Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,083 papers

Chronic Hyperglycaemia Inhibits Tricarboxylic Acid Cycle in Rat Cardiomyoblasts Overexpressing Glucose Transporter Type 4.

  • Bernd Stratmann‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

An oversupply of nutrients with a loss of metabolic flexibility and subsequent cardiac dysfunction are hallmarks of diabetic cardiomyopathy. Even if excess substrate is offered, the heart suffers energy depletion as metabolic fluxes are diminished. To study the effects of a high glucose supply, a stably glucose transporter type 4 (GLUT4)-overexpressing cell line presenting an onset of diabetic cardiomyopathy-like phenotype was established. Long-term hyperglycaemia effects were analysed. Rat cardiomyoblasts overexpressing GLUT4 (H9C2KE2) were cultured under normo- and hyperglycaemic conditions for long-term. Expression profiles of several proteins were compared to non-transfected H9C2 cells (H9C2) using RT-qPCR, proteomics-based analysis, or Western blotting. GLUT4 surface analysis, glucose uptake, and cell morphology changes as well as apoptosis/necrosis measurements were performed using flow cytometry. Additionally, brain natriuretic peptide (BNP) levels, reactive oxygen species (ROS) formation, glucose consumption, and lactate production were quantified. Long-term hyperglycaemia in H9C2KE2 cells induced increased GLUT4 presence on the cell surface and was associated with exaggerated glucose influx and lactate production. On the metabolic level, hyperglycaemia affected the tricarboxylic acid (TCA) cycle with accumulation of fumarate. This was associated with increased BNP-levels, oxidative stress, and lower antioxidant response, resulting in pronounced apoptosis and necrosis. Chronic glucose overload in cardiomyoblasts induced by GLUT4 overexpression and hyperglycaemia resulted in metabolically stimulated proteome profile changes and metabolic alterations on the TCA level.


Regulation of endogenous glucose production in glucose transporter 4 over-expressing mice.

  • Eric D Berglund‎ et al.
  • PloS one‎
  • 2012‎

Strategies to amplify whole-body glucose disposal are key therapies to treat type 2 diabetes. Mice that over-express glucose transporter 4 (Glut4) in skeletal muscle, heart, and adipose tissue (G4Tg) exhibit increased fasting glucose disposal and thus lowered blood glucose. Intriguingly, G4Tg mice also exhibit improved insulin-stimulated suppression of endogenous glucose production even though Glut4 is not present in the liver. It is unclear, however, if hepatic gluco-regulation is altered in G4Tg mice in the basal, non-insulin-stimulated state. The current studies were performed to examine fasting hepatic glucose metabolism in G4Tg mice and to determine whether gluco-regulatory adaptations exist in the non-insulin-stimulated condition. To test this question, phloridzin-glucose clamps were used to match blood glucose and pancreatic hormone levels while tracer dilution techniques were used to measure glucose flux. These techniques were performed in chronically-catheterized, conscious, and un-stressed 5h-fasted G4Tg and wild-type (WT) littermates. Results show reduced blood glucose, hepatic glycogen content, and hepatic glucokinase (GK) activity/expression as well as higher endogenous glucose production, glucose disposal, arterial glucagon, and hepatic glucose-6-phosphatase (G6Pase) activity/expression in G4Tg mice versus WT controls. Clamping blood glucose for 90 min at ~115 mg/dLin G4Tg and WT mice normalized nearly all variables. Notably, however, net hepatic glycogen synthetic rates were disproportionately elevated compared to changes in blood glucose. In conclusion, these studies demonstrate that basal improvements in glucose tolerance due to increased uptake in extra-hepatic sites provoke important gluco-regulatory adaptations in the liver. Although changes in blood glucose underlie the majority of these adaptations, net hepatic glycogen synthesis is sensitized. These data emphasize that anti-diabetic therapies that target skeletal muscle, heart, and/or adipose tissue likely positively impact the liver.


High Estradiol Differentially Affects the Expression of the Glucose Transporter Type 4 in Pelvic Floor Muscles of Rats.

  • María de Los Ángeles Carrasco-Ruiz‎ et al.
  • International neurourology journal‎
  • 2018‎

To characterize the relationship between serum estradiol levels and the expression of glucose transporter type 4 (Glut4) in the pubococcygeus and iliococcygeus muscles in female rats.


Insulin stimulated-glucose transporter Glut 4 is expressed in the retina.

  • Gustavo Sánchez-Chávez‎ et al.
  • PloS one‎
  • 2012‎

The vertebrate retina is a very metabolically active tissue whose energy demands are normally met through the uptake of glucose and oxygen. Glucose metabolism in this tissue relies upon adequate glucose delivery from the systemic circulation. Therefore, glucose transport depends on the expression of glucose transporters. Here, we show retinal expression of the Glut 4 glucose transporter in frog and rat retinas. Immunohistochemistry and in situ hybridization studies showed Glut 4 expression in the three nuclear layers of the retina: the photoreceptor, inner nuclear and ganglionar cell layers. In the rat retina immunoprecipitation and Western blot analysis revealed a protein with an apparent molecular mass of 45 kDa. ¹⁴C-glucose accumulation by isolated rat retinas was significantly enhanced by physiological concentrations of insulin, an effect blocked by inhibitors of phosphatidyl-inositol 3-kinase (PI3K), a key enzyme in the insulin-signaling pathway in other tissues. Also, we observed an increase in ³H-cytochalasin binding sites in the presence of insulin, suggesting an increase in transporter recruitment at the cell surface. Besides, insulin induced phosphorylation of Akt, an effect also blocked by PI3K inhibition. Expression of Glut 4 was not modified in retinas of a type 1 diabetic rat model. To our knowledge, our results provide the first evidence of Glut4 expression in the retina, suggesting it as an insulin- responsive tissue.


Red rice koji extract alleviates hyperglycemia by increasing glucose uptake and glucose transporter type 4 levels in skeletal muscle in two diabetic mouse models.

  • Takakazu Yagi‎ et al.
  • Food & nutrition research‎
  • 2020‎

Red rice koji (RRK), prepared by growing Monascus species on steamed rice, has been reported to lower blood glucose levels in diabetic animal models. However, the action mechanism is not yet completely understood.


miRNA-218 Targets Lipin-1 and Glucose Transporter Type 4 Genes in 3T3-L1 Cells Treated With Lopinavir/Ritonavir.

  • Elena Bresciani‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Background: Metabolic complications represent a common and serious problem associated with HIV infection and combined Antiretroviral Therapy (cART). Alterations in body fat distribution are associated with significantly increased risks of (i) metabolic derangements, (ii) cardiovascular pathologies, and (iii) insulin resistance. A case control study showed that in subcutaneous adipose tissue from HIV-infected patients on cART presenting lipodystrophy (LS), the levels of miRNA-218 were upregulated and those of lipin-1, a putative target gene of miRNA-218, were downregulated compared with HIV-negative subjects. Lipin-1 is one of the most important factors linked to development of LS. Lipin-1, by controlling PPARγ2, regulates the expression of specific genes, such as that of glucose transporter type 4 (GLUT-4), required for maturation and maintenance of adipocytes. Objectives: To determine whether lopinavir/ritonavir (LPV/RTV) can modulate lipogenesis in adipocytes affecting miRNA-218 and lipin-1 mRNA expression, and to investigate the functional link between miRNA-218 and GLUT-4 mRNA expression. Methods: Differentiated 3T3-L1 cells were treated with various combinations of LPV/RTV, followed by measurements of cell viability, lipid accumulation, lipin-1 and GLUT-4 mRNA and miRNA-218 levels. Transfection of anti-miR-218 or a miRNA-218 mimic were used to investigate the role of miRNA-218 in lipogenesis. Results: LPV/RTV treatment of 3T3-L1 cells did not affect the viability of differentiated 3T3-L1 cells, but caused (i) a significant decrease of lipid accumulation, (ii) an overexpression of miRNA-218, and (iii) a reduction of lipin-1 and GLUT-4 mRNA levels. The anti-miR-218 transfection of 3T3-L1 cells significantly ameliorated the adipogenic dysfunction and restored mRNA levels of lipin-1 and GLUT-4 consequent to LPV/RTV treatment. By contrast, 3T3-L1 cells transfected with a specific miRNA-218 mimic showed (i) an overexpression of miRNA-218, (ii) a reduced cellular lipid fraction, and (iii) decreased levels of mRNA for lipin-1 and GLUT-4. Conclusion: 3T3-L1 cells, treated with LPV/RTV, show altered lipid content due to increased miRNA-218 levels, which affects lipin-1 mRNA. Moreover, increased miRNA-218 levels were inversely correlated with changes in GLUT-4 expression, which suggests a role for miRNA-218 in mediating the insulin resistance consequent to cART.


MicroRNA-17 impairs glucose metabolism in insulin-resistant skeletal muscle via repressing glucose transporter 4 expression.

  • Dan Xiao‎ et al.
  • European journal of pharmacology‎
  • 2018‎

Elimination of glucose transporter 4 (GLUT4) inevitably induces insulin resistance (IR), aggravating inflammation- and oxidative stress-related disorders. However, the underlying molecular mechanisms remain incompletely understood. In this study, we identified miR-17 as an important regulator of IR by targeting GLUT4. MiR-17 expression was found significantly elevated in skeletal tissues of rats with type 2 diabetes mellitus (T2DM), along with marked downregulation of GLUT4 protein level. Luciferase reporter gene assay demonstrated a direct interaction between miR-17 and the 3'untranslated region of GLUT4 mRNA. Correlation analyses (Spearman, Pearson, and Kendall) revealed that miR-17 level was negatively correlated with GLUT4 expression. Additionally, loss- and gain-of-function analyses showed that overexpression of miR-17 impaired glucose metabolism in L6 rat skeletal muscle cell line. In contrast, knockdown of endogenous miR-17 ameliorated glucose metabolism, accompanied by elevation of GLUT4 protein level. These findings unraveled a novel mechanism for IR that involves repression of GLUT4 by miR-17 and suggested miR-17 as a potential molecular target for the development of new therapeutic approaches for the treatment of T2DM.


Zinc finger protein 407 (ZFP407) regulates insulin-stimulated glucose uptake and glucose transporter 4 (Glut4) mRNA.

  • David A Buchner‎ et al.
  • The Journal of biological chemistry‎
  • 2015‎

The glucose transporter GLUT4 facilitates insulin-stimulated glucose uptake in peripheral tissues including adipose, muscle, and heart. GLUT4 function is impaired in obesity and type 2 diabetes leading to hyperglycemia and an increased risk of cardiovascular disease and neuropathy. To better understand the regulation of GLUT4 function, a targeted siRNA screen was performed and led to the discovery that ZFP407 regulates insulin-stimulated glucose uptake in adipocytes. The decrease in insulin-stimulated glucose uptake due to ZFP407 deficiency was attributed to a reduction in GLUT4 mRNA and protein levels. The decrease in GLUT4 was due to both decreased transcription of Glut4 mRNA and decreased efficiency of Glut4 pre-mRNA splicing. Interestingly, ZFP407 coordinately regulated this decrease in transcription with an increase in the stability of Glut4 mRNA, resulting in opposing effects on steady-state Glut4 mRNA levels. More broadly, transcriptome analysis revealed that ZFP407 regulates many peroxisome proliferator-activated receptor (PPAR) γ target genes beyond Glut4. ZFP407 was required for the PPARγ agonist rosiglitazone to increase Glut4 expression, but was not sufficient to increase expression of a PPARγ target gene reporter construct. However, ZFP407 and PPARγ co-overexpression synergistically activated a PPARγ reporter construct beyond the level of PPARγ alone. Thus, ZFP407 may represent a new modulator of the PPARγ signaling pathway.


Acute bout of exercise induced prolonged muscle glucose transporter-4 translocation and delayed counter-regulatory hormone response in type 1 diabetes.

  • Koji Sato‎ et al.
  • PloS one‎
  • 2017‎

Previous studies have demonstrated that an acute bout of aerobic exercise induces a subsequent delayed onset of hypoglycemia among patients with type 1 diabetes. However, the mechanisms of exercise-induced hypoglycemia in type 1 diabetes are still unclear. Streptozotocin (STZ) was injected to 6-week-old male Wistar rats, and three days after STZ injection, animals were randomly assigned into 2 groups: STZ with insulin only (STZ) and STZ with insulin and exercise (STZ+EX). Normal Wistar rats with exercise were used as control (CON+EX). Insulin was intraperitoneally injected (0.5 U/kg) to both STZ groups (-0.5 h), and a bout of aerobic exercise (15 m/min for 30 min) was conducted at euglycemic conditions (0 h). Blood was collected at 0, 1, 3, and 5 h after exercise from the carotid artery. While the blood glucose level was stable during the post-exercise period (0-5 h) in the STZ and CON+EX groups, it decreased significantly only in the STZ+EX group at 3 h. Plasma glucagon, adrenalin, and noradrenalin levels significantly increased at 1 h in the STZ group, whereas significant hormonal responses were observed at 5 h in the STZ+EX group. In skeletal muscle glucose metabolism-related pathway, the level of glucose transporter-4 (GLUT-4) translocation was significantly higher at 1 h in the CON and STZ groups. However, in the STZ+EX group, these activations were maintained by 5 h, indicating a sustained glucose metabolism in the STZ+EX group. A single bout of aerobic exercise induced a delayed onset of hypoglycemia in STZ-treated rats. A prolonged enhancement of GLUT-4 translocation and delayed counter-regulatory hormone responses may have contributed to the induction of hypoglycemia.


(+)-Catechin & Proanthocyanidin Fraction of Uncaria gambir Roxb. Improve Adipocytes Differentiation & Glucose Uptake of 3T3-L1 Cells Via Sirtuin-1, Peroxisome Proliferator-Activated Receptor γ (PPAR γ), Glucose Transporter Type 4 (GLUT-4) Expressions.

  • Silvy Arundita‎ et al.
  • Advanced pharmaceutical bulletin‎
  • 2020‎

Purpose: To improve adipocytes differentiation & glucose uptake activity of 3T3-L1 cells through sirtuin-1, peroxisome proliferator-activated receptor γ (PPAR γ), glucose transporter type 4 (GLUT-4) of (+)-catechin & proanthocyanidin fraction Uncaria gambir Roxb. Methods: Adipocytes differentiation activity of (+)-Catechin of Uncaria gambir Roxb. was determined by oil red O staining method & glucose uptake activity was determined by measuring 2-deoxyglucose uptake on 3T3-L1 cells. The ability of (+) - catechin as an activator of sirtuin-1 was assessed by administration of (+) - catechin with the presence of a specific inhibitor of sirtuin-1, nicotinamide. Metformin 1 mM & 5 mM were used as positive control. Sirtuin-1, PPAR γ & GLUT-4 expressions were determined by RT-PCR. Results: (+)-Catechin & proanthocyanidin fraction of Uncaria gambir Roxb. were found to increase adipocyte differentiation & glucose uptake by increasing activity of sirtuin-1 as well as metformin (P ≤0.05). PPAR γ, GLUT-4 and sirtuin-1 expressions were known to be responsible for this activities. Conclusion: These results indicate that (+)-catechin & proanthocyanidin fraction of Uncaria gambir Roxb. could be utilized as a renewable bioresource to develop potential antidiabetic and antiobesity agents.


Glucose transporter (GLUT-4) is targeted to secretory granules in rat atrial cardiomyocytes.

  • J W Slot‎ et al.
  • The Journal of cell biology‎
  • 1997‎

The insulin-responsive glucose transporter GLUT-4 is found in muscle and fat cells in the trans-Golgi reticulum (TGR) and in an intracellular tubulovesicular compartment, from where it undergoes insulin-dependent movement to the cell surface. To examine the relationship between these GLUT-4-containing compartments and the regulated secretory pathway we have localized GLUT-4 in atrial cardiomyocytes. This cell type secretes an antihypertensive hormone, referred to as the atrial natriuretic factor (ANF), in response to elevated blood pressure. We show that GLUT-4 is targeted in the atrial cell to the TGR and a tubulo-vesicular compartment, which is morphologically and functionally indistinguishable from the intracellular GLUT-4 compartment found in other types of myocytes and in fat cells, and in addition to the ANF secretory granules. Forming ANF granules are present throughout all Golgi cisternae but only become GLUT4 positive in the TGR. The inability of cyclohexamide treatment to effect the TGR localization of GLUT-4 indicates that GLUT-4 enters the ANF secretory granules at the TGR via the recycling pathway and not via the biosynthetic pathway. These data suggest that a large proportion of GLUT-4 must recycle via the TGR in insulin-sensitive cells. It will be important to determine if this is the pathway by which the insulin-regulatable tubulo-vesicular compartment is formed.


Piceatannol, a resveratrol derivative, promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and suppresses blood glucose levels in type 2 diabetic model db/db mice.

  • Miki Minakawa‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

The skeletal muscle cells are one of the main sites of glucose uptake through glucose transporter 4 (GLUT4) in response to insulin. In muscle cells, 5' adenosine monophosphate-activated protein kinase (AMPK) is known as another GLUT4 translocation promoter. Natural compounds that activate AMPK have a possibility to overcome insulin resistance in the diabetic state. Piceatannol is a natural analog and a metabolite of resveratrol, a known AMPK activator. In this study, we investigate the in vitro effect of piceatannol on glucose uptake, AMPK phosphorylation and GLUT4 translocation to plasma membrane in L6 myocytes, and its in vivo effect on blood glucose levels in type 2 diabetic model db/db mice. Piceatannol was found to promote glucose uptake, AMPK phosphorylation and GLUT4 translocation by Western blotting analyses in L6 myotubes under a condition of insulin absence. Promotion by piceatannol of glucose uptake as well as GLUT4 translocation to plasma membrane by immunocytochemistry was also demonstrated in L6 myoblasts transfected with a glut4 cDNA-coding vector. Piceatannol suppressed the rises in blood glucose levels at early stages and improved the impaired glucose tolerance at late stages in db/db mice. These in vitro and in vivo findings suggest that piceatannol may be preventive and remedial for type 2 diabetes and become an antidiabetic phytochemical.


Sodium-glucose co-transporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors combination therapy in type 2 diabetes: A systematic review of current evidence.

  • Awadhesh Kumar Singh‎ et al.
  • Indian journal of endocrinology and metabolism‎
  • 2016‎

As type 2 diabetes mellitus (T2DM) is a chronic and progressive disease with multiple pathophysiologic defects, no single anti-diabetic agent can tackle all these multi-factorial pathways. Consequently, multiple agents working through the different mechanisms will be required for the optimal glycemic control. Moreover, the combination therapies of different anti-diabetic agents may complement their actions and possibly act synergistic. Furthermore, these combinations could possess the additional properties to counter their undesired physiological compensatory response. Sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are newly emerging class of drugs, with a great potential to reduce glucose effectively with an additional quality of lowering cardiovascular events as demonstrated very recently by one of the agents of this class. However, increase in endogenous glucose production (EGP) from the liver, either due to the increase in glucagon or compensatory response to glucosuria can offset the glucose-lowering potential of SGLT-2I. Interestingly, another class of drugs such as dipeptidyl peptidase-4 inhibitors (DPP-4I) effectively decrease glucagon and reduce EGP. In light of these findings, combination therapies with SGLT-2I and DPP-4I are particularly appealing and are expected to produce a synergistic effect. Preclinical studies of combination therapies with DPP-4I and SGLT-2I have already demonstrated a significant lowering of hemoglobin A1c potential and human studies also find no drug-drug interaction between these agents. This article aims to systematically review the efficacy and safety of combination therapy of SGLT-2I and DPP-4I in T2DM.


Renin-Angiotensin System Antagonism Protects the Diabetic Heart from Ischemia/Reperfusion Injury in Variable Hyperglycemia Duration Settings by a Glucose Transporter Type 4-Mediated Pathway.

  • Aisha Al-Kouh‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2023‎

Diabetes mellitus (DM) is a risk factor for cardiovascular diseases, specifically, the ischemic heart diseases (IHD). The renin-angiotensin system (RAS) affects the heart directly and indirectly. However, its role in the protection of the heart against I/R injury is not completely understood. The aim of the current study was to evaluate the efficacy of the angiotensin-converting enzyme (ACE) inhibitor and Angiotensin II receptor (AT1R) blocker or a combination thereof in protection of the heart from I/R injury.


Deoxyandrographolide promotes glucose uptake through glucose transporter-4 translocation to plasma membrane in L6 myotubes and exerts antihyperglycemic effect in vivo.

  • Deepti Arha‎ et al.
  • European journal of pharmacology‎
  • 2015‎

Skeletal muscle is the principal site for postprandial glucose utilization and augmenting the rate of glucose utilization in this tissue may help to control hyperglycemia associated with diabetes mellitus. Here, we explored the effect of Deoxyandrographolide (DeoAn) isolated from the Andrographis paniculata Nees on glucose utilization in skeletal muscle and investigated its antihyperglycemic effect in vivo in streptozotocin-induced diabetic rats and genetically diabetic db/db mice. In L6 myotubes, DeoAn dose-dependently stimulated glucose uptake by enhancing the translocation of glucose transporter 4 (GLUT4) to cell surface, without affecting the total cellular GLUT4 and GLUT1 content. These effects of DeoAn were additive to insulin. Further analysis revealed that DeoAn activated PI-3-K- and AMPK-dependent signaling pathways, account for the augmented glucose transport in L6 myotubes. Furthermore, DeoAn lowered postprandial blood glucose levels in streptozotocin-induced diabetic rats and also suppressed the rises in the fasting blood glucose, serum insulin, triglycerides and LDL-Cholesterol levels of db/db mice. These findings suggest the therapeutic efficacy of the DeoAn for type 2 diabetes mellitus and can be potential phytochemical for its management.


Insulin gene enhancer protein 1 mediates glycolysis and tumorigenesis of gastric cancer through regulating glucose transporter 4.

  • Ting Guo‎ et al.
  • Cancer communications (London, England)‎
  • 2021‎

Insulin gene enhancer protein 1, (ISL1), a LIM-homeodomain transcription factor, is involved in multiple tumors and is associated with insulin secretion and metabolic phenotypes. However, the role of ISL1 in stimulating glycolysis to promote tumorigenesis in gastric cancer (GC) is unclear. In this study, we aimed to characterize the expression pattern of ISL1 in GC patients and explore its molecular biological mechanism in glycolysis and tumorigenesis.


Octaphlorethol A, a novel phenolic compound isolated from a brown alga, Ishige foliacea, increases glucose transporter 4-mediated glucose uptake in skeletal muscle cells.

  • Seung-Hong Lee‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

Skeletal muscle is the major site of glucose disposal. Promoting glucose uptake into this tissue may attenuate the insulin resistance that precedes type 2 diabetes. However, the anti-diabetic effect of marine algae on glucose uptake and metabolism in skeletal muscle remains poorly understood. Here, we report the glucose uptake effects of octaphlorethol A (OPA), a novel phenolic compound isolated from Ishige foliacea, on skeletal muscle cells. OPA increased glucose uptake in differentiated L6 rat myoblast cells in a dose-dependent manner relative to the control. In addition, we found that OPA increased glucose transporter 4 (Glut4) translocation to the plasma membrane. Furthermore, we also demonstrated these OPA effects essentially depended on the protein kinase B (Akt) and AMP-activated protein kinase (AMPK) activation. In summary, PI3-K/Akt and AMPK activation were involved in mediating the effects of OPA on glucose transport activation and insulin sensitivity. OPA can be further developed as a potential anti-diabetic therapy.


Neuropeptide Y impairs insulin-stimulated translocation of glucose transporter 4 in 3T3-L1 adipocytes through the Y1 receptor.

  • Martin T Gericke‎ et al.
  • Molecular and cellular endocrinology‎
  • 2012‎

Neuropeptide Y (NPY) is expressed in adipose tissue and is involved in adipocyte metabolism. Although NPY impacts on glucose utilization in vivo, the underlying cellular mechanism is yet to be fully elucidated. In this study we investigated the effect of NPY on the insulin-stimulated translocation of glucose transporter 4 (GLUT4) from intracellular stores to the cell surface in vitro. Using cellular fractionation and immunofluorescence we analyzed the cellular localization and content of GLUT4 in 3T3-L1 adipocytes. Additionally we investigated the effect of NPY on insulin action in adipocyte cultures by assessing the phosphorylation of Akt and [(3)H]-deoxyglucose uptake. Our data suggest that in 3T3-L1 adipocytes NPY inhibits insulin-stimulated glucose uptake in a GLUT4-dependent manner. The insulin induced translocation of GLUT4 was attenuated by the Y1 receptor agonist [Phe(7),Pro(34)] pNPY, demonstrating an essential role of the Y1 receptor in GLUT4 translocation. Additionally, we observed an NPY dose-dependent impairment of Akt phosphorylation. This study provides evidence that NPY impairs the insulin sensitivity of adipocytes and suggests that the Y1 receptor could be a potential therapeutic target for type 2 diabetes.


Conjugated linoleic acid supplementation enhances insulin sensitivity and peroxisome proliferator-activated receptor gamma and glucose transporter type 4 protein expression in the skeletal muscles of rats during endurance exercise.

  • Kangok Cho‎ et al.
  • Iranian journal of basic medical sciences‎
  • 2016‎

This study examined whether conjugated linoleic acid (CLA) supplementation affects insulin sensitivity and peroxisome proliferator-activated receptor gamma (PPAR-γ) and glucose transporter type 4 (GLUT-4) protein expressions in the skeletal muscles of rats during endurance exercise.


Green Tea Ameliorates Hyperglycemia by Promoting the Translocation of Glucose Transporter 4 in the Skeletal Muscle of Diabetic Rodents.

  • Manabu Ueda-Wakagi‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

It is known that green tea helps prevent obesity and diabetes mellitus. In this study, we aimed to determine whether green tea ameliorates hyperglycemia and the mechanism involved in diabetic rodents. Green tea consumption reduced blood glucose and ameliorated glucose intolerance, which was assessed using an oral glucose tolerance test in both streptozotocin-induced type 1 diabetic rats and type 2 diabetic KK-Ay mice. Green tea also reduced the plasma fructosamine and glycated hemoglobin concentrations in both models. Furthermore, it increased glucose uptake into the skeletal muscle of both model animals, which was accompanied by greater translocation of glucose transporter 4 (GLUT4). Moreover, epigallocatechin gallate (EGCG), the principal catechin in green tea, also ameliorated glucose intolerance in high-fat diet-induced obese and diabetic mice. These results suggest that green tea can ameliorate hyperglycemia in diabetic rodents by stimulating GLUT4-mediated glucose uptake in skeletal muscle, and that EGCG is one of the effective compounds that mediate this effect.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: