Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 284 papers

A circular RNA derived from MMP9 facilitates oral squamous cell carcinoma metastasis through regulation of MMP9 mRNA stability.

  • Bing Xia‎ et al.
  • Cell transplantation‎
  • 2019‎

Emerging evidence demonstrates that dysregulation of circular RNA is linked to tumorigenesis and aggressive progression. However, its role in oral squamous cell carcinoma remains largely uncharacterized. In this study, we identified a novel metastasis-associated circular RNA, circular matrix metalloproteinase 9 (hsa_circ_0001162, a circular RNA derived from matrix metalloproteinase 9), which was remarkably upregulated in oral squamous cell carcinoma and positively correlated with matrix metalloproteinase 9 expression. Patients with high circular matrix metalloproteinase 9 expression were prone to lymph node metastasis and an advanced TNM stage. Importantly, circular matrix metalloproteinase 9 was identified as an efficacious diagnostic and prognostic biomarker for oral squamous cell carcinoma patients. Functional experiments showed that depletion of circular matrix metalloproteinase 9 weakened the migratory and invasive capabilities of oral squamous cell carcinoma cells in vitro as well as inhibited lung metastasis in vivo. Regarding the mechanism, circular matrix metalloproteinase 9 could simultaneously interact with AUF1 and miR-149 to block the inhibitory effect of AUF1 and miR-149 on matrix metalloproteinase 9 3'-untranslated region, resulting in enhanced matrix metalloproteinase 9 messenger RNA stability, thereby facilitating oral squamous cell carcinoma metastasis. Collectively, our data indicate that circular matrix metalloproteinase 9 acts as a metastasis-promoting gene in oral squamous cell carcinoma through regulating the messenger RNA stability of its parental gene. Therapeutic targeting of circular matrix metalloproteinase 9 may be a promising treatment intervention for metastatic oral squamous cell carcinoma patients.


Mode-Dependent Effect of Xenon Inhalation on Kainic Acid-Induced Status Epilepticus in Rats.

  • Yurong Zhang‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2019‎

Previous studies have reported the possible neuroprotective effects of xenon treatment. The purpose of this study was to define the range of effective xenon ratio, most effective xenon ratio, and time-window for intervention in the kainic acid (KA) - induced status epilepticus (SE) rat model. Different ratios of xenon (35% xenon, 21% oxygen, 44% nitrogen, 50% xenon, 21% oxygen, 29% nitrogen, 70% xenon, 21% oxygen, and 9% nitrogen) were used to treat the KA-induced SE. Our results confirmed the anti-seizure role of 50 and 70% xenon mixture, with a stronger effect from the latter. Further, 70% xenon mixture was dispensed at three time points (0 min, 15 min delayed, and 30 min delayed) after KA administration, and the results indicated the anti-seizure effect at all treated time points. The results also established that the neuronal injury in the hippocampus and entorhinal cortex (EC), assessed using Fluoro-Jade B (FJB) staining, were reversed by the xenon inhalation, and within 30 min after KA administration. Our study, therefore, indicates the appropriate effective xenon ratio and time-window for intervention that can depress seizures. The prevention of neuronal injury and further reversal of the loss of effective control of depress network in the hippocampus and EC may be the mechanisms underlying the anti-seizure effect of xenon.


Effects of sinomenine on the expression of microRNA-155 in 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice.

  • Qiao Yu‎ et al.
  • PloS one‎
  • 2013‎

Sinomenine, a pure alkaloid isolated in Chinese medicine from the root of Sinomenium acutum, has been demonstrated to have anti-inflammatory and immunosuppressive effects. MicroRNAs (miRNAs) are gradually being recognized as critical mediators of disease pathogenesis via coordinated regulation of molecular effector pathways.


Insights into the architecture of the eIF2Bα/β/δ regulatory subcomplex.

  • Andrew M Bogorad‎ et al.
  • Biochemistry‎
  • 2014‎

Eukaryotic translation initiation factor 2B (eIF2B), the guanine nucleotide exchange factor for the G-protein eIF2, is one of the main targets for the regulation of protein synthesis. The eIF2B activity is inhibited in response to a wide range of stress factors and diseases, including viral infections, hypoxia, nutrient starvation, and heme deficiency, collectively known as the integrated stress response. eIF2B has five subunits (α-ε). The α, β, and δ subunits are homologous to each other and form the eIF2B regulatory subcomplex, which is believed to be a trimer consisting of monomeric α, β, and δ subunits. Here we use a combination of biophysical methods, site-directed mutagenesis, and bioinformatics to show that the human eIF2Bα subunit is in fact a homodimer, at odds with the current trimeric model for the eIF2Bα/β/δ regulatory complex. eIF2Bα dimerizes using the same interface that is found in the homodimeric archaeal eIF2Bα/β/δ homolog aIF2B and related metabolic enzymes. We also present evidence that the eIF2Bβ/δ binding interface is similar to that in the eIF2Bα2 homodimer. Mutations at the predicted eIF2Bβ/δ dimer interface cause genetic neurological disorders in humans. We propose that the eIF2B regulatory subcomplex is an α2β2δ2 hexamer, composed of one α2 homodimer and two βδ heterodimers. Our results offer novel insights into the architecture of eIF2B and its interactions with the G-protein eIF2.


BRCA1 Haploinsufficiency Is Masked by RNF168-Mediated Chromatin Ubiquitylation.

  • Dali Zong‎ et al.
  • Molecular cell‎
  • 2019‎

BRCA1 functions at two distinct steps during homologous recombination (HR). Initially, it promotes DNA end resection, and subsequently it recruits the PALB2 and BRCA2 mediator complex, which stabilizes RAD51-DNA nucleoprotein filaments. Loss of 53BP1 rescues the HR defect in BRCA1-deficient cells by increasing resection, suggesting that BRCA1's downstream role in RAD51 loading is dispensable when 53BP1 is absent. Here we show that the E3 ubiquitin ligase RNF168, in addition to its canonical role in inhibiting end resection, acts in a redundant manner with BRCA1 to load PALB2 onto damaged DNA. Loss of RNF168 negates the synthetic rescue of BRCA1 deficiency by 53BP1 deletion, and it predisposes BRCA1 heterozygous mice to cancer. BRCA1+/-RNF168-/- cells lack RAD51 foci and are hypersensitive to PARP inhibitor, whereas forced targeting of PALB2 to DNA breaks in mutant cells circumvents BRCA1 haploinsufficiency. Inhibiting the chromatin ubiquitin pathway may, therefore, be a synthetic lethality strategy for BRCA1-deficient cancers.


Effects of a spiroketal compound Peniciketal A and its molecular mechanisms on growth inhibition in human leukemia.

  • Xue Gao‎ et al.
  • Toxicology and applied pharmacology‎
  • 2019‎

Peniciketal A (Pe-A), a spiroketal compound, is isolated from the saline soil-derived fungus Penicillium raistrickii. However, the underlying molecular mechanistic basis for the effects of Pe-A on leukemia is poorly understood. Here, we investigated that Pe-A reduced cell proliferation in three leukemia cell lines (THP-1, K562 and HL60). Importantly, Pe-A showed little cytotoxicity in primary mouse embryonic fibroblast (MEF) cells in a long-duration treatment. For the mechanistic research, we identified 3449 differentially expressed Pe-A-induced proteins through liquid chromatography-tandem mass spectrometry (LC-MS/MS) with TMT label in THP-1 cells. Results showed that many identified proteins were involved in apoptosis and/or autophagy. Then, we confirmed that Pe-A induced not only apoptosis via the mitochondrial pathway but also cytoprotective autophagy by activating the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway indeed. In addition, Pe-A also arrested the cell cycle at the G0-G1 phase by regulating the expressions of checkpoint protein. Collectively, these results provide new insights into the mechanisms that Pe-A may target autophagy-related or apoptosis-related pathways to suppress the development of human leukemia.


Phenotypic Heterogeneity in a DFNA20/26 family segregating a novel ACTG1 mutation.

  • Yongyi Yuan‎ et al.
  • BMC genetics‎
  • 2016‎

Genetic factors play an important role in hearing loss, contributing to approximately 60% of cases of congenital hearing loss. Autosomal dominant deafness accounts for approximately 20% of cases of hereditary hearing loss. Diseases with autosomal dominant inheritance often show pleiotropy, different degrees of penetrance, and variable expressivity.


HCV core protein binds to gC1qR to induce A20 expression and inhibit cytokine production through MAPKs and NF-κB signaling pathways.

  • Xiaotian Song‎ et al.
  • Oncotarget‎
  • 2016‎

Hepatitis C virus (HCV) infection is characterized by a strong propensity toward chronicity. During chronic HCV infection, HCV core protein is implicated in deregulating cytokine expression that associates with chronic inflammation. A20 is known as a powerful suppressor in cytokine signaling, in this study, we explored the A20 expression in macrophages induced by HCV core protein and the involved signaling pathways. Results demonstrated that HCV core protein induced A20 expression in macrophages. Silencing A20 significantly enhanced the secretion of IL-6, IL-1β and TGF-β1, but not IL-8 and TNF. Additionally, HCV core protein interacted with gC1qR, but not TLR2, TLR3 and TLR4 in pull-down assay. Silencing gC1qR abrogated core-induced A20 expression. Furthermore, HCV core protein activated MAPK, NF-κB and PI3K/AKT pathways in macrophages. Inhibition of P38, JNK and NF-κB but not ERK and AKT activities greatly reduced the A20 expression. In conclusion, the study suggests that HCV core protein ligates gC1qR to induce A20 expression in macrophages via P38, JNK and NF-κB signaling pathways, which leads to a low-grade chronic inflammation during HCV infection. It represents a novel mechanism by which HCV usurps the host for persistence.


Identification and Characterization of the Gene CYP340W1 from Plutella xylostella and Its Possible Involvement in Resistance to Abamectin.

  • Xue Gao‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Abamectin has been used to control the diamondback moth, Plutella xylostella (P. xylostella), which is a major agricultural pest that can rapidly develop resistance against insecticides including abamectin. Although cytochrome P450 has been confirmed to play an important role in resistance in P. xylostella, the specific P450 genes associated with the resistance are unclear. The full-length cDNA of the cytochrome P450 gene CYP340W1 was cloned and characterized in the present study. The cDNA assembly yielded a sequence of 1929 bp, containing the open reading frame (ORF) 1491 bp and encodes a 496-amino acid peptide. CYP340W1 was expressed in all P. xylostella developmental stages but its expression level was highest in larvae and especially in the heads of larvae. The expression of CYP340W1 was significantly higher in an abamectin-resistant strain (ABM-R) than in its susceptible counterpart (ABM-S). In addition, expression of CYP340W1 was increased when the ABM-R strain was exposed to abamectin. When injected into third-stage ABM-R larvae, CYP340W1 dsRNA significantly reduced CYP340W1 expression at 6 h and reduced expression by 83% at 12 h. As a consequence of RNAi, the mortality of the injected abamectin-resistant larvae increased after a 48-h exposure to abamectin. The results indicate that the overexpression of CYP340W1 plays an important role in abamectin resistance in P. xylostella.


c-Myc plays part in drug resistance mediated by bone marrow stromal cells in acute myeloid leukemia.

  • Bing Xia‎ et al.
  • Leukemia research‎
  • 2015‎

Acute myeloid leukemia (AML) is a malignant and aggressive disease not sensitive to chemotherapy. The dynamic interaction between AML cells and bone marrow (BM) microenvironment plays a critical role in response of this disease to chemotherapy. It is reported that mesenchymal stromal cells (MSC) are essential component of bone marrow microenvironment which affects the survival of AML cells. The aim of our research is to elucidate the mechanism of drug resistance of AML cells associated with MSC. We found that adhesion of AML cell lines U937, KG1a and primary AML cells to MSC inhibited cytotoxic drug-induced apoptosis. Western blot showed that c-Myc of AML cells cocultured with stroma was up-regulated. Treatment with 10058-F4, a small molecule inhibitor of MYC-MAX heterodimerization, or c-Myc siRNA significantly induced apoptosis. Western blot analysis further showed that inhibition of c-Myc induced expression of caspases-3, cleavage of PARP and reduced expression of Bcl-2, Bcl-xL and vascular endothelial growth factor (VEGF). Thus, we conclude that MSCs protected leukemia cells from apoptosis, at least in part, through c-Myc dependent mechanisms, and that c-Myc contributed to microenvironment-mediated drug resistance in AML. In summary, we declared that c-Myc is a potential therapeutic target for overcoming drug resistance in AML.


Quantitative assessment of short amplicons in FFPE-derived long-chain RNA.

  • Hui Kong‎ et al.
  • Scientific reports‎
  • 2014‎

Formalin-fixed paraffin-embedded (FFPE) tissues are important resources for molecular medical research. However, long-chain RNA analysis is restricted in FFPE tissues due to high levels of degradation. To explore the possibility of long RNA quantification in FFPE tissues, we selected 14 target RNAs (8 mRNAs and 6 long noncoding RNAs) from literatures, and designed short (~60 bp) and long (~200 bp) amplicons for each of them. Colorectal carcinomas with adjacent normal tissues were subjected to quantitative reverse-transcription PCR (quantitative RT-PCR) in 3 cohorts, including 18 snap-frozen and 83 FFPE tissues. We found that short amplicons were amplified more efficiently than long amplicons both in snap-frozen (P = 0.0006) and FFPE (P = 0.0152) tissues. Nonetheless, comparison of colorectal carcinomas with their adjacent normal tissues demonstrated that the consistency of fold-change trends in a single short amplicon between snap-frozen and FFPE tissues was only 36%. Therefore, we innovatively performed quantitative RT-PCR with 3 non-overlapping short amplicons for 14 target RNAs in FFPE tissues. All target RNAs showed a concordance of 100% of fold-change trends in at least two short amplicons, which offers sufficient information for accurate quantification of target RNAs. Our findings demonstrated the possibility of long-chain RNA analysis with 3 non-overlapping short amplicons in standardized-preserved FFPE tissues.


Novel compound heterozygous mutations in MYO7A Associated with Usher syndrome 1 in a Chinese family.

  • Xue Gao‎ et al.
  • PloS one‎
  • 2014‎

Usher syndrome is an autosomal recessive disease characterized by sensorineural hearing loss, age-dependent retinitis pigmentosa (RP), and occasionally vestibular dysfunction. The most severe form is Usher syndrome type 1 (USH1). Mutations in the MYO7A gene are responsible for USH1 and account for 29-55% of USH1 cases. Here, we characterized a Chinese family (no. 7162) with USH1. Combining the targeted capture of 131 known deafness genes, next-generation sequencing, and bioinformatic analysis, we identified two deleterious compound heterozygous mutations in the MYO7A gene: a reported missense mutation c.73G>A (p.G25R) and a novel nonsense mutation c.462C>A (p.C154X). The two compound variants are absent in 219 ethnicity-matched controls, co-segregates with the USH clinical phenotypes, including hearing loss, vestibular dysfunction, and age-dependent penetrance of progressive RP, in family 7162. Therefore, we concluded that the USH1 in this family was caused by compound heterozygous mutations in MYO7A.


De novo sequence assembly and characterization of Lycoris aurea transcriptome using GS FLX titanium platform of 454 pyrosequencing.

  • Ren Wang‎ et al.
  • PloS one‎
  • 2013‎

Lycoris aurea, also called Golden Magic Lily, is an ornamentally and medicinally important species of the Amaryllidaceae family. To date, the sequencing of its whole genome is unavailable as a non-model organism. Transcriptomic information is also scarce for this species. In this study, we performed de novo transcriptome sequencing to produce the first comprehensive expressed sequence tag (EST) dataset for L. aurea using high-throughput sequencing technology.


Identification of Two Novel Compound Heterozygous PTPRQ Mutations Associated with Autosomal Recessive Hearing Loss in a Chinese Family.

  • Xue Gao‎ et al.
  • PloS one‎
  • 2015‎

Mutations in PTPRQ are associated with deafness in humans due to defects of stereocilia in hair cells. Using whole exome sequencing, we identified responsible gene of family 1572 with autosomal recessively non-syndromic hearing loss (ARNSHL). We also used DNA from 74 familial patients with ARNSHL and 656 ethnically matched control chromosomes to perform extended variant analysis. We identified two novel compound heterozygous missense mutations, c. 3125 A>G p.D1042G (maternal allele) and c.5981 A>G p.E1994G (paternal allele), in the PTPRQ gene, as the cause of recessively inherited sensorineural hearing loss in family 1572. Both variants co-segregated with hearing loss phenotype in family 1572, but were absent in 74 familial patients. Heterozygosity for c. 3125 A>G was identified in two samples from unaffected Chinese individuals (656 chromosomes). Therefore, the hearing loss in this family was caused by two novel compound heterozygous mutations in PTPRQ.


Multi-strategy genome-wide association studies identify the DCAF16-NCAPG region as a susceptibility locus for average daily gain in cattle.

  • Wengang Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

Average daily gain (ADG) is the most economically important trait in beef cattle industry. Using genome-wide association study (GWAS) approaches, previous studies have identified several causal variants within the PLAG1, NCAPG and LCORL genes for ADG in cattle. Multi-strategy GWASs were implemented in this study to improve detection and to explore the causal genes and regions. In this study, we conducted GWASs based on the genotypes of 1,173 Simmental cattle. In the SNP-based GWAS, the most significant SNPs (rs109303784 and rs110058857, P = 1.78 × 10-7) were identified in the NCAPG intron on BTA6 and explained 4.01% of the phenotypic variance, and the independent and significant SNP (rs110406669, P = 5.18 × 10-6) explained 3.32% of the phenotypic variance. Similarly, in the haplotype-based GWAS, the most significant haplotype block, Hap-6-N1416 (P = 2.56 × 10-8), spanned 12.7 kb on BTA6 and explained 4.85% of the phenotypic variance. Also, in the gene-based GWAS, seven significant genes were obtained which included DCAF16 and NCAPG. Moreover, analysis of the transcript levels confirmed that transcripts abundance of NCAPG (P = 0.046) and DCAF16 (P = 0.046) were significantly correlated with the ADG trait. Overall, our results from the multi-strategy GWASs revealed the DCAF16-NCAPG region to be a susceptibility locus for ADG in cattle.


A novel pore-region mutation, c.887G > A (p.G296D) in KCNQ4, causing hearing loss in a Chinese family with autosomal dominant non-syndromic deafness 2.

  • Bangqing Huang‎ et al.
  • BMC medical genetics‎
  • 2017‎

Hereditary non-syndromic hearing loss is the most common inherited sensory defect in humans. The KCNQ4 channel belongs to a family of potassium ion channels that play crucial roles in physiology and disease. Mutations in KCNQ4 underlie deafness non-syndromic autosomal dominant 2, a subtype of autosomal dominant, progressive, high-frequency hearing loss.


Lactobacillus rhamnosus GG Affects Microbiota and Suppresses Autophagy in the Intestines of Pigs Challenged with Salmonella Infantis.

  • Wei Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Salmonella enterica serovar Infantis (S. Infantis) is a common source of foodborne gastroenteritis worldwide. Here, Lactobacillus rhamnosus GG (LGG) was administrated to weaned piglets for 1 week before S. Infantis challenge. S. Infantis caused decreased ileal mucosal microbiota diversity, a dramatic Lactobacillus amylovorus bloom, and decreased abundance of Arsenicicoccus, Janibacter, Kocuria, Nocardioides, Devosia, Paracoccus, Psychrobacter, and Weissella. The beneficial effect of LGG correlated with the moderate expansion of L. amylovorus, L. agilis, and several members of the phyla Proteobacteria, Firmicutes, and Bacteroidetes. S. Infantis translocation to the liver was decreased in the LGG-pretreated piglets. An in vitro model of LGG and S. Infantis co-incubation (involving the porcine intestinal epithelial cell line IPEC-J2) was established, and nalidixic acid was used to kill the extracellular S. Infantis. LGG suppressed the initial S. Infantis invasion in the IPEC-J2 cells and deceased the rate of cell death. LGG inhibited S. Infantis-induced autophagy and promoted epidermal growth factor receptor (EGFR) and Akt phosphorylation in both the ileum and IPEC-J2 cells. Our findings suggest that LGG inhibited S. Infantis-induced autophagy by promoting EGFR-mediated activation of the negative mediator Akt, which, in turn, suppressed intestinal epithelial cell death and thus restricted systemic S. Infantis infection. LGG can restore the gut microbiota balance and preserve the autophagy-related intestinal epithelial barrier, thereby controlling infections.


High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock.

  • Nawsad Alam‎ et al.
  • PLoS computational biology‎
  • 2017‎

Peptide-protein interactions contribute a significant fraction of the protein-protein interactome. Accurate modeling of these interactions is challenging due to the vast conformational space associated with interactions of highly flexible peptides with large receptor surfaces. To address this challenge we developed a fragment based high-resolution peptide-protein docking protocol. By streamlining the Rosetta fragment picker for accurate peptide fragment ensemble generation, the PIPER docking algorithm for exhaustive fragment-receptor rigid-body docking and Rosetta FlexPepDock for flexible full-atom refinement of PIPER docked models, we successfully addressed the challenge of accurate and efficient global peptide-protein docking at high-resolution with remarkable accuracy, as validated on a small but representative set of peptide-protein complex structures well resolved by X-ray crystallography. Our approach opens up the way to high-resolution modeling of many more peptide-protein interactions and to the detailed study of peptide-protein association in general. PIPER-FlexPepDock is freely available to the academic community as a server at http://piperfpd.furmanlab.cs.huji.ac.il.


Exosomes containing differential expression of microRNA and mRNA in osteosarcoma that can predict response to chemotherapy.

  • Ji-Feng Xu‎ et al.
  • Oncotarget‎
  • 2017‎

A major challenge in osteosarcoma (OS) is the selection of the most effective chemotherapeutic agents for individual patients, while the administration of ineffective chemotherapy increases mortality and decreases quality of life in patients. This emphasizes the need to evaluate every patient's probability of responding to each chemotherapeutic agent. We developed a profiling strategy for serum exosomal microRNAs and mRNAs in OS patients with differential chemotherapeutic responses. Twelve miRNAs were up regulated and 18 miRNAs were under regulated significantly in OS patient with poor chemotherapeutic response when compared with those in good chemotherapeutic response (p<0.05). In addition, miR-124, miR133a, miR-199a-3p, and miR-385 were validated and significantly reduced in poorly responded patients with an independent OS cohort. While miR-135b, miR-148a, miR-27a, and miR-9 were significantly over expressed in serum exosomes. Bioinformatic analysis by DIANA-mirPath demonstrated that Proteoglycans in cancer, Hippo signaling pathway, Pathways in cancer, Transcriptional misregulation in cancer, PI3K-Akt signaling pathway, Ras signaling pathway, Ubiquitin mediated proteolysis, Choline metabolism in cancer were the most prominent pathways enriched in quantiles with the miRNA patterns related to poor chemotherapeutic response. Messenger RNAs(mRNAs) includingAnnexin2, Smad2, Methylthioadenosine phosphorylase (MTAP), Cdc42-interacting protein 4 (CIP4), Pigment Epithelium-Derived Factor (PEDF), WW domain-containing oxidoreductase (WWOX), Cell division cycle 5-like (Cdc5L), P27 were differentially expressed in exosomes in OS patients with different chemotherapeutic response. These data demonstrated that exosomal RNA molecules are reliable biomarkers in classifying osteosarcoma with different chemotherapy sensitivity.


Long noncoding RNA LINC00152 promotes cell proliferation through competitively binding endogenous miR-125b with MCL-1 by regulating mitochondrial apoptosis pathways in ovarian cancer.

  • Puxiang Chen‎ et al.
  • Cancer medicine‎
  • 2018‎

Recently, an increasing number of studies have focused on the key function of long noncoding RNAs (lncRNAs) in biological activity. Abnormal lncRNA expression was found to relate to the development and pathogenesis of multiple cancers. LncRNA LINC00152 served as an oncogene in multiple cancers; however, its role in ovarian cancer remains unknown. In our research study, LINC00152 was upregulated in ovarian cancer tissues and cell lines. An increasing LINC00152 level was positively correlated with the histological grade, clinical stage, and poor prognosis of ovarian cancer patients. In addition, knockdown of LINC00152 reduced cell growth, induced cell apoptosis, and suppressed tumor growth. Moreover, we revealed that LINC00152 and Myeloid cell leukemia-1 (MCL-1) were targeted by miR-125b and had the same miR-125b combining site. The miR-125b level was negatively correlated with the expression of LINC00152, while MCL-1 was positively related to the LINC00152 level. MiR-125b could affect LINC00152 levels as evaluated by qRT-PCR. Finally, we affirmed that LINC00152 mediated cell proliferation by affecting MCL-1 expression and MCL-1-mediated mitochondrial apoptosis pathways and by working as a competitive endogenous RNA (ceRNA) of miR-125b. In summary, based on ceRNA theory, the combined research on miR-125b and MCL-1, and taking LINC00152 as a new study point, we provide new insight into the molecular mechanism of reversing cell proliferation in ovarian cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: