Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 147 papers

Procarbazine, CCNU and vincristine (PCV) versus temozolomide chemotherapy for patients with low-grade glioma: a systematic review.

  • Karim Hafazalla‎ et al.
  • Oncotarget‎
  • 2018‎

Low-grade gliomas (LGG) encompass a heterogeneous group of tumors that are clinically, histologically and molecularly diverse. Treatment decisions for patients with LGG are directed toward improving upon the natural history while limiting treatment-associated toxiceffects. Recent evidence has documented a utility for adjuvant chemotherapy with procarbazine, CCNU (lomustine), and vincristine (PCV) or temozolomide (TMZ). We sought to determine the comparative utility of PCV and TMZ for patients with LGG, particularly in context of molecular subtype. A literature search of PubMed was conducted to identify studies reporting patient response to PCV, TMZ, or a combination of chemotherapy and radiation therapy (RT). Eligibility criteria included patients 16 years of age and older, notation of LGG subtype, and report of progression-free survival (PFS), overall survival (OS), and treatment course. Level I, II, and III data were included. Adjuvant therapy with PCV resulted in prolonged PFS and OS in patients with newly diagnosed high-risk LGG. This benefit was accrued most significantly by patients with tumors harboring 1p/19q codeletion and IDH1 mutation. Adjuvant therapy with temozolomide was associated with lower toxicity than therapy with PCV. In patients with LGG with an unfavorable natural history, such as with intact 1p/19q and wild-type IDH1, RT/TMZ plus adjuvant TMZ may be the best option. Patients with biologically favorable high-risk LGG are likely to derive the most benefit from RT and adjuvant PCV.


RPRD1A and RPRD1B are human RNA polymerase II C-terminal domain scaffolds for Ser5 dephosphorylation.

  • Zuyao Ni‎ et al.
  • Nature structural & molecular biology‎
  • 2014‎

The RNA polymerase II (RNAPII) C-terminal domain (CTD) heptapeptide repeats (1-YSPTSPS-7) undergo dynamic phosphorylation and dephosphorylation during the transcription cycle to recruit factors that regulate transcription, RNA processing and chromatin modification. We show here that RPRD1A and RPRD1B form homodimers and heterodimers through their coiled-coil domains and interact preferentially via CTD-interaction domains (CIDs) with RNAPII CTD repeats phosphorylated at S2 and S7. Crystal structures of the RPRD1A, RPRD1B and RPRD2 CIDs, alone and in complex with RNAPII CTD phosphoisoforms, elucidate the molecular basis of CTD recognition. In an example of cross-talk between different CTD modifications, our data also indicate that RPRD1A and RPRD1B associate directly with RPAP2 phosphatase and, by interacting with CTD repeats where phospho-S2 and/or phospho-S7 bracket a phospho-S5 residue, serve as CTD scaffolds to coordinate the dephosphorylation of phospho-S5 by RPAP2.


The second round of Critical Assessment of Automated Structure Determination of Proteins by NMR: CASD-NMR-2013.

  • Antonio Rosato‎ et al.
  • Journal of biomolecular NMR‎
  • 2015‎

The second round of the community-wide initiative Critical Assessment of automated Structure Determination of Proteins by NMR (CASD-NMR-2013) comprised ten blind target datasets, consisting of unprocessed spectral data, assigned chemical shift lists and unassigned NOESY peak and RDC lists, that were made available in both curated (i.e. manually refined) or un-curated (i.e. automatically generated) form. Ten structure calculation programs, using fully automated protocols only, generated a total of 164 three-dimensional structures (entries) for the ten targets, sometimes using both curated and un-curated lists to generate multiple entries for a single target. The accuracy of the entries could be established by comparing them to the corresponding manually solved structure of each target, which was not available at the time the data were provided. Across the entire data set, 71 % of all entries submitted achieved an accuracy relative to the reference NMR structure better than 1.5 Å. Methods based on NOESY peak lists achieved even better results with up to 100% of the entries within the 1.5 Å threshold for some programs. However, some methods did not converge for some targets using un-curated NOESY peak lists. Over 90% of the entries achieved an accuracy better than the more relaxed threshold of 2.5 Å that was used in the previous CASD-NMR-2010 round. Comparisons between entries generated with un-curated versus curated peaks show only marginal improvements for the latter in those cases where both calculations converged.


Structural and functional characterization of DUF1471 domains of Salmonella proteins SrfN, YdgH/SssB, and YahO.

  • Alexander Eletsky‎ et al.
  • PloS one‎
  • 2014‎

Bacterial species in the Enterobacteriaceae typically contain multiple paralogues of a small domain of unknown function (DUF1471) from a family of conserved proteins also known as YhcN or BhsA/McbA. Proteins containing DUF1471 may have a single or three copies of this domain. Representatives of this family have been demonstrated to play roles in several cellular processes including stress response, biofilm formation, and pathogenesis. We have conducted NMR and X-ray crystallographic studies of four DUF1471 domains from Salmonella representing three different paralogous DUF1471 subfamilies: SrfN, YahO, and SssB/YdgH (two of its three DUF1471 domains: the N-terminal domain I (residues 21-91), and the C-terminal domain III (residues 244-314)). Notably, SrfN has been shown to have a role in intracellular infection by Salmonella Typhimurium. These domains share less than 35% pairwise sequence identity. Structures of all four domains show a mixed α+β fold that is most similar to that of bacterial lipoprotein RcsF. However, all four DUF1471 sequences lack the redox sensitive cysteine residues essential for RcsF activity in a phospho-relay pathway, suggesting that DUF1471 domains perform a different function(s). SrfN forms a dimer in contrast to YahO and SssB domains I and III, which are monomers in solution. A putative binding site for oxyanions such as phosphate and sulfate was identified in SrfN, and an interaction between the SrfN dimer and sulfated polysaccharides was demonstrated, suggesting a direct role for this DUF1471 domain at the host-pathogen interface.


Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors.

  • Jonathon Torchia‎ et al.
  • Cancer cell‎
  • 2016‎

We recently reported that atypical teratoid rhabdoid tumors (ATRTs) comprise at least two transcriptional subtypes with different clinical outcomes; however, the mechanisms underlying therapeutic heterogeneity remained unclear. In this study, we analyzed 191 primary ATRTs and 10 ATRT cell lines to define the genomic and epigenomic landscape of ATRTs and identify subgroup-specific therapeutic targets. We found ATRTs segregated into three epigenetic subgroups with distinct genomic profiles, SMARCB1 genotypes, and chromatin landscape that correlated with differential cellular responses to a panel of signaling and epigenetic inhibitors. Significantly, we discovered that differential methylation of a PDGFRB-associated enhancer confers specific sensitivity of group 2 ATRT cells to dasatinib and nilotinib, and suggest that these are promising therapies for this highly lethal ATRT subtype.


Integrative Analysis of Microarray Data to Reveal Regulation Patterns in the Pathogenesis of Hepatocellular Carcinoma.

  • Juan Chen‎ et al.
  • Gut and liver‎
  • 2017‎

The integration of multiple profiling data and the construction of a transcriptional regulatory network may provide additional insights into the molecular mechanisms of hepatocellular carcinoma (HCC). The present study was conducted to investigate the deregulation of genes and the transcriptional regulatory network in HCC.


Diverse modes of galacto-specific carbohydrate recognition by a family 31 glycoside hydrolase from Clostridium perfringens.

  • Julie M Grondin‎ et al.
  • PloS one‎
  • 2017‎

Clostridium perfringens is a commensal member of the human gut microbiome and an opportunistic pathogen whose genome encodes a suite of putative large, multi-modular carbohydrate-active enzymes that appears to play a role in the interaction of the bacterium with mucin-based carbohydrates. Among the most complex of these is an enzyme that contains a presumed catalytic module belonging to glycoside hydrolase family 31 (GH31). This large enzyme, which based on its possession of a GH31 module is a predicted α-glucosidase, contains a variety of non-catalytic ancillary modules, including three CBM32 modules that to date have not been characterized. NMR-based experiments demonstrated a preference of each module for galacto-configured sugars, including the ability of all three CBM32s to recognize the common mucin monosaccharide GalNAc. X-ray crystal structures of the CpGH31 CBM32s, both in apo form and bound to GalNAc, revealed the finely-tuned molecular strategies employed by these sequentially variable CBM32s in coordinating a common ligand. The data highlight that sequence similarities to previously characterized CBMs alone are insufficient for identifying the molecular mechanism of ligand binding by individual CBMs. Furthermore, the overlapping ligand binding profiles of the three CBMs provide a fail-safe mechanism for the recognition of GalNAc among the dense eukaryotic carbohydrate networks of the colonic mucosa. These findings expand our understanding of ligand targeting by large, multi-modular carbohydrate-active enzymes, and offer unique insights into of the expanding ligand-binding preferences and binding site topologies observed in CBM32s.


Transcriptional profiling of imbibed Brassica napus seed.

  • Fengling Li‎ et al.
  • Genomics‎
  • 2005‎

Using an Arabidopsis microarray, we compared gene expression between germinating Brassica napus seeds and seeds in which germination was inhibited either by polyethylene glycol (PEG) or by the abscisic acid (ABA) analog PBI429, which produces stronger and longer lasting ABA-like effects. A total of 40 genes were induced relative to the germinating control by both treatments. Conspicuous among these were genes associated with late seed development. We identified 36 genes that were downregulated by both PEG and PBI429. Functions of these genes included carbohydrate metabolism, cell wall-related processes, detoxification of reactive oxygen, and triacylglycerol breakdown. The PBI429 treatment produced an increase in endogenous ABA and increased ABA catabolism. However, PEG treatment did not result in similar effects. The transcription factor ABI5 was consistently upregulated by both treatments and PKL was downregulated. These results suggest a greater importance of ABA signaling and reduced importance of GA signaling in nongerminating seeds.


Small-molecule inhibition of MLL activity by disruption of its interaction with WDR5.

  • Guillermo Senisterra‎ et al.
  • The Biochemical journal‎
  • 2013‎

WDR5 (WD40 repeat protein 5) is an essential component of the human trithorax-like family of SET1 [Su(var)3-9 enhancer-of-zeste trithorax 1] methyltransferase complexes that carry out trimethylation of histone 3 Lys4 (H3K4me3), play key roles in development and are abnormally expressed in many cancers. In the present study, we show that the interaction between WDR5 and peptides from the catalytic domain of MLL (mixed-lineage leukaemia protein) (KMT2) can be antagonized with a small molecule. Structural and biophysical analysis show that this antagonist binds in the WDR5 peptide-binding pocket with a Kd of 450 nM and inhibits the catalytic activity of the MLL core complex in vitro. The degree of inhibition was enhanced at lower protein concentrations consistent with a role for WDR5 in directly stabilizing the MLL multiprotein complex. Our data demonstrate inhibition of an important protein-protein interaction and form the basis for further development of inhibitors of WDR5-dependent enzymes implicated in MLL-rearranged leukaemias or other cancers.


Histone recognition by human malignant brain tumor domains.

  • Nataliya Nady‎ et al.
  • Journal of molecular biology‎
  • 2012‎

Histone methylation has emerged as an important covalent modification involved in a variety of biological processes, especially regulation of transcription and chromatin dynamics. Lysine methylation is found in three distinct states (monomethylation, dimethylation and trimethylation), which are recognized by specific protein domains. The malignant brain tumor (MBT) domain is one such module found in several chromatin regulatory complexes including Polycomb repressive complex 1. Here, we present a comprehensive characterization of the human MBT family with emphasis on histone binding specificity. SPOT-blot peptide arrays were used to screen for the methyllysine-containing histone peptides that bind to MBT domains found in nine human proteins. Selected interactions were quantified using fluorescence polarization assays. We show that all MBT proteins recognize only monomethyllysine and/or dimethyllysine marks and provide evidence that some MBT domains recognize a defined consensus sequence while others bind in a promiscuous, non-sequence-specific manner. Furthermore, using structure-based mutants, we identify a triad of residues in the methyllysine binding pocket that imparts discrimination between monomethyllysine and dimethyllysine. This study represents a comprehensive analysis of MBT substrate specificity, establishing a foundation for the rational design of selective MBT domain inhibitors that may enable elucidation of their role in human biology and disease.


An allosteric inhibitor of protein arginine methyltransferase 3.

  • Alena Siarheyeva‎ et al.
  • Structure (London, England : 1993)‎
  • 2012‎

PRMT3, a protein arginine methyltransferase, has been shown to influence ribosomal biosynthesis by catalyzing the dimethylation of the 40S ribosomal protein S2. Although PRMT3 has been reported to be a cytosolic protein, it has been shown to methylate histone H4 peptide (H4 1-24) in vitro. Here, we report the identification of a PRMT3 inhibitor (1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexenylethyl)urea; compound 1) with IC50 value of 2.5 μM by screening a library of 16,000 compounds using H4 (1-24) peptide as a substrate. The crystal structure of PRMT3 in complex with compound 1 as well as kinetic analysis reveals an allosteric mechanism of inhibition. Mutating PRMT3 residues within the allosteric site or using compound 1 analogs that disrupt interactions with allosteric site residues both abrogated binding and inhibitory activity. These data demonstrate an allosteric mechanism for inhibition of protein arginine methyltransferases, an emerging class of therapeutic targets.


A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells.

  • Masoud Vedadi‎ et al.
  • Nature chemical biology‎
  • 2011‎

Protein lysine methyltransferases G9a and GLP modulate the transcriptional repression of a variety of genes via dimethylation of Lys9 on histone H3 (H3K9me2) as well as dimethylation of non-histone targets. Here we report the discovery of UNC0638, an inhibitor of G9a and GLP with excellent potency and selectivity over a wide range of epigenetic and non-epigenetic targets. UNC0638 treatment of a variety of cell lines resulted in lower global H3K9me2 levels, equivalent to levels observed for small hairpin RNA knockdown of G9a and GLP with the functional potency of UNC0638 being well separated from its toxicity. UNC0638 markedly reduced the clonogenicity of MCF7 cells, reduced the abundance of H3K9me2 marks at promoters of known G9a-regulated endogenous genes and disproportionately affected several genomic loci encoding microRNAs. In mouse embryonic stem cells, UNC0638 reactivated G9a-silenced genes and a retroviral reporter gene in a concentration-dependent manner without promoting differentiation.


Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain.

  • Lindsey I James‎ et al.
  • Nature chemical biology‎
  • 2013‎

We describe the discovery of UNC1215, a potent and selective chemical probe for the methyllysine (Kme) reading function of L3MBTL3, a member of the malignant brain tumor (MBT) family of chromatin-interacting transcriptional repressors. UNC1215 binds L3MBTL3 with a K(d) of 120 nM, competitively displacing mono- or dimethyllysine-containing peptides, and is greater than 50-fold more potent toward L3MBTL3 than other members of the MBT family while also demonstrating selectivity against more than 200 other reader domains examined. X-ray crystallography identified a unique 2:2 polyvalent mode of interaction between UNC1215 and L3MBTL3. In cells, UNC1215 is nontoxic and directly binds L3MBTL3 via the Kme-binding pocket of the MBT domains. UNC1215 increases the cellular mobility of GFP-L3MBTL3 fusion proteins, and point mutants that disrupt the Kme-binding function of GFP-L3MBTL3 phenocopy the effects of UNC1215 on localization. Finally, UNC1215 was used to reveal a new Kme-dependent interaction of L3MBTL3 with BCLAF1, a protein implicated in DNA damage repair and apoptosis.


A cell permeable peptide inhibitor of NFAT inhibits macrophage cytokine expression and ameliorates experimental colitis.

  • Houda Z Elloumi‎ et al.
  • PloS one‎
  • 2012‎

Nuclear factor of activated T cells (NFAT) plays a critical role in the development and function of immune and non-immune cells. Although NFAT is a central transcriptional regulator of T cell cytokines, its role in macrophage specific gene expression is less defined. Previous work from our group demonstrated that NFAT regulates Il12b gene expression in macrophages. Here, we further investigate NFAT function in murine macrophages and determined the effects of a cell permeable NFAT inhibitor peptide 11R-VIVIT on experimental colitis in mice. Treatment of bone marrow derived macrophages (BMDMs) with tacrolimus or 11R-VIVIT significantly inhibited LPS and LPS plus IFN-γ induced IL-12 p40 mRNA and protein expression. IL-12 p70 and IL-23 secretion were also decreased. NFAT nuclear translocation and binding to the IL-12 p40 promoter was reduced by NFAT inhibition. Experiments in BMDMs from IL-10 deficient (Il10(-/-)) mice demonstrate that inhibition of IL-12 expression by 11R-VIVIT was independent of IL-10 expression. To test its therapeutic potential, 11R-VIVIT was administered systemically to Il10(-/-) mice with piroxicam-induced colitis. 11R-VIVIT treated mice demonstrated significant improvement in colitis compared to mice treated with an inactive peptide. Moreover, decreased spontaneous secretion of IL-12 p40 and TNF in supernatants from colon explant cultures was demonstrated. In summary, NFAT, widely recognized for its role in T cell biology, also regulates important innate inflammatory pathways in macrophages. Selective blocking of NFAT via a cell permeable inhibitory peptide is a promising therapeutic strategy for the treatment of inflammatory bowel diseases.


An unusual mode of galactose recognition by a family 32 carbohydrate-binding module.

  • Julie M Grondin‎ et al.
  • Journal of molecular biology‎
  • 2014‎

Carbohydrate-binding modules (CBMs) are ancillary modules commonly associated with carbohydrate-active enzymes (CAZymes) that function to mediate the adherence of the parent enzyme to its carbohydrate substrates. CBM family 32 (CBM32) is one of the most diverse CBM families, whose members are commonly found in bacterial CAZymes that modify eukaryotic glycans. One such example is the putative μ-toxin, CpGH84A, of the family 84 glycoside hydrolases, which comprises an N-terminal putative β-N-acetylglucosaminidase catalytic module and four tandem CBM32s. Here, we report a unique mode of galactose recognition by the first CBM32, CBM32-1 from CpGH84A. Solution NMR-based analyses of CpGH84A CBM32-1 indicate a divergent subset of residues, located in ordered loops at the apex of the CBM, conferring specificity for the galacto-configured sugars galactose, GalNAc, and LacNAc that differs from those of the canonical galactose-binding CBM32s. This study showcases the impressive variability in ligand binding by this CBM family and offers insight into the growing role of these modules in the interaction of CAZymes with eukaryotic glycans.


Conformational dynamics of the TTD-PHD histone reader module of the UHRF1 epigenetic regulator reveals multiple histone-binding states, allosteric regulation, and druggability.

  • R Scott Houliston‎ et al.
  • The Journal of biological chemistry‎
  • 2017‎

UHRF1 is a key mediator of inheritance of epigenetic DNA methylation patterns during cell division and is a putative target for cancer therapy. Recent studies indicate that interdomain interactions critically influence UHRF1's chromatin-binding properties, including allosteric regulation of its histone binding. Here, using an integrative approach that combines small angle X-ray scattering, NMR spectroscopy, and molecular dynamics simulations, we characterized the dynamics of the tandem tudor domain-plant homeodomain (TTD-PHD) histone reader module, including its 20-residue interdomain linker. We found that the apo TTD-PHD module in solution comprises a dynamic ensemble of conformers, approximately half of which are compact conformations, with the linker lying in the TTD peptide-binding groove. These compact conformations are amenable to cooperative, high-affinity histone binding. In the remaining conformations, the linker position was in flux, and the reader adopted both extended and compact states. Using a small-molecule fragment screening approach, we identified a compound, 4-benzylpiperidine-1-carboximidamide, that binds to the TTD groove, competes with linker binding, and promotes open TTD-PHD conformations that are less efficient at H3K9me3 binding. Our work reveals a mechanism by which the dynamic TTD-PHD module can be allosterically targeted with small molecules to modulate its histone reader function for therapeutic or experimental purposes.


The RNF168 paralog RNF169 defines a new class of ubiquitylated histone reader involved in the response to DNA damage.

  • Julianne Kitevski-LeBlanc‎ et al.
  • eLife‎
  • 2017‎

Site-specific histone ubiquitylation plays a central role in orchestrating the response to DNA double-strand breaks (DSBs). DSBs elicit a cascade of events controlled by the ubiquitin ligase RNF168, which promotes the accumulation of repair factors such as 53BP1 and BRCA1 on the chromatin flanking the break site. RNF168 also promotes its own accumulation, and that of its paralog RNF169, but how they recognize ubiquitylated chromatin is unknown. Using methyl-TROSY solution NMR spectroscopy and molecular dynamics simulations, we present an atomic resolution model of human RNF169 binding to a ubiquitylated nucleosome, and validate it by electron cryomicroscopy. We establish that RNF169 binds to ubiquitylated H2A-Lys13/Lys15 in a manner that involves its canonical ubiquitin-binding helix and a pair of arginine-rich motifs that interact with the nucleosome acidic patch. This three-pronged interaction mechanism is distinct from that by which 53BP1 binds to ubiquitylated H2A-Lys15 highlighting the diversity in site-specific recognition of ubiquitylated nucleosomes.


Glioma consensus contouring recommendations from a MR-Linac International Consortium Research Group and evaluation of a CT-MRI and MRI-only workflow.

  • Chia-Lin Tseng‎ et al.
  • Journal of neuro-oncology‎
  • 2020‎

This study proposes contouring recommendations for radiation treatment planning target volumes and organs-at-risk (OARs) for both low grade and high grade gliomas.


Huntingtin structure is orchestrated by HAP40 and shows a polyglutamine expansion-specific interaction with exon 1.

  • Rachel J Harding‎ et al.
  • Communications biology‎
  • 2021‎

Huntington's disease results from expansion of a glutamine-coding CAG tract in the huntingtin (HTT) gene, producing an aberrantly functioning form of HTT. Both wildtype and disease-state HTT form a hetero-dimer with HAP40 of unknown functional relevance. We demonstrate in vivo and in cell models that HTT and HAP40 cellular abundance are coupled. Integrating data from a 2.6 Å cryo-electron microscopy structure, cross-linking mass spectrometry, small-angle X-ray scattering, and modeling, we provide a near-atomic-level view of HTT, its molecular interaction surfaces and compacted domain architecture, orchestrated by HAP40. Native mass spectrometry reveals a remarkably stable hetero-dimer, potentially explaining the cellular inter-dependence of HTT and HAP40. The exon 1 region of HTT is dynamic but shows greater conformational variety in the polyglutamine expanded mutant than wildtype exon 1. Our data provide a foundation for future functional and drug discovery studies targeting Huntington's disease and illuminate the structural consequences of HTT polyglutamine expansion.


PRMT5 inhibition disrupts splicing and stemness in glioblastoma.

  • Patty Sachamitr‎ et al.
  • Nature communications‎
  • 2021‎

Glioblastoma (GBM) is a deadly cancer in which cancer stem cells (CSCs) sustain tumor growth and contribute to therapeutic resistance. Protein arginine methyltransferase 5 (PRMT5) has recently emerged as a promising target in GBM. Using two orthogonal-acting inhibitors of PRMT5 (GSK591 or LLY-283), we show that pharmacological inhibition of PRMT5 suppresses the growth of a cohort of 46 patient-derived GBM stem cell cultures, with the proneural subtype showing greater sensitivity. We show that PRMT5 inhibition causes widespread disruption of splicing across the transcriptome, particularly affecting cell cycle gene products. We identify a GBM splicing signature that correlates with the degree of response to PRMT5 inhibition. Importantly, we demonstrate that LLY-283 is brain-penetrant and significantly prolongs the survival of mice with orthotopic patient-derived xenografts. Collectively, our findings provide a rationale for the clinical development of brain penetrant PRMT5 inhibitors as treatment for GBM.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: