Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 9,607 papers

A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China.

  • Yafen Song‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are "mixing vessels," and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses.


Systems-based candidate genes for human response to influenza infection.

  • Lyna Zhang‎ et al.
  • Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases‎
  • 2009‎

Influenza A is a serious respiratory illness that can be debilitating and may cause complications leading to hospitalization and death. The outcome of infection with the influenza A virus is determined by a complex interplay of viral and host factors. With the ongoing threat of seasonal influenza and the potential emergence of new, more virulent strains of influenza viruses, we need to develop a better understanding of genetic variation in the human population and its association with severe outcomes from influenza infection. We propose a list of approximately 100 systems-based candidate genes for future study of the genetic basis of influenza disease and immunity in humans, based on evidence in the published literature for their potential role in the pathogenesis of this infection: binding of the virus to receptors on the host cell surface; cleavability of HA by host proteases; virus replication in host cells; destruction of host cells by apoptosis; state of immunocompetence of the individual host; and viral infections predisposing to bacterial infection.


Continental synchronicity of human influenza virus epidemics despite climatic variation.

  • Jemma L Geoghegan‎ et al.
  • PLoS pathogens‎
  • 2018‎

The factors that determine the pattern and rate of spread of influenza virus at a continental-scale are uncertain. Although recent work suggests that influenza epidemics in the United States exhibit a strong geographical correlation, the spatiotemporal dynamics of influenza in Australia, a country and continent of approximately similar size and climate complexity but with a far smaller population, are not known. Using a unique combination of large-scale laboratory-confirmed influenza surveillance comprising >450,000 entries and genomic sequence data we determined the local-level spatial diffusion of this important human pathogen nationwide in Australia. We used laboratory-confirmed influenza data to characterize the spread of influenza virus across Australia during 2007-2016. The onset of established epidemics varied across seasons, with highly synchronized epidemics coinciding with the emergence of antigenically distinct viruses, particularly during the 2009 A/H1N1 pandemic. The onset of epidemics was largely synchronized between the most populous cities, even those separated by distances of >3000 km and those that experience vastly diverse climates. In addition, by analyzing global phylogeographic patterns we show that the synchronized dissemination of influenza across Australian cities involved multiple introductions from the global influenza population, coupled with strong domestic connectivity, rather than through the distinct radial patterns of geographic dispersal that are driven by work-flow transmission as observed in the United States. In addition, by comparing the spatial structure of influenza A and B, we found that these viruses tended to occupy different geographic regions, and peak in different seasons, perhaps indicative of moderate cross-protective immunity or viral interference effects. The highly synchronized outbreaks of influenza virus at a continental-scale revealed here highlight the importance of coordinated public health responses in the event of the emergence of a novel, human-to-human transmissible, virus.


Neutralizing activities against seasonal influenza viruses in human intravenous immunoglobulin.

  • Hiroyuki Onodera‎ et al.
  • Biologics : targets & therapy‎
  • 2017‎

Influenza viruses A/H1N1, A/H3N2, and B are known seasonal viruses that undergo annual mutation. Intravenous immunoglobulin (IVIG) contains anti-seasonal influenza virus globulins. Although the virus-neutralizing (VN) titer is an indicator of protective antibodies, changes in this titer over extended time periods have yet to be examined. In this study, variations in hemagglutination inhibition (HI) and VN titers against seasonal influenza viruses in IVIG lots over extended time periods were examined. In addition, the importance of monitoring the reactivity of IVIG against seasonal influenza viruses with varying antigenicity was evaluated. A/H1N1, A/H3N2, and B influenza virus strains and IVIG lots manufactured from 1999 to 2014 were examined. The HI titer was measured by standard methods. The VN titer was measured using a micro-focus method. IVIG exhibited significant HI and VN titers against all investigated strains. Our results suggest that the donor population maintains both specific and cross-reactive antibodies against seasonal influenza viruses, except in cases of pandemic viruses, despite major antigen changes. The titers against seasonal influenza vaccine strains, including past strains, were stable over short time periods but increased slowly over time.


Detection Methods of Human and Animal Influenza Virus-Current Trends.

  • Karolina Dziąbowska‎ et al.
  • Biosensors‎
  • 2018‎

The basic affairs connected to the influenza virus were reviewed in the article, highlighting the newest trends in its diagnostic methods. Awareness of the threat of influenza arises from its ability to spread and cause a pandemic. The undiagnosed and untreated viral infection can have a fatal effect on humans. Thus, the early detection seems pivotal for an accurate treatment, when vaccines and other contemporary prevention methods are not faultless. Public health is being attacked with influenza containing new genes from a genetic assortment between animals and humankind. Unfortunately, the population does not have immunity for mutant genes and is attacked in every viral outbreak season. For these reasons, fast and accurate devices are in high demand. As currently used methods like Rapid Influenza Diagnostic Tests lack specificity, time and cost-savings, new methods are being developed. In the article, various novel detection methods, such as electrical and optical were compared. Different viral elements used as detection targets and analysis parameters, such as sensitivity and specificity, were presented and discussed.


Experimental H1N1pdm09 infection in pigs mimics human seasonal influenza infections.

  • Theresa Schwaiger‎ et al.
  • PloS one‎
  • 2019‎

Pigs are anatomically, genetically and physiologically comparable to humans and represent a natural host for influenza A virus (IAV) infections. Thus, pigs may represent a relevant biomedical model for human IAV infections. We set out to investigate the systemic as well as the local immune response in pigs upon two subsequent intranasal infections with IAV H1N1pdm09. We detected decreasing numbers of peripheral blood lymphocytes after the first infection. The simultaneous increase in the frequencies of proliferating cells correlated with an increase in infiltrating leukocytes in the lung. Enhanced perforin expression in αβ and γδ T cells in the respiratory tract indicated a cytotoxic T cell response restricted to the route of virus entry such as the nose, the lung and the bronchoalveolar lavage. Simultaneously, increasing frequencies of CD8αα expressing αβ T cells were observed rapidly after the first infection, which may have inhibited uncontrolled inflammation in the respiratory tract. Taking together, the results of this study demonstrate that experimental IAV infection in pigs mimics major characteristics of human seasonal IAV infections.


Influenza vaccine induces intracellular immune memory of human NK cells.

  • Yaling Dou‎ et al.
  • PloS one‎
  • 2015‎

Influenza vaccines elicit antigen-specific antibodies and immune memory to protect humans from infection with drift variants. However, what supports or limits vaccine efficacy and duration is unclear. Here, we vaccinated healthy volunteers with annual vaccine formulations and investigated the dynamics of T cell, natural killer (NK) cell and antibody responses upon restimulation with heterologous or homologous influenza virus strains. Influenza vaccines induced potential memory NK cells with increased antigen-specific recall IFN-γ responses during the first 6 months. In the absence of significant changes in other NK cell markers (CD45RO, NKp44, CXCR6, CD57, NKG2C, CCR7, CD62L and CD27), influenza vaccines induced memory NK cells with the distinct feature of intracellular NKp46 expression. Indeed, surface NKp46 was internalized, and the dynamic increase in NKp46(intracellular)+CD56dim NK cells positively correlated with increased IFN-γ production to influenza virus restimulation after vaccination. In addition, anti-NKp46 antibodies blocked IFN-γ responses. These findings provide insights into a novel mechanism underlying vaccine-induced immunity and NK-related diseases, which may help to design persisting and universal vaccines in the future.


Post-pandemic seroprevalence of human influenza viruses in domestic cats.

  • Mahmoud Ibrahim‎ et al.
  • Journal of veterinary science‎
  • 2016‎

The continuous exposure of cats to diverse influenza viruses raises the concern of a potential role of cats in the epidemiology of these viruses. Our previous seroprevalence study of domestic cat sera collected during the 2009 H1N1 pandemic wave (September 2009-September 2010) revealed a high prevalence of pandemic H1N1, as well as seasonal H1N1 and H3N2 human flu virus infection (22.5%, 33.0%, and 43.5%, respectively). In this study, we extended the serosurvey of influenza viruses in cat sera collected post-pandemic (June 2011-August 2012). A total of 432 cat sera were tested using the hemagglutination inhibition assay. The results showed an increase in pandemic H1N1 prevalence (33.6%) and a significant reduction in both seasonal H1N1 and H3N2 prevalence (10.9% and 17.6%, respectively) compared to our previous survey conducted during the pandemic wave. The pandemic H1N1 prevalence in cats showed an irregular seasonality pattern in the post-pandemic phase. Pandemic H1N1 reactivity was more frequent among female cats than male cats. In contrast to our earlier finding, no significant association between clinical respiratory disease and influenza virus infection was observed. Our study highlights a high susceptibility among cats to human influenza virus infection that is correlated with influenza prevalence in the human population.


Co-circulation of multiple influenza A reassortants in swine harboring genes from seasonal human and swine influenza viruses.

  • Pia Ryt-Hansen‎ et al.
  • eLife‎
  • 2021‎

Since the influenza pandemic in 2009, there has been an increased focus on swine influenza A virus (swIAV) surveillance. This paper describes the results of the surveillance of swIAV in Danish swine from 2011 to 2018. In total, 3800 submissions were received with a steady increase in swIAV-positive submissions, reaching 56% in 2018. Full-genome sequences were obtained from 129 swIAV-positive samples. Altogether, 17 different circulating genotypes were identified including six novel reassortants harboring human seasonal IAV gene segments. The phylogenetic analysis revealed substantial genetic drift and also evidence of positive selection occurring mainly in antigenic sites of the hemagglutinin protein and confirmed the presence of a swine divergent cluster among the H1pdm09Nx (clade 1A.3.3.2) viruses. The results provide essential data for the control of swIAV in pigs and emphasize the importance of contemporary surveillance for discovering novel swIAV strains posing a potential threat to the human population.


The Effect of Influenza Virus on the Human Oropharyngeal Microbiome.

  • Elisa Ramos-Sevillano‎ et al.
  • Clinical infectious diseases : an official publication of the Infectious Diseases Society of America‎
  • 2019‎

Secondary bacterial infections are an important cause of morbidity and mortality associated with influenza infections. As bacterial disease can be caused by a disturbance of the host microbiome, we examined the impact of influenza on the upper respiratory tract microbiome in a human challenge study.


Human antibody responses to avian influenza A(H7N9) virus, 2013.

  • Li Guo‎ et al.
  • Emerging infectious diseases‎
  • 2014‎

Understanding host antibody response is crucial for predicting disease severity and for vaccine development. We investigated antibody responses against influenza A(H7N9) virus in 48 serum samples from 21 patients, including paired samples from 15 patients. IgG against subtype H7 and neutralizing antibodies (NAbs) were not detected in acute-phase samples, but ELISA geometric mean titers increased in convalescent-phase samples; NAb titers were 20-80 (geometric mean titer 40). Avidity to IgG against subtype H7 was significantly lower than that against H1 and H3. IgG against H3 was boosted after infection with influenza A(H7N9) virus, and its level in acute-phase samples correlated with that against H7 in convalescent-phase samples. A correlation was also found between hemagglutinin inhibition and NAb titers and between hemagglutinin inhibition and IgG titers against H7. Because of the relatively weak protective antibody response to influenza A(H7N9), multiple vaccinations might be needed to achieve protective immunity.


Potential Pandemic of H7N9 Avian Influenza A Virus in Human.

  • Zhiqing Pu‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2018‎

Since 2013, the H7N9 avian influenza A virus (AIV) has caused human infections and to the extent of now surpassing H5N1. This raises an alarm about the potential of H7N9 to become a pandemic problem. Our compilation of the amino acid changes required for AIVs to cross the species-barrier discovers 58 that have very high proportions in both the human- and avian-isolated H7N9 viruses. These changes correspond with sporadic human infections that continue to occur in regions of avian infections. Among the six internal viral genes, amino acid changes do not differ significantly between H9N2 and H7N9, except for V100A in PA, and K526R, D627K, and D701N in PB2. H9N2 AIVs provide internal genes to H7N9. Most of the amino acid changes in H7N9 appear to come directly from H9N2. Seventeen amino acid substitutions appear to have fixed quickly by the 5th wave. Among these, six amino acid sites in HA1 are receptor binding sites, and PB2-A588V was shown to promote the adaptation of AIVs to mammals. The accelerated fixation of mutations may promote the adaptation of H7N9 to human, but need further functional evidence. Although H7N9 AIVs still cannot efficiently transmit between humans, they have the genetic makeup associated with human infections. These viruses must be controlled in poultry to remove the threat of it becoming a human pandemic event.


Three mutations switch H7N9 influenza to human-type receptor specificity.

  • Robert P de Vries‎ et al.
  • PLoS pathogens‎
  • 2017‎

The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.


Influenza A Virus in Pigs in Senegal and Risk Assessment of Avian Influenza Virus (AIV) Emergence and Transmission to Human.

  • Mamadou Malado Jallow‎ et al.
  • Microorganisms‎
  • 2023‎

We conducted an active influenza surveillance in the single pig slaughterhouse in Dakar to investigate the epidemiology and genetic characteristics of influenza A viruses (IAVs) and to provide serologic evidence of avian influenza virus (AIV) infection in pigs at interfaces with human populations in Senegal. Nasal swab and blood samples were collected on a weekly basis from the same animal immediately after slaughter. Influenza A viruses were diagnosed using RT-qPCR and a subset of positive samples for H3 and H1 subtypes were selected for full genome amplification and NGS sequencing. Serum samples were tested by HI assay for the detection of antibodies recognizing four AIVs, including H9N2, H5N1, H7N7 and H5N2. Between September 2018 and December 2019, 1691 swine nasal swabs were collected and tested. Influenza A virus was detected in 30.7% (520/1691), and A/H1N1pdm09 virus was the most commonly identified subtype with 38.07% (198/520), followed by A/H1N2 (16.3%) and A/H3N2 (5.2%). Year-round influenza activity was noted in pigs, with the highest incidence between June and September. Phylogenetic analyses revealed that the IAVs were closely related to human IAV strains belonging to A/H1N1pdm09 and seasonal H3N2 lineages. Genetic analysis revealed that Senegalese strains possessed several key amino acid changes, including D204 and N241D in the receptor binding site, S31N in the M2 gene and P560S in the PA protein. Serological analyses revealed that 83.5% (95%CI = 81.6-85.3) of the 1636 sera tested were positive for the presence of antibodies against either H9N2, H5N1, H7N7 or H5N2. Influenza H7N7 (54.3%) and H9N2 (53.6%) were the dominant avian subtypes detected in Senegalese pigs. Given the co-circulation of multiple subtypes of influenza viruses among Senegalese pigs, the potential exists for the emergence of new hybrid viruses of unpredictable zoonotic and pandemic potential in the future.


Global transcriptome analysis of H5N1 influenza virus-infected human cells.

  • Ying Cao‎ et al.
  • Hereditas‎
  • 2019‎

Influenza A virus (IAV) belongs to the Orthomyxoviridae family. IAV causes a highly contagious respiratory disease in humans that exacts severe economic losses globally. The virus uses strategies developed to exploit and subvert cellular proteins and pathways to increase its own replication and to inhibit antiviral immune response.


Risk for avian influenza virus exposure at human-wildlife interface.

  • Jennifer Siembieda‎ et al.
  • Emerging infectious diseases‎
  • 2008‎

To assess risk for human exposure to avian influenza viruses (AIV), we sampled California wild birds and marine mammals during October 2005-August 2007 and estimated human-wildlife contact. Waterfowl hunters were 8 times more likely to have contact with AIV-infected wildlife than were persons with casual or occupational exposures (p<0.0001).


Affinity maturation in a human humoral response to influenza hemagglutinin.

  • Kevin R McCarthy‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

Affinity maturation of the B cell antigen receptor (BCR) is a conserved and crucial component of the adaptive immune response. BCR lineages, inferred from paired heavy- and light-chain sequences of rearranged Ig genes from multiple descendants of the same naive B cell precursor (the lineages' unmutated common ancestor, "UCA"), make it possible to reconstruct the underlying somatic evolutionary history. We present here an extensive structural and biophysical analysis of a lineage of BCRs directed against the receptor binding site (RBS) of subtype H1 influenza virus hemagglutinin (HA). The lineage includes 8 antibodies detected directly by sequencing, 3 in 1 principal branch and 5 in the other. When bound to HA, the heavy-chain third complementarity determining region (HCDR3) fits with an invariant pose into the RBS, but in each of the 2 branches, the rest of the Fab reorients specifically, from its position in the HA-bound UCA, about a hinge at the base of HCDR3. New contacts generated by the reorientation compensate for contacts lost as the H1 HA mutated during the time between the donor's initial exposure and the vaccination that preceded sampling. Our data indicate that a "pluripotent" naive response differentiated, in each branch, into 1 of its possible alternatives. This property of naive BCRs and persistence of multiple branches of their progeny lineages can offer broader protection from evolving pathogens than can a single, linear pathway of somatic mutation.


Adaptation of novel H7N9 influenza A virus to human receptors.

  • J C F M Dortmans‎ et al.
  • Scientific reports‎
  • 2013‎

The emergence of the novel H7N9 influenza A virus (IAV) has caused global concerns about the ability of this virus to spread between humans. Analysis of the receptor-binding properties of this virus using a recombinant protein approach in combination with fetuin-binding, glycan array and human tissue-binding assays demonstrates increased binding of H7 to both α2-6 and α2-8 sialosides as well as reduced binding to α2-3-linked SIAs compared to a closely related avian H7N9 virus from 2008. These differences could be attributed to substitutions Q226L and G186V. Analysis of the enzymatic activity of the neuraminidase N9 protein indicated a reduced sialidase activity, consistent with the reduced binding of H7 to α2-3 sialosides. However, the novel H7N9 virus still preferred binding to α2-3- over α2-6-linked SIAs and was not able to efficiently bind to epithelial cells of human trachea in contrast to seasonal IAV, consistent with its limited human-to-human transmission.


Age-based human influenza A virus (H5N1) infection patterns, Egypt.

  • Alan Schroedl‎
  • Emerging infectious diseases‎
  • 2010‎

No abstract available


Airborne transmission of human-isolated avian H3N8 influenza virus between ferrets.

  • Honglei Sun‎ et al.
  • Cell‎
  • 2023‎

H3N8 avian influenza viruses (AIVs) in China caused two confirmed human infections in 2022, followed by a fatal case reported in 2023. H3N8 viruses are widespread in chicken flocks; however, the zoonotic features of H3N8 viruses are poorly understood. Here, we demonstrate that H3N8 viruses were able to infect and replicate efficiently in organotypic normal human bronchial epithelial (NHBE) cells and lung epithelial (Calu-3) cells. Human isolates of H3N8 virus were more virulent and caused severe pathology in mice and ferrets, relative to chicken isolates. Importantly, H3N8 virus isolated from a patient with severe pneumonia was transmissible between ferrets through respiratory droplets; it had acquired human-receptor-binding preference and amino acid substitution PB2-E627K necessary for airborne transmission. Human populations, even when vaccinated against human H3N2 virus, appear immunologically naive to emerging mammalian-adapted H3N8 AIVs and could be vulnerable to infection at epidemic or pandemic proportion.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: