Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 217 papers

Synaptic modulation of excitatory synaptic transmission by nicotinic acetylcholine receptors in spinal ventral horn neurons.

  • N Mine‎ et al.
  • Neuroscience‎
  • 2015‎

Nicotinic acetylcholine receptors (nAChRs) are distributed widely in the central nervous system and play important roles in higher brain functions, including learning, memory, and recognition. However, functions of the cholinergic system in spinal motoneurons remain poorly understood. In this study, we investigated the actions of presynaptic and postsynaptic nAChRs in spinal ventral horn neurons by performing whole-cell patch-clamp recordings on lumbar slices from male rats. The application of nicotine or acetylcholine generated slow inward currents and increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). Slow inward currents by acetylcholine or nicotine were not inhibited by tetrodotoxin (TTX) or glutamate receptor antagonists. In the presence of TTX, the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) were also increased by acetylcholine or nicotine. A selective α4β2 nicotinic receptor antagonist, dihydro-β-erythroidine hydrobromide (DhβE), significantly decreased nicotine-induced inward currents without affecting the enhancement of sEPSCs and mEPSCs. In addition, a selective α7 nicotinic receptor antagonist, methyllycaconitine, did not affect either nicotine-induced inward currents or the enhancement of sEPSCs and mEPSCs. These results suggest that α4β2 AChRs are localized at postsynaptic sites in the spinal ventral horn, non-α4β2 and non-α7 nAChRs are located presynaptically, and nAChRs enhance excitatory synaptic transmission in the spinal ventral horn.


Menthol acts as a positive allosteric modulator on nematode levamisole sensitive nicotinic acetylcholine receptors.

  • Shivani Choudhary‎ et al.
  • International journal for parasitology. Drugs and drug resistance‎
  • 2019‎

The ongoing and widespread emergence of resistance to the existing anti-nematodal pharmacopeia has made it imperative to develop new anthelminthic agents. Historically, plants have been important sources of therapeutic compounds and offer an alternative to synthetic drugs. Monoterpenoids are phytochemicals that have been shown to produce acute toxic effects in insects and nematodes. Previous studies have shown nicotinic acetylcholine receptors (nAChRs) to be possible targets for naturally occurring plant metabolites such as carvacrol and carveol. In this study we examined the effects of monoterpenoid compounds on a levamisole sensitive nAChR from Oesophagostomum dentatum and a nicotine sensitive nAChR from Ascaris suum. We expressed the receptors in Xenopus laevis oocytes and used two-electrode voltage-clamp to characterize the effect of various compounds on these cys-loop receptors. At 100 μM the majority of these compounds acted as antagonists. Interestingly, further experiments revealed that both 0.1 μM and 10 μM menthol potentiated acetylcholine and levamisole responses in the levamisole sensitive receptor but not the nicotine sensitive receptor. We also investigated the effects of 0.1 μM menthol on the contractility of A. suum somatic muscle strips. Menthol produced significant potentiation of peak contractions at each concentration of acetylcholine. The positive allosteric modulatory effects of menthol in both in vivo and in vitro experiments suggests menthol as a promising candidate for combination therapy with cholinergic anthelmintics.


GTS-21 has cell-specific anti-inflammatory effects independent of α7 nicotinic acetylcholine receptors.

  • Brijesh K Garg‎ et al.
  • PloS one‎
  • 2019‎

α7 Nicotinic acetylcholine receptors (nAChRs) reportedly reduce inflammation by blocking effects of the important pro-inflammatory transcription factor, nuclear factor kappa-light chain-enhancer of B cells (NFκB). The α7 nAChR partial agonist GTS-21 reduces secretion of pro-inflammatory cytokines including interleukin-6 (IL6) and tumor-necrosis factor (TNF) in models of endotoxemia and sepsis, and its anti-inflammatory effects are widely ascribed to α7 nAChR activation. However, mechanistic details of α7 nAChR involvement in GTS-21 effects on inflammatory pathways remain unclear. Here, we investigate how GTS-21 acts in two cell systems including the non-immune rat pituitary cell line GH4C1 expressing an NFκB-driven reporter gene and cytokine secretion by ex vivo cultures of primary mouse macrophages activated by lipopolysaccharide (LPS). GTS-21 does not change TNF-stimulated NFκB signaling in GH4C1 cells expressing rat α7 nAChRs, suggesting that GTS-21 requires additional unidentified factors besides α7 nAChR expression to allow anti-inflammatory effects in these cells. In contrast, GTS-21 dose-dependently suppresses LPS-induced IL6 and TNF secretion in primary mouse macrophages endogenously expressing α7 nAChRs. GTS-21 also blocks TNF-induced phosphorylation of NFκB inhibitor alpha (IκBα), an important intermediary in NFκB signaling. However, α7 antagonists methyllycaconitine and α-bungarotoxin only partially reverse GTS-21 blockade of IL6 and TNF secretion. Further, GTS-21 significantly inhibited LPS-induced IL6 and TNF secretion in macrophages isolated from knockout mice lacking α7 nAChRs. These data indicate that even though a discrete component of the anti-inflammatory effects of GTS-21 requires expression of α7 nAChRs in macrophages, GTS-21 also has anti-inflammatory effects independent of these receptors depending on the cellular context.


Reversible inhibition of intracellular calcium influx through NMDA receptors by imidazoline I(2) receptor antagonists.

  • Susan X Jiang‎ et al.
  • European journal of pharmacology‎
  • 2010‎

Intracellular calcium ([Ca(2+)]i) influx through N-methyl-d-aspartic acid (NMDA) receptors in cortical neurons is central to NMDA receptor-mediated excitotoxicity. Drugs that uncompetitively modulate NMDA receptor-mediated [Ca(2+)]i influx are potential leads for development to treat NMDA receptor-mediated neuronal damage since these drugs spare NMDA receptor normal functions. Ligands to alpha(2)-adrenoceptors and imidazoline I(2) receptors confer neuroprotection possibility through modulating NMDA receptor-mediated [Ca(2+)]i influx. Here, we investigated the characteristics of several ligands to alpha(2)-adrenoceptors and imidazoline I(2) receptor, in inhibiting NMDA receptor-mediated [Ca(2+)]i influx in cultured cortical neurons using a ratiometric calcium imaging technique. In contrast to MK801, which non-reversibly blocks NMDA receptor-mediated [Ca(2+)]i influx, imidazoline I(2) receptor antagonists, Idazoxan, and 2-(2-benzofuranyl)-2-imidazoline (2-BFI)-mediated inhibition of [Ca(2+)]i influx can be rapidly reversed when removed, in a manner similar to that of memantine, an uncompetitive antagonist to NMDA receptors. Interestingly, ligands to alpha(2)-adrenoceptors, including agmatine sulfate and yohimbine, and a ligand to the nicotinic receptor, levamisol, neither inhibited NMDA receptor-mediated [Ca(2+)]i influx, nor provided neuroprotection against glutamate toxicity, suggesting selective inhibition of NMDA receptor activities. The inhibition of NMDA receptor by Idazoxan and 2-BFI also led to the suppression of NMDA receptor-mediated calpain activity as a result of blocking NMDA receptor activity, rather than through direct inhibition of calpain activity. Collectively, these studies demonstrated that imidazoline I(2) receptor antagonists transiently and reversibly block NMDA receptor-mediated [Ca(2+)]i influx. These compounds are leads for further development as uncompetitive antagonists to NMDA receptor-mediated excitotoxicity.


The alpha7-nicotinic receptor contributes to gp120-induced neurotoxicity: implications in HIV-associated neurocognitive disorders.

  • Coral M Capó-Vélez‎ et al.
  • Scientific reports‎
  • 2018‎

Currently, there are no specific therapies to treat HIV-1 associated neurocognitive disorders (HAND). The HIV-1 envelope, gp120, induces neuropathological changes similar to those in HAND patients; furthermore, it triggers an upregulation of the α7-nicotinic acetylcholine receptor (α7-nAChR), facilitating intracellular calcium overload and neuronal cell death. Using a gp120IIIB-transgenic mouse (gp120-tgm) model, we demonstrate that α7-nAChRs are upregulated on striatal neurons. Activation of α7-nAChRs leads to an increase in both intracellular calcium and percentage of apoptotic cells, which can be abrogated by antagonizing the receptor, suggesting a role for α7-nAChRs in gp120-induced neurotoxicity. Moreover, we demonstrate for the first time that gp120-tgm have learning deficiencies on a striatum-dependent behavioral task. They also show locomotor deficiencies, which improved with α7-nAChR antagonists, further supporting a role for this receptor in gp120-induced neurotoxicity. Together, these results uncover a new mechanism through which gp120-induced modulation of α7-nAChRs in the striatum can contribute to HAND development.


Activation of nicotinic acetylcholine receptors augments calcium channel-mediated exocytosis in rat pheochromocytoma (PC12) cells.

  • A B Harkins‎ et al.
  • The Journal of general physiology‎
  • 1998‎

The functional effect of activating Ca2+-permeable neuronal nicotinic acetylcholine receptors (nAChRs) on vesicle secretion was studied in PC12 cells. Single cells were patch-clamped in the whole-cell configuration and stimulated with either brief pulses of nicotine to activate the Ca2+-permeable nAChRs or with voltage steps to activate voltage-dependent Ca2+ channels. Membrane capacitance was used as a measure of vesicle secretion. Activation of nAChRs by nicotine application to cells voltage clamped at -80 mV evoked secretion. This secretion was completely abolished by nicotinic antagonists. When the cells were voltage clamped at +20 mV in the presence of Cd2+ to block voltage-activated Ca2+ channels, nicotine elicited a small amount of secretion. Most interestingly, when the nAChRs were activated coincidentally with voltage-dependent Ca2+ channels, secretion was augmented approximately twofold over the secretion elicited with voltage-dependent Ca2+ channels alone. Our data suggest that Ca2+ influx via nAChRs affects Ca2+-dependent cellular functions, including vesicle secretion. In addition to the secretion evoked by nAChR activation at hyperpolarized potentials, we demonstrate that even at depolarized potentials, nAChRs provide an important Ca2+ entry pathway underlying Ca2+-dependent cellular processes such as exocytosis.


Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

  • Zuo Jun Ren‎ et al.
  • PloS one‎
  • 2015‎

Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.


Long-term nicotine treatment down-regulates α6β2* nicotinic receptor expression and function in nucleus accumbens.

  • Xiomara A Perez‎ et al.
  • Journal of neurochemistry‎
  • 2013‎

Long-term nicotine exposure induces alterations in dopamine transmission in nucleus accumbens that sustain the reinforcing effects of smoking. One approach to understand the adaptive changes that arise involves measurement of endogenous dopamine release using voltammetry. We therefore treated rats for 2-3 months with nicotine and examined alterations in nAChR subtype expression and electrically evoked dopamine release in rat nucleus accumbens shell, a region key in addiction. Long-term nicotine treatment selectively decreased stimulated α6β2* nAChR-mediated dopamine release compared with vehicle-treated rats. It also reduced α6β2* nAChRs, suggesting the receptor decline may contribute to the functional loss. This decreased response in release after chronic nicotine treatment was still partially sensitive to the agonist nicotine. Studies with an acetylcholinesterase inhibitor demonstrated that the response was also sensitive to increased endogenous acetylcholine. However, unlike the agonists, nAChR antagonists decreased dopamine release only in vehicle- but not nicotine-treated rats. As antagonists function by blocking the action of acetylcholine, their ineffectiveness suggests that reduced acetylcholine levels partly underlie the dampened α6β2* nAChR-mediated function in nicotine-treated rats. As long-term nicotine modifies dopamine release by decreasing α6β2* nAChRs and their function, these data suggest that interventions that target this subtype may be useful for treating nicotine dependence. Long-term nicotine treatment decreases dopamine (DA) transmission in the mesolimbic dopaminergic system. Our data suggest this may involve a decrease in α6β2* nicotinic receptor expression and function. These changes may play a key role in nicotine reward and dependence.


Reversible inhibition of GABAA receptors by alpha7-containing nicotinic receptors on the vertebrate postsynaptic neurons.

  • Jingming Zhang‎ et al.
  • The Journal of physiology‎
  • 2007‎

Nicotinic acetylcholine receptors (nAChRs) are expressed throughout the central nervous system and influence a variety of higher order functions including learning and memory. While the effects of presynaptic nAChRs on transmitter release have been well documented, little is known about possible postsynaptic actions. A major species of neuronal nAChRs contains the alpha7 gene product and has a high relative permeability to calcium. Both on rodent hippocampal interneurons and on chick ciliary ganglion neurons these alpha7-nAChRs are often closely juxtaposed to GABAA receptors. We show here that in both cases activation of alpha7-nAChRs on the postsynaptic neuron acutely down-regulates GABA-induced currents. Nicotine application to dissociated ciliary ganglion neurons diminished subsequent GABAA receptor responses to GABA. The effect was blocked by alpha7-nAChR antagonists, by chelation of intracellular Ca2+ with BAPTA, and by inhibition of both Ca2+-calmodulin-dependent protein kinase II and mitogen-activated protein kinase. A similar outcome was obtained in the hippocampus where electrical stimulation to activate cholinergic fibres reduced the amplitude of subsequent GABAA receptor-mediated inhibitory postsynaptic currents. The reduction showed the same calcium and kinase dependence seen in ciliary ganglion neurons and was absent in hippocampal slices from alpha7-nAChR knockout mice. Moreover, alpha7-nAChR blockade in hippocampal slices reduced rundown of GABAA receptor-mediated whole-cell responses, indicating ongoing endogenous modulation. The results demonstrate regulation of GABAA receptors by alpha7-nAChRs on the postsynaptic neuron and identify a new mechanism by which nicotinic cholinergic signalling influences nervous system function.


Hippocampal α7 nicotinic ACh receptors contribute to modulation of depression-like behaviour in C57BL/6J mice.

  • Yann S Mineur‎ et al.
  • British journal of pharmacology‎
  • 2018‎

Clinical studies have identified links between cholinergic signalling and depression in human subjects. Increased cholinergic signalling in hippocampus also increases behaviours related to anxiety and depression in mice, which can be reversed by ACh receptor antagonists.


The modulation of nicotinic acetylcholine receptors on the neuronal network oscillations in rat hippocampal CA3 area.

  • Yang Wang‎ et al.
  • Scientific reports‎
  • 2015‎

γ oscillations are associated with higher brain functions such as memory, perception and consciousness. Disruption of γ oscillations occur in various neuro-psychological disorders such as schizophrenia. Nicotinic acetylcholine receptors (nAChR) are highly expressed in the hippocampus, however, little is known about the role on hippocampal persistent γ oscillation. This study examined the effects of nicotine and selective nAChR agonists and antagonists on kainate-induced persistent γ oscillation in rat hippocampal slices. Nicotine enhanced γ oscillation at concentrations of 0.1-10 μM, but reduced it at a higher concentration of 100 μM. The enhancement on γ oscillation can be best mimicked by co-application of α4β2- and α7-nAChR agonist and reduced by a combination of nAChR antagonists, DhβE and MLA. However, these nAChR antagonists failed to block the suppressing role of nicotine on γ. Furthermore, we found that the NMDA receptor antagonist D-AP5 completely blocked the effect of nicotine. These results demonstrate that nicotine modulates γ oscillations via α7 and α4β2 nAChR as well as NMDA activation, suggesting that nAChR activation may have a therapeutic role for the clinical disorder such as schizophrenia, which is known to have impaired γ oscillation and hypo-NMDA receptor function.


Identification of a negative allosteric site on human α4β2 and α3β4 neuronal nicotinic acetylcholine receptors.

  • Ryan E Pavlovicz‎ et al.
  • PloS one‎
  • 2011‎

Acetylcholine-based neurotransmission is regulated by cationic, ligand-gated ion channels called nicotinic acetylcholine receptors (nAChRs). These receptors have been linked to numerous neurological diseases and disorders such as Alzheimer's disease, Parkinson's disease, and nicotine addiction. Recently, a class of compounds has been discovered that antagonize nAChR function in an allosteric fashion. Models of human α4β2 and α3β4 nicotinic acetylcholine receptor (nAChR) extracellular domains have been developed to computationally explore the binding of these compounds, including the dynamics and free energy changes associated with ligand binding. Through a blind docking study to multiple receptor conformations, the models were used to determine a putative binding mode for the negative allosteric modulators. This mode, in close proximity to the agonist binding site, is presented in addition to a hypothetical mode of antagonism that involves obstruction of C loop closure. Molecular dynamics simulations and MM-PBSA free energy of binding calculations were used as computational validation of the predicted binding mode, while functional assays on wild-type and mutated receptors provided experimental support. Based on the proposed binding mode, two residues on the β2 subunit were independently mutated to the corresponding residues found on the β4 subunit. The T58K mutation resulted in an eight-fold decrease in the potency of KAB-18, a compound that exhibits preferential antagonism for human α4β2 over α3β4 nAChRs, while the F118L mutation resulted in a loss of inhibitory activity for KAB-18 at concentrations up to 100 µM. These results demonstrate the selectivity of KAB-18 for human α4β2 nAChRs and validate the methods used for identifying the nAChR modulator binding site. Exploitation of this site may lead to the development of more potent and subtype-selective nAChR antagonists which may be used in the treatment of a number of neurological diseases and disorders.


Contrasting properties of α7-selective orthosteric and allosteric agonists examined on native nicotinic acetylcholine receptors.

  • JasKiran K Gill‎ et al.
  • PloS one‎
  • 2013‎

Subtype-selective ligands are important tools for the pharmacological characterisation of neurotransmitter receptors. This is particularly the case for nicotinic acetylcholine receptors (nAChRs), given the heterogeneity of their subunit composition. In addition to agonists and antagonists that interact with the extracellular orthosteric nAChR binding site, a series of nAChR allosteric modulators have been identified that interact with a distinct transmembrane site. Here we report studies conducted with three pharmacologically distinct nicotinic ligands, an orthosteric agonist (compound B), a positive allosteric modulator (TQS) and an allosteric agonist (4BP-TQS). The primary focus of the work described in this study is to examine the suitability of these compounds for the characterisation of native neuronal receptors (both rat and human). However, initial experiments were conducted on recombinant nAChRs demonstrating the selectivity of these three compounds for α7 nAChRs. In patch-clamp recordings on rat primary hippocampal neurons we found that all these compounds displayed pharmacological properties that mimicked closely those observed on recombinant α7 nAChRs. However, it was not possible to detect functional responses with compound B, an orthosteric agonist, using a fluorescent intracellular calcium assay on either rat hippocampal neurons or with human induced pluripotent stem cell-derived neurons (iCell neurons). This is, presumably, due to the rapid desensitisation of α7 nAChR that is induced by orthosteric agonists. In contrast, clear agonist-evoked responses were observed in fluorescence-based assays with the non-desensitising allosteric agonist 4BP-TQS and also when compound B was co-applied with the non-desensitising positive allosteric modulator TQS. In summary, we have demonstrated the suitability of subtype-selective orthosteric and allosteric ligands for the pharmacological identification and characterisation of native nAChRs and the usefulness of ligands that minimise receptor desensitisation for the characterisation of α7 nAChRs in fluorescence-based assays.


Effects of nicotine on K+ currents and nicotinic receptors in astrocytes of the hippocampal CA1 region.

  • Miriam Hernández-Morales‎ et al.
  • Neuropharmacology‎
  • 2009‎

Nicotine, the main addictive substance in tobacco, interacts with muscle and neuronal nicotinic acetylcholine receptors (nAChRs) that are also localized in astrocytes. We studied electrical effects elicited by nicotine in cultured astrocytes from the CA1 area of the rat hippocampus. Nicotine elicited different types of responses: sustained inward currents, decaying inward currents, and biphasic responses (an outward, followed by an inward current). Nicotine showed two opposite effects, an increase or a decrease of astrocyte membrane conductance, when voltage ramps were applied during sustained inward currents. The former was isolated by blocking K+ currents with Cs+ and was inhibited by mecamylamine. The latter was mimicked by tetraethylammonium ion, and was obtained in the presence of nAChR antagonists (mecamylamine, methyllycaconitine plus dihydro-beta-erythroidine). Thus, these results indicate that nicotine activates nAChRs and directly inhibits K+ currents in cultured astrocytes from the CA1 region of the rat hippocampus.


α-Conotoxins active at α3-containing nicotinic acetylcholine receptors and their molecular determinants for selective inhibition.

  • Hartmut Cuny‎ et al.
  • British journal of pharmacology‎
  • 2018‎

Neuronal α3-containing nicotinic acetylcholine receptors (nAChRs) in the peripheral nervous system (PNS) and non-neuronal tissues are implicated in a number of severe disease conditions ranging from cancer to cardiovascular diseases and chronic pain. However, despite the physiological characterization of mouse models and cell lines, the precise pathophysiology of nAChRs outside the CNS remains not well understood, in part because there is a lack of subtype-selective antagonists. α-Conotoxins isolated from cone snail venom exhibit characteristic individual selectivity profiles for nAChRs and, therefore, are excellent tools to study the determinants for nAChR-antagonist interactions. Given that human α3β4 subtype selective α-conotoxins are scarce and this is a major nAChR subtype in the PNS, the design of new peptides targeting this nAChR subtype is desirable. Recent studies using α-conotoxins RegIIA and AuIB, in combination with nAChR site-directed mutagenesis and computational modelling, have shed light onto specific nAChR residues, which determine the selectivity of the α-conotoxins for the human α3β2 and α3β4 subtypes. Publications describing the selectivity profile and binding sites of other α-conotoxins confirm that subtype-selective nAChR antagonists often work through common mechanisms by interacting with the same structural components and sites on the receptor.


Nicotinic receptor activation contrasts pathophysiological bursting and neurodegeneration evoked by glutamate uptake block on rat hypoglossal motoneurons.

  • Silvia Corsini‎ et al.
  • The Journal of physiology‎
  • 2016‎

Impaired uptake of glutamate builds up the extracellular level of this excitatory transmitter to trigger rhythmic neuronal bursting and delayed cell death in the brainstem motor nucleus hypoglossus. This process is the expression of the excitotoxicity that underlies motoneuron degeneration in diseases such as amyotrophic lateral sclerosis affecting bulbar motoneurons. In a model of motoneuron excitotoxicity produced by pharmacological block of glutamate uptake in vitro, rhythmic bursting is suppressed by activation of neuronal nicotinic receptors with their conventional agonist nicotine. Emergence of bursting is facilitated by nicotinic receptor antagonists. Following excitotoxicity, nicotinic receptor activity decreases mitochondrial energy dysfunction, endoplasmic reticulum stress and production of toxic radicals. Globally, these phenomena synergize to provide motoneuron protection. Nicotinic receptors may represent a novel target to contrast pathological overactivity of brainstem motoneurons and therefore to prevent their metabolic distress and death.


High Throughput Random Mutagenesis and Single Molecule Real Time Sequencing of the Muscle Nicotinic Acetylcholine Receptor.

  • Paul J Groot-Kormelink‎ et al.
  • PloS one‎
  • 2016‎

High throughput random mutagenesis is a powerful tool to identify which residues are important for the function of a protein, and gain insight into its structure-function relation. The human muscle nicotinic acetylcholine receptor was used to test whether this technique previously used for monomeric receptors can be applied to a pentameric ligand-gated ion channel. A mutant library for the α1 subunit of the channel was generated by error-prone PCR, and full length sequences of all 2816 mutants were retrieved using single molecule real time sequencing. Each α1 mutant was co-transfected with wildtype β1, δ, and ε subunits, and the channel function characterized by an ion flux assay. To test whether the strategy could map the structure-function relation of this receptor, we attempted to identify mutations that conferred resistance to competitive antagonists. Mutant hits were defined as receptors that responded to the nicotinic agonist epibatidine, but were not inhibited by either α-bungarotoxin or tubocurarine. Eight α1 subunit mutant hits were identified, six of which contained mutations at position Y233 or V275 in the transmembrane domain. Three single point mutations (Y233N, Y233H, and V275M) were studied further, and found to enhance the potencies of five channel agonists tested. This suggests that the mutations made the channel resistant to the antagonists, not by impairing antagonist binding, but rather by producing a gain-of-function phenotype, e.g. increased agonist sensitivity. Our data show that random high throughput mutagenesis is applicable to multimeric proteins to discover novel functional mutants, and outlines the benefits of using single molecule real time sequencing with regards to quality control of the mutant library as well as downstream mutant data interpretation.


Nicotinic receptors in the cerebellar vermis modulate the gain of the vestibulospinal reflexes in decerebrate cats.

  • P Andre‎ et al.
  • Archives italiennes de biologie‎
  • 1993‎

1. The possibility that the cholinergic afferent system terminating in the vermal cortex of the cerebellar anterior lobe acts on the target neurons by utilizing nicotinic receptors has been investigated in decerebrate cats by testing the effects of local microinjection of cholinergic nicotinic agonists and antagonists on posture as well as on the dynamic characteristics of the vestibulospinal (VS) reflexes. 2. Unilateral injection into the vermal cortex of the culmen of nicotine (0.25 microliter at the concentration of 0.05-0.5 microgram/microliter saline) decreased the extensor tonus in the ipsilateral forelimb, while the extensor tonus in the contralateral forelimb increased. The some agent significantly increased the gain of the first harmonic component of the EMG responses of the ipsilateral and more prominently also of the contralateral triceps brachii to animal tilt. However, the phase angle of the responses remained bilaterally unmodified. The effects described above were first observed 5-10 min after the injection, reached the peak after 40-60 min and persisted for at least 2-3 h before disappearing. 3. The effective area was located between the second and the fourth folium of the cerebellar vermis rostral to the fissura prima, at the laterality of 1.4-1.8 mm. This area, which upon cathodal stimulation suppressed the spontaneous EMG activity of the ipsilateral triceps brachii, actually corresponds to the zone B of the cerebellar cortex which exerts a direct inhibitory influence on the lateral vestibular nucleus. Moreover, the effects were dose-dependent. 4. Microinjection of nicotinic antagonists of both the ganglionic type (hexamethonium, 0.25 microliter at 4 micrograms/microliters saline) and the neuromuscular type (d-tubocurarine, 0.25 microliter at 7 micrograms/microliters saline) produced a postural asymmetry opposite in sign to that elicited by nicotine. The same agents also decreased the response gain of the triceps brachii of both sides to animal tilt recorded either under normal conditions or after previous injections of nicotine. 5. The experiments indicate that the cholinergic system is involved in the control of posture as well as in the gain regulation of the VS reflexes. Previous histochemical studies had shown that the cholinergic fibers terminate not only on Purkinje (P)-cells, but also and more prominently as mossy fibers ending on granular cells. This system may thus affect the discharge of P-cells and related inhibitory interneurons not only ipsilaterally but also contralaterally to the side of the injection.(ABSTRACT TRUNCATED AT 400 WORDS)


Generation of nanobodies acting as silent and positive allosteric modulators of the α7 nicotinic acetylcholine receptor.

  • Qimeng Li‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2023‎

The α7 nicotinic acetylcholine receptor (nAChR), a potential drug target for treating cognitive disorders, mediates communication between neuronal and non-neuronal cells. Although many competitive antagonists, agonists, and partial-agonists have been found and synthesized, they have not led to effective therapeutic treatments. In this context, small molecules acting as positive allosteric modulators binding outside the orthosteric, acetylcholine, site have attracted considerable interest. Two single-domain antibody fragments, C4 and E3, against the extracellular domain of the human α7-nAChR were generated through alpaca immunization with cells expressing a human α7-nAChR/mouse 5-HT3A chimera, and are herein described. They bind to the α7-nAChR but not to the other major nAChR subtypes, α4β2 and α3β4. E3 acts as a slowly associating positive allosteric modulator, strongly potentiating the acetylcholine-elicited currents, while not precluding the desensitization of the receptor. An E3-E3 bivalent construct shows similar potentiating properties but displays very slow dissociation kinetics conferring quasi-irreversible properties. Whereas, C4 does not alter the receptor function, but fully inhibits the E3-evoked potentiation, showing it is a silent allosteric modulator competing with E3 binding. Both nanobodies do not compete with α-bungarotoxin, localizing at an allosteric extracellular binding site away from the orthosteric site. The functional differences of each nanobody, as well as the alteration of functional properties through nanobody modifications indicate the importance of this extracellular site. The nanobodies will be useful for pharmacological and structural investigations; moreover, they, along with the extracellular site, have a direct potential for clinical applications.


6-bromohypaphorine from marine nudibranch mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor.

  • Igor E Kasheverov‎ et al.
  • Marine drugs‎
  • 2015‎

6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR). Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of chicken α7 ligand-binding and glycine receptor transmembrane domains) or on rat α4β2 nAChR expressed in Xenopus oocytes revealed no action of 6-BHP. However, in radioligand analysis, 6-BHP competed with radioiodinated α-bungarotoxin for binding to human α7 nAChR expressed in GH4C1 cells (IC50 23 ± 1 μM), but showed no competition on muscle-type nAChR from Torpedo californica. In Ca2+-imaging experiments on the human α7 nAChR expressed in the Neuro2a cells, 6-BHP in the presence of PNU120596 behaved as an agonist (EC50 ~80 μM). To the best of our knowledge, 6-BHP is the first low-molecular weight compound from marine source which is an agonist of the nAChR subtype. This may have physiological importance because H. crassicornis, with its simple and tractable nervous system, is a convenient model system for studying the learning and memory processes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: