Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 164 papers

Droplet digital PCR is a powerful technique to demonstrate frequent FGFR1 duplication in dysembryoplastic neuroepithelial tumors.

  • Frédéric Fina‎ et al.
  • Oncotarget‎
  • 2017‎

Dysembryoplastic neuroepithelial tumors (DNT) share V600E mutation in the BRAF gene with other low grade neuroepithelial tumors (LGNTs). FGFR1 internal tandem duplication of the tyrosine-kinase domain (FGFR1-ITD), another genetic alteration that also leads to MAP kinase pathway alteration, has been previously reported in LGNTs by whole-genome sequencing. In the present study we searched for FGFR1-ITD by droplet digital PCR (DDPCR™) and for FGFR1 point mutations by HRM-sequencing in a series of formalin-fixed paraffin-embedded (FFPE) LGNTs including 12 DNT, 2 oligodendrogliomas lacking IDH mutation and 1p/19q co- deletion (pediatric-type oligodendrogliomas; PTOs), 3 pediatric diffuse astrocytomas (PDAs), 14 gangliogliomas (GGs) and 5 pilocytic astrocytomas (PAs). We showed by DDPCR™ that 5/12 DNT, but none of the other LGNTs, demonstrated FGFR1-ITD. In addition, these cases also accumulated phosphorylated-FGFR1 protein as shown by immunohistochemistry. FGFR1G539R point mutation was only recorded in one DNT that also showed FGFR1-ITD. Interestingly, these FGFR1 alterations were mutually exclusive from BRAFV600E mutation that was recorded in 13 LGNTs (3 DNTs, 1 PTO, 2 PDAs, 5 GGs and 2 PAs). Therefore, FGFR1 alteration mainly represented by FGFR1-ITD is a frequent event in DNT. DDPCR™ is an easy and alternative method than whole-genome sequencing to detect FGFR1-ITD in FFPE brain tumors, in routine practice.


A Set of Cell Lines Derived from a Genetic Murine Glioblastoma Model Recapitulates Molecular and Morphological Characteristics of Human Tumors.

  • Barbara Costa‎ et al.
  • Cancers‎
  • 2021‎

Glioblastomas (GBM) are the most aggressive tumors affecting the central nervous system in adults, causing death within, on average, 15 months after diagnosis. Immunocompetent in-vivo models that closely mirror human GBM are urgently needed for deciphering glioma biology and for the development of effective treatment options. The murine GBM cell lines currently available for engraftment in immunocompetent mice are not only exiguous but also inadequate in representing prominent characteristics of human GBM such as infiltrative behavior, necrotic areas, and pronounced tumor heterogeneity. Therefore, we generated a set of glioblastoma cell lines by repeated in vivo passaging of cells isolated from a neural stem cell-specific Pten/p53 double-knockout genetic mouse brain tumor model. Transcriptome and genome analyses of the cell lines revealed molecular heterogeneity comparable to that observed in human glioblastoma. Upon orthotopic transplantation into syngeneic hosts, they formed high-grade gliomas that faithfully recapitulated the histopathological features, invasiveness and immune cell infiltration characteristic of human glioblastoma. These features make our cell lines unique and useful tools to study multiple aspects of glioblastoma pathomechanism and to test novel treatments in an intact immune microenvironment.


Pleomorphic xanthoastrocytoma is a heterogeneous entity with pTERT mutations prognosticating shorter survival.

  • Azadeh Ebrahimi‎ et al.
  • Acta neuropathologica communications‎
  • 2022‎

Pleomorphic xanthoastrocytoma (PXA) in its classic manifestation exhibits distinct morphological features and is assigned to CNS WHO grade 2 or grade 3. Distinction from glioblastoma variants and lower grade glial and glioneuronal tumors is a common diagnostic challenge. We compared a morphologically defined set of PXA (histPXA) with an independent set, defined by DNA methylation analysis (mcPXA). HistPXA encompassed 144 tumors all subjected to DNA methylation array analysis. Sixty-two histPXA matched to the methylation class mcPXA. These were combined with the cases that showed the mcPXA signature but had received a histopathological diagnosis other than PXA. This cohort constituted a set of 220 mcPXA. Molecular and clinical parameters were analyzed in these groups. Morphological parameters were analyzed in a subset of tumors with FFPE tissue available. HistPXA revealed considerable heterogeneity in regard to methylation classes, with methylation classes glioblastoma and ganglioglioma being the most frequent mismatches. Similarly, the mcPXA cohort contained tumors of diverse histological diagnoses, with glioblastoma constituting the most frequent mismatch. Subsequent analyses demonstrated the presence of canonical pTERT mutations to be associated with unfavorable prognosis among mcPXA. Based on these data, we consider the tumor type PXA to be histologically more varied than previously assumed. Histological approach to diagnosis will predominantly identify cases with the established archetypical morphology. DNA methylation analysis includes additional tumors in the tumor class PXA that share similar DNA methylation profile but lack the typical morphology of a PXA. DNA methylation analysis also assist in separating other tumor types with morphologic overlap to PXA. Our data suggest the presence of canonical pTERT mutations as a robust indicator for poor prognosis in methylation class PXA.


Systematic multi-omics cell line profiling uncovers principles of Ewing sarcoma fusion oncogene-mediated gene regulation.

  • Martin F Orth‎ et al.
  • Cell reports‎
  • 2022‎

Ewing sarcoma (EwS) is characterized by EWSR1-ETS fusion transcription factors converting polymorphic GGAA microsatellites (mSats) into potent neo-enhancers. Although the paucity of additional mutations makes EwS a genuine model to study principles of cooperation between dominant fusion oncogenes and neo-enhancers, this is impeded by the limited number of well-characterized models. Here we present the Ewing Sarcoma Cell Line Atlas (ESCLA), comprising whole-genome, DNA methylation, transcriptome, proteome, and chromatin immunoprecipitation sequencing (ChIP-seq) data of 18 cell lines with inducible EWSR1-ETS knockdown. The ESCLA shows hundreds of EWSR1-ETS-targets, the nature of EWSR1-ETS-preferred GGAA mSats, and putative indirect modes of EWSR1-ETS-mediated gene regulation, converging in the duality of a specific but plastic EwS signature. We identify heterogeneously regulated EWSR1-ETS-targets as potential prognostic EwS biomarkers. Our freely available ESCLA (http://r2platform.com/escla/) is a rich resource for EwS research and highlights the power of comprehensive datasets to unravel principles of heterogeneous gene regulation by chimeric transcription factors.


Using CRISPR/Cas9 genome editing in human iPSCs for deciphering the pathogenicity of a novel CCM1 transcription start site deletion.

  • Robin A Pilz‎ et al.
  • Frontiers in molecular biosciences‎
  • 2022‎

Cerebral cavernous malformations are clusters of aberrant vessels that can lead to severe neurological complications. Pathogenic loss-of-function variants in the CCM1, CCM2, or CCM3 gene are associated with the autosomal dominant form of the disease. While interpretation of variants in protein-coding regions of the genes is relatively straightforward, functional analyses are often required to evaluate the impact of non-coding variants. Because of multiple alternatively spliced transcripts and different transcription start points, interpretation of variants in the 5' untranslated and upstream regions of CCM1 is particularly challenging. Here, we identified a novel deletion of the non-coding exon 1 of CCM1 in a proband with multiple CCMs which was initially classified as a variant of unknown clinical significance. Using CRISPR/Cas9 genome editing in human iPSCs, we show that the deletion leads to loss of CCM1 protein and deregulation of KLF2, THBS1, NOS3, and HEY2 expression in iPSC-derived endothelial cells. Based on these results, the variant could be reclassified as likely pathogenic. Taken together, variants in regulatory regions need to be considered in genetic CCM analyses. Our study also demonstrates that modeling variants of unknown clinical significance in an iPSC-based system can help to come to a final diagnosis.


Molecular analysis of pediatric CNS-PNET revealed nosologic heterogeneity and potent diagnostic markers for CNS neuroblastoma with FOXR2-activation.

  • Andrey Korshunov‎ et al.
  • Acta neuropathologica communications‎
  • 2021‎

Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly malignant neoplasms posing diagnostic challenge due to a lack of defining molecular markers. CNS neuroblastoma with forkhead box R2 (FOXR2) activation (CNS_NBL) emerged as a distinct pediatric brain tumor entity from a pool previously diagnosed as primitive neuroectodermal tumors of the central nervous system (CNS-PNETs). Current standard of identifying CNS_NBL relies on molecular analysis. We set out to establish immunohistochemical markers allowing safely distinguishing CNS_NBL from morphological mimics. To this aim we analyzed a series of 84 brain tumors institutionally diagnosed as CNS-PNET. As expected, epigenetic analysis revealed different methylation groups corresponding to the (1) CNS-NBL (24%), (2) glioblastoma IDH wild-type subclass H3.3 G34 (26%), (3) glioblastoma IDH wild-type subclass MYCN (21%) and (4) ependymoma with RELA_C11orf95 fusion (29%) entities. Transcriptome analysis of this series revealed a set of differentially expressed genes distinguishing CNS_NBL from its mimics. Based on RNA-sequencing data we established SOX10 and ANKRD55 expression as genes discriminating CNS_NBL from other tumors exhibiting CNS-PNET. Immunohistochemical detection of combined expression of SOX10 and ANKRD55 clearly identifies CNS_NBL discriminating them to other hemispheric CNS neoplasms harboring "PNET-like" microscopic appearance. Owing the rarity of CNS_NBL, a confirmation of the elaborated diagnostic IHC algorithm will be necessary in prospective patient series.


Carbon ion radiotherapy eradicates medulloblastomas with chromothripsis in an orthotopic Li-Fraumeni patient-derived mouse model.

  • Milena Simovic‎ et al.
  • Neuro-oncology‎
  • 2021‎

Medulloblastomas with chromothripsis developing in children with Li-Fraumeni Syndrome (germline TP53 mutations) are highly aggressive brain tumors with dismal prognosis. Conventional photon radiotherapy and DNA-damaging chemotherapy are not successful for these patients and raise the risk of secondary malignancies. We hypothesized that the pronounced homologous recombination deficiency in these tumors might offer vulnerabilities that can be therapeutically utilized in combination with high linear energy transfer carbon ion radiotherapy.


Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA): a molecularly distinct brain tumor type with recurrent NTRK gene fusions.

  • Henri Bogumil‎ et al.
  • Acta neuropathologica‎
  • 2023‎

Glioneuronal tumors are a heterogenous group of CNS neoplasms that can be challenging to accurately diagnose. Molecular methods are highly useful in classifying these tumors-distinguishing precise classes from their histological mimics and identifying previously unrecognized types of tumors. Using an unsupervised visualization approach of DNA methylation data, we identified a novel group of tumors (n = 20) that formed a cluster separate from all established CNS tumor types. Molecular analyses revealed ATRX alterations (in 16/16 cases by DNA sequencing and/or immunohistochemistry) as well as potentially targetable gene fusions involving receptor tyrosine-kinases (RTK; mostly NTRK1-3) in all of these tumors (16/16; 100%). In addition, copy number profiling showed homozygous deletions of CDKN2A/B in 55% of cases. Histological and immunohistochemical investigations revealed glioneuronal tumors with isomorphic, round and often condensed nuclei, perinuclear clearing, high mitotic activity and microvascular proliferation. Tumors were mainly located supratentorially (84%) and occurred in patients with a median age of 19 years. Survival data were limited (n = 18) but point towards a more aggressive biology as compared to other glioneuronal tumors (median progression-free survival 12.5 months). Given their molecular characteristics in addition to anaplastic features, we suggest the term glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) to describe these tumors. In summary, our findings highlight a novel type of glioneuronal tumor driven by different RTK fusions accompanied by recurrent alterations in ATRX and homozygous deletions of CDKN2A/B. Targeted approaches such as NTRK inhibition might represent a therapeutic option for patients suffering from these tumors.


Optimizing biomarkers for accurate ependymoma diagnosis, prognostication, and stratification within International Clinical Trials: A BIOMECA study.

  • Rebecca J Chapman‎ et al.
  • Neuro-oncology‎
  • 2023‎

Accurate identification of brain tumor molecular subgroups is increasingly important. We aimed to establish the most accurate and reproducible ependymoma subgroup biomarker detection techniques, across 147 cases from International Society of Pediatric Oncology (SIOP) Ependymoma II trial participants, enrolled in the pan-European "Biomarkers of Ependymoma in Children and Adolescents (BIOMECA)" study.


Methylation array profiling of adult brain tumours: diagnostic outcomes in a large, single centre.

  • Zane Jaunmuktane‎ et al.
  • Acta neuropathologica communications‎
  • 2019‎

The introduction of the classification of brain tumours based on their DNA methylation profile has significantly changed the diagnostic approach for cases with ambiguous histology, non-informative or contradictory molecular profiles or for entities where methylation profiling provides useful information for patient risk stratification, for example in medulloblastoma and ependymoma. We present our experience that combines a conventional molecular diagnostic approach with the complementary use of a DNA methylation-based classification tool, for adult brain tumours originating from local as well as national referrals. We report the frequency of IDH mutations in a large cohort of nearly 1550 patients, EGFR amplifications in almost 1900 IDH-wildtype glioblastomas, and histone mutations in 70 adult gliomas. We demonstrate how additional methylation-based classification has changed and improved our diagnostic approach. Of the 325 cases referred for methylome testing, 179 (56%) had a calibrated score of 0.84 and higher and were included in the evaluation. In these 179 samples, the diagnosis was changed in 45 (25%), refined in 86 (48%) and confirmed in 44 cases (25%). In addition, the methylation arrays contain copy number information that usefully complements the methylation profile. For example, EGFR amplification which is 95% concordant with our Real-Time PCR-based copy number assays. We propose here a diagnostic algorithm that integrates histology, conventional molecular tests and methylation arrays.


Comprehensive Analysis of Chromatin States in Atypical Teratoid/Rhabdoid Tumor Identifies Diverging Roles for SWI/SNF and Polycomb in Gene Regulation.

  • Serap Erkek‎ et al.
  • Cancer cell‎
  • 2019‎

Biallelic inactivation of SMARCB1, encoding a member of the SWI/SNF chromatin remodeling complex, is the hallmark genetic aberration of atypical teratoid rhabdoid tumors (ATRT). Here, we report how loss of SMARCB1 affects the epigenome in these tumors. Using chromatin immunoprecipitation sequencing (ChIP-seq) on primary tumors for a series of active and repressive histone marks, we identified the chromatin states differentially represented in ATRTs compared with other brain tumors and non-neoplastic brain. Re-expression of SMARCB1 in ATRT cell lines enabled confirmation of our genome-wide findings for the chromatin states. Additional generation of ChIP-seq data for SWI/SNF and Polycomb group proteins and the transcriptional repressor protein REST determined differential dependencies of SWI/SNF and Polycomb complexes in regulation of diverse gene sets in ATRTs.


Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups.

  • Kristian W Pajtler‎ et al.
  • Cancer cell‎
  • 2015‎

Ependymal tumors across age groups are currently classified and graded solely by histopathology. It is, however, commonly accepted that this classification scheme has limited clinical utility based on its lack of reproducibility in predicting patients' outcome. We aimed at establishing a uniform molecular classification using DNA methylation profiling. Nine molecular subgroups were identified in a large cohort of 500 tumors, 3 in each anatomical compartment of the CNS, spine, posterior fossa, supratentorial. Two supratentorial subgroups are characterized by prototypic fusion genes involving RELA and YAP1, respectively. Regarding clinical associations, the molecular classification proposed herein outperforms the current histopathological classification and thus might serve as a basis for the next World Health Organization classification of CNS tumors.


Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors.

  • Jonathon Torchia‎ et al.
  • Cancer cell‎
  • 2016‎

We recently reported that atypical teratoid rhabdoid tumors (ATRTs) comprise at least two transcriptional subtypes with different clinical outcomes; however, the mechanisms underlying therapeutic heterogeneity remained unclear. In this study, we analyzed 191 primary ATRTs and 10 ATRT cell lines to define the genomic and epigenomic landscape of ATRTs and identify subgroup-specific therapeutic targets. We found ATRTs segregated into three epigenetic subgroups with distinct genomic profiles, SMARCB1 genotypes, and chromatin landscape that correlated with differential cellular responses to a panel of signaling and epigenetic inhibitors. Significantly, we discovered that differential methylation of a PDGFRB-associated enhancer confers specific sensitivity of group 2 ATRT cells to dasatinib and nilotinib, and suggest that these are promising therapies for this highly lethal ATRT subtype.


Assessment and optimisation of normalisation methods for dual-colour antibody microarrays.

  • Martin Sill‎ et al.
  • BMC bioinformatics‎
  • 2010‎

Recent advances in antibody microarray technology have made it possible to measure the expression of hundreds of proteins simultaneously in a competitive dual-colour approach similar to dual-colour gene expression microarrays. Thus, the established normalisation methods for gene expression microarrays, e.g. loess regression, can in principle be applied to protein microarrays. However, the typical assumptions of such normalisation methods might be violated due to a bias in the selection of the proteins to be measured. Due to high costs and limited availability of high quality antibodies, the current arrays usually focus on a high proportion of regulated targets. Housekeeping features could be used to circumvent this problem, but they are typically underrepresented on protein arrays. Therefore, it might be beneficial to select invariant features among the features already represented on available arrays for normalisation by a dedicated selection algorithm.


Tissue Factor Regulation by miR-520g in Primitive Neuronal Brain Tumor Cells: A Possible Link between Oncomirs and the Vascular Tumor Microenvironment.

  • Esterina D'Asti‎ et al.
  • The American journal of pathology‎
  • 2016‎

Pediatric embryonal brain tumors with multilayered rosettes demonstrate a unique oncogenic amplification of the chromosome 19 miRNA cluster, C19MC. Because oncogenic lesions often cause deregulation of vascular effectors, including procoagulant tissue factor (TF), this study explores whether there is a link between C19MC oncogenic miRNAs (oncomirs) and the coagulant properties of cancer cells, a question previously not studied. In a pediatric embryonal brain tumor tissue microarray, we observed an association between C19MC amplification and reduced fibrin content and TF expression, indicative of reduced procoagulant activity. In medulloblastoma cell lines (DAOY and UW228) engineered to express miR-520g, a biologically active constituent of the C19MC cluster, we observed reduced TF expression, procoagulant and TF signaling activities (responses to factor VIIa stimulation), and diminished TF emission as cargo of extracellular vesicles. Antimir and luciferase reporter assays revealed a specific and direct effect of miR-520g on the TF 3' untranslated region. Although the endogenous MIR520G locus is methylated in differentiated cells, exposure of DAOY cells to 5-aza-2'-deoxycytidine or their growth as stem cell-like spheres up-regulated endogenous miR-520g with a coincident reduction in TF expression. We propose that the properties of tumors harboring oncomirs may include unique alterations of the vascular microenvironment, including deregulation of TF, with a possible impact on the biology, therapy, and hemostatic adverse effects of both disease progression and treatment.


Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort.

  • Sebastian M Waszak‎ et al.
  • The Lancet. Oncology‎
  • 2018‎

Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines.


SEURAT: visual analytics for the integrated analysis of microarray data.

  • Alexander Gribov‎ et al.
  • BMC medical genomics‎
  • 2010‎

In translational cancer research, gene expression data is collected together with clinical data and genomic data arising from other chip based high throughput technologies. Software tools for the joint analysis of such high dimensional data sets together with clinical data are required.


The whole-genome landscape of medulloblastoma subtypes.

  • Paul A Northcott‎ et al.
  • Nature‎
  • 2017‎

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.


Longitudinal heterogeneity in glioblastoma: moving targets in recurrent versus primary tumors.

  • Niklas Schäfer‎ et al.
  • Journal of translational medicine‎
  • 2019‎

Molecularly targeted therapies using receptor inhibitors, small molecules or monoclonal antibodies are routinely applied in oncology. Verification of target expression should be mandatory prior to initiation of therapy, yet, determining the expression status is most challenging in recurrent glioblastoma (GBM) where most patients are not eligible for second-line surgery. Because very little is known on the consistency of expression along the clinical course we here explored common drug targets in paired primary vs. recurrent GBM tissue samples.


Acyl-CoA-Binding Protein Drives Glioblastoma Tumorigenesis by Sustaining Fatty Acid Oxidation.

  • Ceren Duman‎ et al.
  • Cell metabolism‎
  • 2019‎

Glioblastoma multiforme (GBM) undergoes metabolic reprogramming to meet the high ATP and anabolic demands of the tumor cells. However, the role of fatty acid oxidation (FAO) and its regulators in the GBM context has been largely unknown. Here, we show that the neural stem cell pro-proliferative factor acyl-CoA-binding protein (ACBP, also known as DBI) is highly expressed in GBM, and by binding to acyl-CoAs, it cell-autonomously maintains high proliferation rates, promoting tumor growth and poor survival in several preclinical models. Mechanistic experiments using ACBP-acyl-CoA binding affinity variants and pharmacological FAO modulators suggest that ACBP supports tumor growth by controlling the availability of long-chain fatty acyl-CoAs to mitochondria, promoting FAO in GBM. Thus, our findings uncover a critical link between lipid metabolism and GBM progression established by ACBP and offer a potential therapeutic strategy for an effective anti-proliferative metabolic management of GBM.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: