin 10 mg/kg daily, and (4) the glibenclamide (GLI) group were fed a high-fat diet and glibenclamide 0.6 mg/kg daily. All mice were sacrificed after 16 weeks of feeding. H9c2 cells were treated with adipocytokines from the pericardial and peripheral fat from the study groups. The delayed-rectifier potassium current (IK) and L-type calcium channel current (ICa,L) were measured by the whole-cell patch clamp techniques. Adipocytokines from the peripheral and pericardial fat tissues of mice with MS could decrease the IK and increase the ICa,L of cardiomyocytes. After treating adipocytokines from pericardial fat, the IK in the EMPA and GLI groups were significantly higher than that in the MS group. The IK of the EMPA group was also significantly higher than the GLI group. The ICa,L of the EMPA and GLI groups were significantly decreased overload compared with that of the MS group. However, there was no significant difference of IK and ICa,L among study groups after treating adipocytokines from peripheral fat. Adipocytokines from pericardial fat but not peripheral fat tissues after EMPA therapy attenuated the effects of IK decreasing and ICa,L increasing in the MS cardiomyocytes, which may contribute to anti-arrhythmic mechanisms of sodium-glucose transporter 2 (SGLT2) inhibitors.


Glyburide treatment in gestational diabetes is associated with increased placental glucose transporter 1 expression and higher birth weight.

  • Paula Díaz‎ et al.
  • Placenta‎
  • 2017‎

Use of glyburide in gestational diabetes (GDM) has raised concerns about fetal and neonatal side effects, including increased birth weight. Placental nutrient transport is a key determinant of fetal growth, however the effect of glyburide on placental nutrient transporters is largely unknown. We hypothesized that glyburide treatment in GDM pregnancies is associated with increased expression of nutrient transporters in the syncytiotrophoblast plasma membranes. We collected placentas from GDM pregnancies who delivered at term and were treated with either diet modification (n = 15) or glyburide (n = 8). Syncytiotrophoblast microvillous (MVM) and basal (BM) plasma membranes were isolated and expression of glucose (glucose transporter 1; GLUT1), amino acid (sodium-coupled neutral amino acid transporter 2; SNAT2 and L-type amino acid transporter 1; LAT1) and fatty acid (fatty acid translocase; FAT/CD36, fatty acid transporter 2 and 4; FATP2, FATP4) transporters was determined by Western blot. Additionally, we determined GLUT1 expression by confocal microscopy in cultured primary human trophoblasts (PHT) after exposure to glyburide. Birth weight was higher in the glyburide-treated group as compared to diet-treated GDM women (3764 ± 126 g vs. 3386 ± 75 g; p < 0.05). GLUT1 expression was increased in both MVM (+50%; p < 0.01) and BM (+75%; p < 0.01). In contrast, MVM FAT/CD36 (-65%; p = 0.01) and FATP2 (-65%; p = 0.02) protein expression was reduced in mothers treated with glyburide. Glyburide increased membrane expression of GLUT1 in a dose-dependent manner in cultured PHT. This data is the first to show that glyburide increases GLUT1 expression in syncytiotrophoblast MVM and BM in GDM pregnancies, and may promote transplacental glucose delivery contributing to fetal overgrowth.


Copy-Number Variation of the Glucose Transporter Gene SLC2A3 and Congenital Heart Defects in the 22q11.2 Deletion Syndrome.

  • Elisabeth E Mlynarski‎ et al.
  • American journal of human genetics‎
  • 2015‎

The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS) is the most common microdeletion syndrome and the phenotypic presentation is highly variable. Approximately 65% of individuals with 22q11DS have a congenital heart defect (CHD), mostly of the conotruncal type, and/or an aortic arch defect. The etiology of this phenotypic variability is not currently known. We hypothesized that copy-number variants (CNVs) outside the 22q11.2 deleted region might increase the risk of being born with a CHD in this sensitized population. Genotyping with Affymetrix SNP Array 6.0 was performed on two groups of subjects with 22q11DS separated by time of ascertainment and processing. CNV analysis was completed on a total of 949 subjects (cohort 1, n = 562; cohort 2, n = 387), 603 with CHDs (cohort 1, n = 363; cohort 2, n = 240) and 346 with normal cardiac anatomy (cohort 1, n = 199; cohort 2, n = 147). Our analysis revealed that a duplication of SLC2A3 was the most frequent CNV identified in the first cohort. It was present in 18 subjects with CHDs and 1 subject without (p = 3.12 × 10(-3), two-tailed Fisher's exact test). In the second cohort, the SLC2A3 duplication was also significantly enriched in subjects with CHDs (p = 3.30 × 10(-2), two-tailed Fisher's exact test). The SLC2A3 duplication was the most frequent CNV detected and the only significant finding in our combined analysis (p = 2.68 × 10(-4), two-tailed Fisher's exact test), indicating that the SLC2A3 duplication might serve as a genetic modifier of CHDs and/or aortic arch anomalies in individuals with 22q11DS.


Estrogen and Glycemic Homeostasis: The Fundamental Role of Nuclear Estrogen Receptors ESR1/ESR2 in Glucose Transporter GLUT4 Regulation.

  • Karen Cristina Rego Gregorio‎ et al.
  • Cells‎
  • 2021‎

Impaired circulating estrogen levels have been related to impaired glycemic homeostasis and diabetes mellitus (DM), both in females and males. However, for the last twenty years, the relationship between estrogen, glycemic homeostasis and the mechanisms involved has remained unclear. The characterization of estrogen receptors 1 and 2 (ESR1 and ESR2) and of insulin-sensitive glucose transporter type 4 (GLUT4) finally offered a great opportunity to shed some light on estrogen regulation of glycemic homeostasis. In this manuscript, we review the relationship between estrogen and DM, focusing on glycemic homeostasis, estrogen, ESR1/ESR2 and GLUT4. We review glycemic homeostasis and GLUT4 expression (muscle and adipose tissues) in Esr1-/- and Esr2-/- transgenic mice. We specifically address estradiol-induced and ESR1/ESR2-mediated regulation of the solute carrier family 2 member 4 (Slc2a4) gene, examining ESR1/ESR2-mediated genomic mechanisms that regulate Slc2a4 transcription, especially those occurring in cooperation with other transcription factors. In addition, we address the estradiol-induced translocation of ESR1 and GLUT4 to the plasma membrane. Studies make it clear that ESR1-mediated effects are beneficial, whereas ESR2-mediated effects are detrimental to glycemic homeostasis. Thus, imbalance of the ESR1/ESR2 ratio may have important consequences in metabolism, highlighting that ESR2 hyperactivity assumes a diabetogenic role.


Interaction Between the Sodium-Glucose-Linked Transporter 2 Inhibitor Dapagliflozin and the Loop Diuretic Bumetanide in Normal Human Subjects.

  • Christopher S Wilcox‎ et al.
  • Journal of the American Heart Association‎
  • 2018‎

Dapagliflozin inhibits the sodium-glucose-linked transporter 2 in the renal proximal tubule, thereby promoting glycosuria to reduce hyperglycemia in type 2 diabetes mellitus. Because these patients may require loop diuretics, and sodium-glucose-linked transporter 2 inhibition causes an osmotic diuresis, we evaluated the diuretic interaction between dapagliflozin and bumetanide.


Interleukin-4 Boosts Insulin-Induced Energy Deposits by Enhancing Glucose Uptake and Lipogenesis in Hepatocytes.

  • Ching-Ping Yang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2018‎

Type 2 diabetes mellitus (T2DM), with dysregulated hepatic gluconeogenesis as the major cause of fasting hyperglycemia, is closely associated with chronic inflammation. We previously demonstrated interleukin-4 (IL-4) improves insulin sensitivity and glucose tolerance while reducing lipid deposits. The present study examined the in vitro effects of IL-4 on insulin signaling molecules, glucose uptake, and lipid metabolism in hepatocytes, as well as in vivo effects on hepatic adiposity, for elucidating the roles of IL-4 in hepatic energy metabolism. Potential interaction between IL-4 and insulin in regulating hepatic metabolism was also investigated. Our results showed that IL-4 enhanced Akt and GSK-3α/β phosphorylations, which in turn promoted glycogen synthesis. IL-4 not only potentiated basal glucose uptake by upregulating glucose transporter 2 expression but also promoted insulin-induced glucose uptake. Additionally, IL-4 increased triglyceride contents through facilitating free fatty acid uptake and expression/activity of lipogenic enzymes. The major effects of IL-4 on the liver were to promote energy storage by boosting insulin-stimulated glucose uptake and lipid synthesis. This study provides evidence to implicate the novel roles of IL-4 in mediating hepatic glucose and lipid metabolism, interactions between immune responses and metabolic homeostasis, and the involvement of IL-4 in metabolic abnormalities.


Transient Silencing of a Type IV P-Type ATPase, Atp10c, Results in Decreased Glucose Uptake in C2C12 Myotubes.

  • S E Hurst‎ et al.
  • Journal of nutrition and metabolism‎
  • 2012‎

Atp10c is a strong candidate gene for diet-induced obesity and type 2 diabetes. To identify molecular and cellular targets of ATP10C, Atp10c expression was altered in vitro in C2C12 skeletal muscle myotubes by transient transfection with an Atp10c-specific siRNA. Glucose uptake assays revealed that insulin stimulation caused a significant 2.54-fold decrease in 2-deoxyglucose uptake in transfected cells coupled with a significant upregulation of native mitogen-activated protein kinases (MAPKs), p38, and p44/42. Additionally, glucose transporter-1 (GLUT1) was significantly upregulated; no changes in glucose transporter-4 (GLUT4) expression were observed. The involvement of MAPKs was confirmed using the specific inhibitor SB203580, which downregulated the expression of native and phosphorylated MAPK proteins in transfected cells without any changes in insulin-stimulated glucose uptake. Results indicate that Atp10c regulates glucose metabolism, at least in part via the MAPK pathway, and, thus, plays a significant role in the development of insulin resistance and type 2 diabetes.


LEFTY2/endometrial bleeding-associated factor up-regulates Na+ Coupled Glucose Transporter SGLT1 expression and Glycogen Accumulation in Endometrial Cancer Cells.

  • Ni Zeng‎ et al.
  • PloS one‎
  • 2020‎

LEFTY2 (endometrial bleeding associated factor; EBAF or LEFTYA), a cytokine released shortly before menstrual bleeding, is a negative regulator of cell proliferation and tumour growth. LEFTY2 down-regulates Na+/H+ exchanger activity with subsequent inhibition of glycolytic flux and lactate production in endometrial cancer cells. Glucose can be utilized not only for glycolysis but also for glycogen formation. Both glycolysis and glycogen formation require cellular glucose uptake which could be accomplished by the Na+ coupled glucose transporter-1 (SGLT1; SLC5A1). The present study therefore explored whether LEFTY2 modifies endometrial SGLT1 expression and activity as well as glycogen formation. Ishikawa and HEC1a cells were exposed to LEFTY2, SGLT1 and glycogen synthase (GYS1) transcript levels determined by qRT-PCR. SGLT1, GYS1 and phospho-GYS1 protein abundance was quantified by western blotting, cellular glucose uptake from 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG) uptake, and cellular glycogen content utilizing an enzymatic assay and subsequent colorimetry. As a result, a 48-hour treatment with LEFTY2 significantly increased SGLT1 and GYS1 transcript levels as well as SGLT1 and GYS1 protein abundance in both Ishikawa and HEC1a cells. 2-NBDG uptake and cellular glycogen content were upregulated significantly in Ishikawa (type 1) but not in type 2 endometrial HEC1a cells, although there was a tendency of increased 2-NBDG uptake. Further, none of the effects were seen in human benign endometrial cells (HESCs). Interestingly, in both Ishikawa and HEC1a cells, a co-treatment with TGF-β reduced SGLT1, GYS and phospho-GYS protein levels, and thus reduced glycogen levels and again HEC1a cells had no significant change. In conclusion, LEFTY2 up-regulates expression and activity of the Na+ coupled glucose transporter SGLT1 and glycogen synthase GYS1 in a cell line specific manner. We further show the treatment with LEFTY2 fosters cellular glucose uptake and glycogen formation and TGF-β can negate this effect in endometrial cancer cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: