Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock.

PLoS computational biology | 2017

Peptide-protein interactions contribute a significant fraction of the protein-protein interactome. Accurate modeling of these interactions is challenging due to the vast conformational space associated with interactions of highly flexible peptides with large receptor surfaces. To address this challenge we developed a fragment based high-resolution peptide-protein docking protocol. By streamlining the Rosetta fragment picker for accurate peptide fragment ensemble generation, the PIPER docking algorithm for exhaustive fragment-receptor rigid-body docking and Rosetta FlexPepDock for flexible full-atom refinement of PIPER docked models, we successfully addressed the challenge of accurate and efficient global peptide-protein docking at high-resolution with remarkable accuracy, as validated on a small but representative set of peptide-protein complex structures well resolved by X-ray crystallography. Our approach opens up the way to high-resolution modeling of many more peptide-protein interactions and to the detailed study of peptide-protein association in general. PIPER-FlexPepDock is freely available to the academic community as a server at http://piperfpd.furmanlab.cs.huji.ac.il.

Pubmed ID: 29281622 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Eukaryotic Linear Motif (tool)

RRID:SCR_003085

Computational biology resource for investigating candidate functional sites in eukarytic proteins. Functional sites which fit to the description linear motif are currently specified as patterns using Regular Expression rules. To improve the predictive power, context-based rules and logical filters are being developed and applied to reduce the amount of false positives. The current version of the ELM server provides core functionality including filtering by cell compartment, phylogeny, globular domain clash (using the SMART/Pfam databases) and structure. In addition, both the known ELM instances and any positionally conserved matches in sequences similar to ELM instance sequences are identified and displayed (see ELM instance mapper). Although the ELM resource contains a large collection of functional site motifs, the current set of motifs is not exhaustive.

View all literature mentions

PSIPRED (tool)

RRID:SCR_010246

Web tool as secondary structure prediction method, incorporating two feed forward neural networks which perform analysis on output obtained from PSI-BLAST. Web server offering analyses of protein sequences.

View all literature mentions