Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 3,353 papers

Endothelial cell-derived oxysterol ablation attenuates experimental autoimmune encephalomyelitis.

  • Florian Ruiz‎ et al.
  • EMBO reports‎
  • 2023‎

The vasculature is a key regulator of leukocyte trafficking into the central nervous system (CNS) during inflammatory diseases including multiple sclerosis (MS). However, the impact of endothelial-derived factors on CNS immune responses remains unknown. Bioactive lipids, in particular oxysterols downstream of Cholesterol-25-hydroxylase (Ch25h), promote neuroinflammation but their functions in the CNS are not well-understood. Using floxed-reporter Ch25h knock-in mice, we trace Ch25h expression to CNS endothelial cells (ECs) and myeloid cells and demonstrate that Ch25h ablation specifically from ECs attenuates experimental autoimmune encephalomyelitis (EAE). Mechanistically, inflamed Ch25h-deficient CNS ECs display altered lipid metabolism favoring polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) expansion, which suppresses encephalitogenic T lymphocyte proliferation. Additionally, endothelial Ch25h-deficiency combined with immature neutrophil mobilization into the blood circulation nearly completely protects mice from EAE. Our findings reveal a central role for CNS endothelial Ch25h in promoting neuroinflammation by inhibiting the expansion of immunosuppressive myeloid cell populations.


Transgenic interleukin 10 prevents induction of experimental autoimmune encephalomyelitis.

  • D J Cua‎ et al.
  • The Journal of experimental medicine‎
  • 1999‎

The effectiveness of interleukin 10 (IL-10) in the treatment of autoimmune-mediated central nervous system inflammation is controversial. Studies of the model system, experimental autoimmune encephalomyelitis (EAE), using various routes, regimens, and delivery methods of IL-10 suggest that these variables may affect its immunoregulatory function. To study the influence of these factors on IL-10 regulation of EAE pathogenesis, we have analyzed transgenic mice expressing human IL-10 (hIL-10) transgene under the control of a class II major histocompatibility complex (MHC) promoter. The hIL-10 transgenic mice are highly resistant to EAE induced by active immunization, and this resistance appears to be mediated by suppression of autoreactive T cell function. Myelin-reactive T helper 1 cells are induced but nonpathogenic in the IL-10 transgenic mice. Antibody depletion confirmed that EAE resistance is dependent on the presence of the transgenic IL-10. Mice expressing the hIL-10 transgene but not the endogenous murine IL-10 gene demonstrated that transgenic IL-10 from MHC class II-expressing cells is sufficient to block induction of EAE. This study demonstrates that IL-10 can prevent EAE completely if present at appropriate levels and times during disease induction.


Characterization of Ribosomal Frameshifting in Theiler's Murine Encephalomyelitis Virus.

  • Leanne K Finch‎ et al.
  • Journal of virology‎
  • 2015‎

Theiler's murine encephalomyelitis virus (TMEV) is a member of the genus Cardiovirus in the Picornaviridae, a family of positive-sense single-stranded RNA viruses. Previously, we demonstrated that in the related cardiovirus, Encephalomyocarditis virus, a programmed-1 ribosomal frameshift (1 PRF) occurs at a conserved G_GUU_UUU sequence within the 2B-encoding region of the polyprotein open reading frame (ORF). Here we show that-1 PRF occurs at a similar site during translation of the TMEV genome. In addition, we demonstrate that a predicted 3= RNA stem-loop structure at a noncanonical spacing downstream of the shift site is required for efficient frameshifting in TMEV and that frameshifting also requires virus infection. Mutating the G_GUU_UUU shift site to inhibit frameshifting results in an attenuated virus with reduced growth kinetics and a small-plaque phenotype. Frameshifting in the virus context was found to be extremely efficient at 74 to 82%, which, to our knowledge, is the highest frameshifting efficiency recorded to date for any virus. We propose that highly efficient-1 PRF in TMEV provides a mechanism to escape the confines of equimolar expression normally inherent in the single-polyprotein expression strategy of picornaviruses.


BAFF promotes Th17 cells and aggravates experimental autoimmune encephalomyelitis.

  • Xiaohui Zhou‎ et al.
  • PloS one‎
  • 2011‎

BAFF, in addition to promoting B cell survival and differentiation, may affect T cells. The objective of this study was to determine the effect of BAFF on Th17 cell generation and its ramifications for the Th17 cell-driven disease, EAE.


IgG glycan hydrolysis by EndoS inhibits experimental autoimmune encephalomyelitis.

  • Mahdia Benkhoucha‎ et al.
  • Journal of neuroinflammation‎
  • 2012‎

Studies in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, have shown that B cells markedly influence the course of the disease, although whether their effects are protective or pathological is a matter of debate. EndoS hydrolysis of the IgG glycan has profound effects on IgG effector functions, such as complement activation and Fc receptor binding, suggesting that the enzyme could be used as an immunomodulatory therapeutic agent against IgG-mediated diseases. We demonstrate here that EndoS has a protective effect in myelin oligodendrocyte glycoprotein peptide amino acid 35-55 (MOG(35-55))-induced EAE, a chronic neuroinflammatory demyelinating disorder of the central nervous system (CNS) in which humoral immune responses are thought to play only a minor role. EndoS treatment in chronic MOG(35-55)-EAE did not impair encephalitogenic T cell priming and recruitment into the CNS of mice, consistent with a primary role of EndoS in controlling IgG effector functions. In contrast, reduced EAE severity coincided with poor serum complement activation and deposition within the spinal cord, suggesting that EndoS treatment impairs B cell effector function. These results identify EndoS as a potential therapeutic agent against antibody-mediated CNS autoimmune disorders.


Preventive treatment with methylprednisolone paradoxically exacerbates experimental autoimmune encephalomyelitis.

  • Simone Wüst‎ et al.
  • International journal of endocrinology‎
  • 2012‎

Glucocorticoids (GCs) represent the standard treatment for acute disease bouts in multiple sclerosis (MS) patients, for which methylprednisolone (MP) pulse therapy is the most frequently used protocol. Here, we compared the efficacy of therapeutic and preventive MP application in MOG(35-55)-induced experimental autoimmune encephalomyelitis (EAE) in C57Bl/6 mice. When administered briefly after the onset of the disease, MP efficiently ameliorated EAE in a dose-dependent manner. Surprisingly, MP administration around the time of immunization was contraindicated as it even increased leukocyte infiltration into the CNS and worsened the disease symptoms. Our analyses suggest that in the latter case an incomplete depletion of peripheral T cells by MP triggers homeostatic proliferation, which presumably results in an enhanced priming of autoreactive T cells and causes an aggravated disease course. Thus, the timing and selection of a particular GC derivative require careful consideration in MS therapy.


Change in light-dark cycle affects experimental autoimmune encephalomyelitis.

  • Kota Moriguchi‎ et al.
  • Journal of neuroimmunology‎
  • 2021‎

The prevalence of multiple sclerosis is associated with geographic latitude. Low sun exposure or reduced daylight hours are considered possible causes. We examined whether a change in the number of daylight hours affects the course of experimental autoimmune encephalomyelitis (EAE) disease. Housing mice in a 24-h dark or light cycle upregulated internal corticosterone secretion and ameliorated the EAE disease course relative to that in mice housed in a conventional 12/12-h cycle environment. After EAE induction, the rhythmic pattern of corticosterone secretion was disrupted. Upregulation of internal steroid secretion might act as an immunosuppressive and ameliorate EAE.


Phenethyl Ester of Gallic Acid Ameliorates Experimental Autoimmune Encephalomyelitis.

  • Goran Stegnjaić‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Gallic acid is a phenolic acid present in various plants, nuts, and fruits. It is well known for its anti-oxidative and anti-inflammatory properties. The phenethyl ester of gallic acid (PEGA) was synthesized with the aim of increasing the bioavailability of gallic acid, and thus its pharmacological potential. Here, the effects of PEGA on encephalitogenic cells were examined, and PEGA was found to modulate the inflammatory activities of T cells and macrophages/microglia. Specifically, PEGA reduced the release of interleukin (IL)-17 and interferon (IFN)-γ from T cells, as well as NO, and IL-6 from macrophages/microglia. Importantly, PEGA ameliorated experimental autoimmune encephalomyelitis, an animal model of chronic inflammatory disease of the central nervous system (CNS)-multiple sclerosis. Thus, PEGA is a potent anti-inflammatory compound with a perspective to be further explored in the context of CNS autoimmunity and other chronic inflammatory disorders.


A critical role for lymphotoxin in experimental allergic encephalomyelitis.

  • W E Suen‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

The lymphotoxin (LT)/tumor necrosis factor (TNF) family has been implicated in the neurologic inflammatory diseases multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). To determine the role of individual family members in EAE, C57BL/6 mice, LT-alpha-deficient (LT-alpha-/- mice), or LT-beta-deficient (LT-beta-/- mice), and their wild-type (WT) littermates were immunized with rat myelin oligodendrocyte glycoprotein (MOG) peptide 35-55. C57BL/6 and WT mice developed chronic, sustained paralytic disease with average maximum clinical scores of 3.5 and disease indices (a measure of day of onset and sustained disease scores) ranging from 367 to 663 with central nervous system (CNS) inflammation and demyelination. LT-alpha-/- mice were primed so that their splenic lymphocytes proliferated in response to MOG 35-55 and the mice produced anti-MOG antibody. However, LT-alpha-/- mice were quite resistant to EAE with low average clinical scores (<1), an average disease index of 61, and the negligible CNS inflammation and demyelination. WT T cells transferred EAE to LT-alpha-/- recipients. LT-beta-/- mice were susceptible to EAE, though less than WT, with an average maximum clinical score of 1.9 and disease index of 312. These data implicate T cell production of LT-alpha in MOG EAE and support a major role for LT-alpha3, a minor role for the LT-alpha/beta complex, and by inference, no role for TNF-alpha.


Continuous and interval training attenuate encephalomyelitis by separate immunomodulatory mechanisms.

  • Yehuda Goldberg‎ et al.
  • Annals of clinical and translational neurology‎
  • 2021‎

Studies have reported beneficial effects of exercise training on autoimmunity, and specifically on multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, it is unknown whether different training paradigms affect disease course via shared or separate mechanisms.


Bovine epizootic encephalomyelitis caused by Akabane virus in southern Japan.

  • Ryota Kono‎ et al.
  • BMC veterinary research‎
  • 2008‎

Akabane virus is a member of the genus Orthobunyavirus in the family Bunyaviridae. It is transmitted by hematophagous arthropod vectors such as Culicoides biting midges and is widely distributed in temperate to tropical regions of the world. The virus is well known as a teratogenic pathogen which causes abortions, stillbirths, premature births and congenital abnormalities with arthrogryposis-hydranencephaly syndrome in cattle, sheep and goats. On the other hand, it is reported that the virus rarely induces encephalomyelitis in cattle by postnatal infection. A first large-scale epidemic of Akabane viral encephalomyelitis in cattle occurred in the southern part of Japan from summer to autumn in 2006. The aim of this study is to define the epidemiological, pathological and virological properties of the disease.


Enlargement of cerebral ventricles as an early indicator of encephalomyelitis.

  • Stefano Lepore‎ et al.
  • PloS one‎
  • 2013‎

Inflammatory disorders of the central nervous system such as multiple sclerosis and acute disseminated encephalomyelitis involve an invasion of immune cells that ultimately leads to white matter demyelination, neurodegeneration and development of neurological symptoms. A clinical diagnosis is often made when neurodegenerative processes are already ongoing. In an attempt to seek early indicators of disease, we studied the temporal and spatial distribution of brain modifications in experimental autoimmune encephalomyelitis (EAE). In a thorough magnetic resonance imaging study performed with EAE mice, we observed significant enlargement of the ventricles prior to disease clinical manifestation and an increase in free water content within the cerebrospinal fluid as demonstrated by changes in T2 relaxation times. The increase in ventricle size was seen in the lateral, third and fourth ventricles. In some EAE mice the ventricle size started returning to normal values during disease remission. In parallel to this macroscopic phenomenon, we studied the temporal evolution of microscopic lesions commonly observed in the cerebellum also starting prior to disease onset. Our data suggest that changes in ventricle size during the early stages of brain inflammation could be an early indicator of the events preceding neurological disease and warrant further exploration in preclinical and clinical studies.


Prevention and treatment of experimental autoimmune encephalomyelitis by soluble CD83.

  • Elisabeth Zinser‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

CD83 is up-regulated on the surface of dendritic cells (DCs) during maturation and has been widely used as a marker for mature DCs. Recently, we reported the recombinant expression of the extracellular immunoglobulin domain of human CD83 (hCD83ext). Using this soluble form of CD83, allogeneic as well as specific cytotoxic T lymphocyte proliferation could be blocked in vitro. Here we report the functional analysis of soluble CD83 in vivo, using murine experimental autoimmune encephalomyelitis (EAE) as a model. Strikingly, only three injections of soluble CD83 prevented the paralysis associated with EAE almost completely. In addition, even when the EAE was induced a second time, CD83-treated mice were protected, indicating a long-lasting suppressive effect. Furthermore, soluble CD83 strongly reduced the paralysis in different therapeutic settings. Most important, even when the treatment was delayed until the disease symptoms were fully established, soluble CD83 clearly reduced the paralyses. In addition, also when EAE was induced a second time, soluble CD83-treated animals showed reduced disease symptoms. Finally, hCD83ext treatment almost completely reduced leukocyte infiltration in the brain and in the spinal cord. In summary, this work strongly supports an immunosuppressive role of soluble CD83, thereby indicating its therapeutic potential in the regulation of immune disorders in vivo.


Treatment with Vitamin D/MOG Association Suppresses Experimental Autoimmune Encephalomyelitis.

  • Fernanda Chiuso-Minicucci‎ et al.
  • PloS one‎
  • 2015‎

Experimental autoimmune encephalomyelitis (EAE) is an animal model to study multiple sclerosis (MS). Considering the tolerogenic effects of active vitamin D, we evaluated the therapeutic effect of myelin oligodendrocyte glycoprotein (MOG) associated with active vitamin D in EAE development. EAE was induced in female C57BL/6 mice by immunization with MOG emulsified with Complete Freund's Adjuvant plus Mycobacterium tuberculosis. Animals also received two intraperitoneal doses of Bordetella pertussis toxin. One day after immunization, mice were treated with 0,1 μg of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) every other day during 15 days (on days 1, 3, 5, 7, 9, 11, 13 and 15). MOG (150 μg) was co-administered on days 3 and 11. The administration of 1,25(OH)2D3 or MOG determined significant reduction in EAE incidence and in clinical scores. When MOG was associated with 1,25(OH)2D3 the animals did not develop EAE. Spleen and central nervous system (CNS) cell cultures from this group produced less IL-6 and IL-17 upon stimulation with MOG in comparison to the EAE control group. In addition, this treatment inhibited dendritic cells maturation in the spleen and reduced inflammatory infiltration in the CNS. The association of MOG with 1,25(OH)2D3 was able to control EAE development.


Targeting Non-classical Myelin Epitopes to Treat Experimental Autoimmune Encephalomyelitis.

  • Xiaohua Wang‎ et al.
  • Scientific reports‎
  • 2016‎

Qa-1 epitopes, the peptides that bind to non-classical major histocompatibility complex Ib Qa-1 molecules and are recognized by Qa-1-restricted CD8+ regulatory T (Treg) cells, have been identified in pathogenic autoimmune cells that attack myelin sheath in experimental autoimmune encephalomyelitis (EAE, an animal model for multiple sclerosis [MS]). Additionally, immunization with such epitopes ameliorates the EAE. However, identification of such epitopes requires knowledge of the pathogenic autoimmune cells which are largely unknown in MS patients. Hence, we asked whether the CD8+ Treg cells could directly target the myelin sheath to ameliorate EAE. To address this question, we analyzed Qa-1 epitopes in myelin oligodendrocyte glycoprotein (MOG that is a protein in myelin sheath). Here, we report identification of a MOG-specific Qa-1 epitope. Immunization with this epitope suppressed ongoing EAE, which was abrogated by CD8+ T cell depletion. Additionally, the epitope immunization activated the epitope-specific CD8+ T cells which specifically accumulated in the CNS-draining cervical lymph nodes. Finally, CD8+ T cells primed by the epitope immunization transferred EAE suppression. Hence, this study reveals a novel regulatory mechanism mediated by the CD8+ Treg cells. We propose that immunization with myelin-specific HLA-E epitopes (human homologues of Qa-1 epitopes) is a promising therapy for MS.


Endogenously regulated Dab2 worsens inflammatory injury in experimental autoimmune encephalomyelitis.

  • Vilija G Jokubaitis‎ et al.
  • Acta neuropathologica communications‎
  • 2013‎

Neuroinflammation regulates both disease pathogenesis and repair in multiple sclerosis. In early multiple sclerosis lesion development, neuroinflammation causes demyelination and axonal injury, the likely final common determinant of disability. Here we report the identification of a novel neuroinflammatory mediator, Disabled-2 (Dab2). Dab2 is an intracellular adaptor protein with previously unknown function in the central nervous system.


Experimental autoimmune encephalomyelitis induction in peptidylarginine deiminase 2 knockout mice.

  • Reinout Raijmakers‎ et al.
  • The Journal of comparative neurology‎
  • 2006‎

During the development of multiple sclerosis the destruction of the myelin sheath surrounding the neurites is accompanied by citrullination of several central nervous system (CNS) proteins, including myelin basic protein and glial fibrillary acidic protein. In experimental autoimmune encephalomyelitis (EAE), a disease induced in animals by immunization with proteins or peptides from the CNS, the animals develop symptoms similar to multiple sclerosis (MS). The increased levels of citrullinated CNS proteins associated with MS are also observed during the development of EAE. To study the role of CNS protein citrullination in EAE development, we induced EAE with a peptide derived from myelin oligodendrocyte glycoprotein (MOG(35-55)) in mice lacking the peptidylarginine deiminase 2 (PAD2) protein, because this enzyme was the most likely candidate to be involved in catalyzing CNS protein citrullination in the diseased state. Even though the PAD2 knockout mice displayed a dramatic reduction in the amount of citrullination present in the CNS, indicating that PAD2 is indeed responsible for the majority of detectable citrullination observed in EAE, the development of EAE was not impaired by genetic deletion of PAD2, suggesting that PAD2 catalyzed citrullination is not essential to the development of EAE.


Cell-Based Blood Biomarkers for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.

  • Daniel Missailidis‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a devastating illness whose biomedical basis is now beginning to be elucidated. We reported previously that, after recovery from frozen storage, lymphocytes (peripheral blood mononuclear cells, PBMCs) from ME/CFS patients die faster in culture medium than those from healthy controls. We also found that lymphoblastoid cell lines (lymphoblasts) derived from these PBMCs exhibit multiple abnormalities in mitochondrial respiratory function and signalling activity by the cellular stress-sensing kinase Target Of Rapamycin Complex 1 (TORC1). These differences were correlated with disease severity, as measured by the Richardson and Lidbury weighted standing test. The clarity of the differences between these cells derived from ME/CFS patient blood and those from healthy controls suggested that they may provide useful biomarkers for ME/CFS. Here, we report a preliminary investigation into that possibility using a variety of analytical classification tools, including linear discriminant analysis, logistic regression and receiver operating characteristic (ROC) curve analysis. We found that results from three different tests-lymphocyte death rate, mitochondrial respiratory function and TORC1 activity-could each individually serve as a biomarker with better than 90% sensitivity but only modest specificity vís a vís healthy controls. However, in combination, they provided a cell-based biomarker with sensitivity and specificity approaching 100% in our sample. This level of sensitivity and specificity was almost equalled by a suggested protocol in which the frozen lymphocyte death rate was used as a highly sensitive test to triage positive samples to the more time consuming and expensive tests measuring lymphoblast respiratory function and TORC1 activity. This protocol provides a promising biomarker that could assist in more rapid and accurate diagnosis of ME/CFS.


Quantitative analysis of spinal cord neuropathology in experimental autoimmune encephalomyelitis.

  • Emily Wuerch‎ et al.
  • Journal of neuroimmunology‎
  • 2022‎

Multiple sclerosis is an inflammatory and neurodegenerative condition that is frequently modeled using experimental autoimmune encephalomyelitis (EAE). Current methods of EAE histology include imprecise qualitative assessments and time-consuming analyses of selected regions. With increasing interest in neuroprotective or reparative therapies, it is important that potential therapeutics are evaluated in EAE through quantitative neuropathology. We describe a quantitative whole slide imaging immunofluorescence method that allows longitudinal sections of the entire EAE thoracic spinal cord to be investigated for the extent of neuroinflammation, axonal loss, and myelin density. This method should impact MS research by making histological comparisons of EAE increasingly robust.


Deep phenotyping of post-infectious myalgic encephalomyelitis/chronic fatigue syndrome.

  • Brian Walitt‎ et al.
  • Nature communications‎
  • 2024‎

Post-infectious myalgic encephalomyelitis/chronic fatigue syndrome (PI-ME/CFS) is a disabling disorder, yet the clinical phenotype is poorly defined, the pathophysiology is unknown, and no disease-modifying treatments are available. We used rigorous criteria to recruit PI-ME/CFS participants with matched controls to conduct deep phenotyping. Among the many physical and cognitive complaints, one defining feature of PI-ME/CFS was an alteration of effort preference, rather than physical or central fatigue, due to dysfunction of integrative brain regions potentially associated with central catechol pathway dysregulation, with consequences on autonomic functioning and physical conditioning. Immune profiling suggested chronic antigenic stimulation with increase in naïve and decrease in switched memory B-cells. Alterations in gene expression profiles of peripheral blood mononuclear cells and metabolic pathways were consistent with cellular phenotypic studies and demonstrated differences according to sex. Together these clinical abnormalities and biomarker differences provide unique insight into the underlying pathophysiology of PI-ME/CFS, which may guide future intervention.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: