Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 257 papers

A 7-Year Report of Spectrum of Inborn Errors of Metabolism on Full-Term and Premature Infants in a Chinese Neonatal Intensive Care Unit.

  • Wanqiao Zhang‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Inborn errors of metabolism (IEMs) have great repercussions in neonatal intensive care units (NICUs). However, the integrative analysis of the incidence for full-term and premature neonates of IEMs in NICUs have not been reported. In this study, we aimed to estimate the incidence of IEMs in the NICU population so as to better evaluate the impact of IEMs on Chinese NICUs. A total of 42,257 newborns (proportion of premature as 36.7%) enrolled to the largest Chinese NICU center for a sequential 7 years screen, and 66 were diagnosed with IEMs. The prevalence of IEMs in total, full-term, and premature infants was 1:640, 1:446, and 1:2,584, respectively. In spectrum of our NICU, diseases that cause endogenous intoxication like methylmalonic acidemia accounted for 93.9% (62/66), and this ratio was higher in full-term infants with 98.3% (59/60), while the most prevalent disease in premature newborn was hyperphenylalaninemia (50%, 3/6), respectively. The genetic analysis of 49 cases revealed 62 potentially pathogenic mutations in 10 well-documented pathogenic genes of IEMs, among which 21 were novel. In conclusion, differences in incidence and spectrum of full-term and premature births we obtained in NICU will provide diagnostic guidelines and therapeutic clues of neonatal IEMs for pediatricians.


The impact of disease severity on the psychological well-being of youth affected by an inborn error of metabolism and their families: A one-year longitudinal study.

  • Nevena Dimitrova‎ et al.
  • Molecular genetics and metabolism reports‎
  • 2021‎

Inborn errors of metabolism (IEMs) refer to rare heterogeneous genetic disorders with various clinical manifestations that can cause serious physical and psychological sequelae. Results of previous studies on the impact of an IEM on health-related quality of life (HR-QoL) were incongruent and only few studies considered more broadly the psychological well-being of children with IEM and their families. Our objectives were to examine: (1) the impact of the IEM severity on the HR-QoL and psychological functioning of patients and their parents at baseline; and (2) its evolution over time; and (3) the correlation between parental and children's perspectives. Methods: The sample included 69 pediatric patients (mean age = 7.55 y, SD = 4.59) with evaluations at baseline and after one year. We collected data on HR-QoL, child mental health and emotional regulation as well as on parental mood and stress using different validated questionnaires. IEM severity was rated by a clinician through the biological subdomain of the pediatric INTERMED instrument. Results: Two groups of patients based on IEM severity scores were created (n = 31 with low and n = 38 with moderate/high IEM severity). The two groups differed with respect to age, diet and supplement intake. IEM severity had an impact on HR-QoL and behavioral symptoms in children, as well as on HR-QoL and stress in parents. For patients with moderate/high IEM severity, child and parental HR-QoL improved after 1-year of follow-up. We did not observe any significant difference between evaluations by patients versus parents. Conclusions: Our findings demonstrate that moderate/high IEM severity altered child and parental psychological well-being, but also revealed a significant improvement after one-year follow-up. This observation suggests that patients with a moderate/high IEM severity and their families benefit from the care of an interdisciplinary team including a child psychologist specialized in IEMs. Moreover, in patients with higher IEM severity there may also be more room for improvement compared to patients with low IEM severity. Future studies should focus on observations over a larger time span, particularly during adolescence, and should include objective measurements.


Diagnosis support systems for rare diseases: a scoping review.

  • Carole Faviez‎ et al.
  • Orphanet journal of rare diseases‎
  • 2020‎

Rare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due to lack of knowledge of most clinicians and a small number of expert centers. Consequently, computerized diagnosis support systems have been developed to address these issues, with many relying on rare disease expertise and taking advantage of the increasing volume of generated and accessible health-related data. Our objective is to perform a review of all initiatives aiming to support the diagnosis of rare diseases.


Human inherited complete STAT2 deficiency underlies inflammatory viral diseases.

  • Giorgia Bucciol‎ et al.
  • The Journal of clinical investigation‎
  • 2023‎

STAT2 is a transcription factor activated by type I and III IFNs. We report 23 patients with loss-of-function variants causing autosomal recessive (AR) complete STAT2 deficiency. Both cells transfected with mutant STAT2 alleles and the patients' cells displayed impaired expression of IFN-stimulated genes and impaired control of in vitro viral infections. Clinical manifestations from early childhood onward included severe adverse reaction to live attenuated viral vaccines (LAV) and severe viral infections, particularly critical influenza pneumonia, critical COVID-19 pneumonia, and herpes simplex virus type 1 (HSV-1) encephalitis. The patients displayed various types of hyperinflammation, often triggered by viral infection or after LAV administration, which probably attested to unresolved viral infection in the absence of STAT2-dependent types I and III IFN immunity. Transcriptomic analysis revealed that circulating monocytes, neutrophils, and CD8+ memory T cells contributed to this inflammation. Several patients died from viral infection or heart failure during a febrile illness with no identified etiology. Notably, the highest mortality occurred during early childhood. These findings show that AR complete STAT2 deficiency underlay severe viral diseases and substantially impacts survival.


Genotypic and clinical analysis of 49 Chinese children with hepatic glycogen storage diseases.

  • Yan Liang‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2020‎

Glycogen storage disease (GSD) is a relatively rare inborn metabolic disorder, our study aims to investigate the genotypic and clinical feature of hepatic GSDs in China.


A loss-of-function IFNAR1 allele in Polynesia underlies severe viral diseases in homozygotes.

  • Paul Bastard‎ et al.
  • The Journal of experimental medicine‎
  • 2022‎

Globally, autosomal recessive IFNAR1 deficiency is a rare inborn error of immunity underlying susceptibility to live attenuated vaccine and wild-type viruses. We report seven children from five unrelated kindreds of western Polynesian ancestry who suffered from severe viral diseases. All the patients are homozygous for the same nonsense IFNAR1 variant (p.Glu386*). This allele encodes a truncated protein that is absent from the cell surface and is loss-of-function. The fibroblasts of the patients do not respond to type I IFNs (IFN-α2, IFN-ω, or IFN-β). Remarkably, this IFNAR1 variant has a minor allele frequency >1% in Samoa and is also observed in the Cook, Society, Marquesas, and Austral islands, as well as Fiji, whereas it is extremely rare or absent in the other populations tested, including those of the Pacific region. Inherited IFNAR1 deficiency should be considered in individuals of Polynesian ancestry with severe viral illnesses.


The Canadian Rare Diseases Models and Mechanisms (RDMM) Network: Connecting Understudied Genes to Model Organisms.

  • Kym M Boycott‎ et al.
  • American journal of human genetics‎
  • 2020‎

Advances in genomics have transformed our ability to identify the genetic causes of rare diseases (RDs), yet we have a limited understanding of the mechanistic roles of most genes in health and disease. When a novel RD gene is first discovered, there is minimal insight into its biological function, the pathogenic mechanisms of disease-causing variants, and how therapy might be approached. To address this gap, the Canadian Rare Diseases Models and Mechanisms (RDMM) Network was established to connect clinicians discovering new disease genes with Canadian scientists able to study equivalent genes and pathways in model organisms (MOs). The Network is built around a registry of more than 500 Canadian MO scientists, representing expertise for over 7,500 human genes. RDMM uses a committee process to identify and evaluate clinician-MO scientist collaborations and approve 25,000 Canadian dollars in catalyst funding. To date, we have made 85 clinician-MO scientist connections and funded 105 projects. These collaborations help confirm variant pathogenicity and unravel the molecular mechanisms of RD, and also test novel therapies and lead to long-term collaborations. To expand the impact and reach of this model, we made the RDMM Registry open-source, portable, and customizable, and we freely share our committee structures and processes. We are currently working with emerging networks in Europe, Australia, and Japan to link international RDMM networks and registries and enable matches across borders. We will continue to create meaningful collaborations, generate knowledge, and advance RD research locally and globally for the benefit of patients and families living with RD.


Pulmonary Alveolar Proteinosis and Multiple Infectious Diseases in a Child with Autosomal Recessive Complete IRF8 Deficiency.

  • Jérémie Rosain‎ et al.
  • Journal of clinical immunology‎
  • 2022‎

Autosomal recessive (AR) complete IRF8 deficiency is a rare severe inborn error of immunity underlying an absence of blood myeloid mononuclear cells, intracerebral calcifications, and multiple infections. Only three unrelated patients have been reported.


Plasma coenzyme Q10 status is impaired in selected genetic conditions.

  • Raquel Montero‎ et al.
  • Scientific reports‎
  • 2019‎

Identifying diseases displaying chronic low plasma Coenzyme Q10 (CoQ) values may be important to prevent possible cardiovascular dysfunction. The aim of this study was to retrospectively evaluate plasma CoQ concentrations in a large cohort of pediatric and young adult patients. We evaluated plasma CoQ values in 597 individuals (age range 1 month to 43 years, average 11 years), studied during the period 2005-2016. Patients were classified into 6 different groups: control group of healthy participants, phenylketonuric patients (PKU), patients with mucopolysaccharidoses (MPS), patients with other inborn errors of metabolism (IEM), patients with neurogenetic diseases, and individuals with neurological diseases with no genetic diagnosis. Plasma total CoQ was measured by reverse-phase high-performance liquid chromatography with electrochemical detection and ultraviolet detection at 275 nm. ANOVA with Bonferroni correction showed that plasma CoQ values were significantly lower in the PKU and MPS groups than in controls and neurological patients. The IEM group showed intermediate values that were not significantly different from those of the controls. In PKU patients, the Chi-Square test showed a significant association between having low plasma CoQ values and being classic PKU patients. The percentage of neurogenetic and other neurological patients with low CoQ values was low (below 8%). In conclusión, plasma CoQ monitoring in selected groups of patients with different IEM (especially in PKU and MPS patients, but also in IEM under protein-restricted diets) seems advisable to prevent the possibility of a chronic blood CoQ suboptimal status in such groups of patients.


The genetic basis of classical galactosaemia in Polish patients.

  • Aleksandra Jezela-Stanek‎ et al.
  • Orphanet journal of rare diseases‎
  • 2021‎

Classic galactosemia (OMIM #230400) is an autosomal recessive disorder caused by homozygous or compound heterozygous pathogenic variants in the galactose-1-phosphate uridylyltransferase gene (GALT; 606999) on chromosome 9p13. Its diagnosis is established by detecting elevated erythrocyte galactose-1-phosphate concentration, reduced erythrocyte galactose-1-phosphate uridylyltransferase (GALT) enzyme activity. Biallelic pathogenic variants in the GALT gene is confirmed by DNA analysis. Our paper presents molecular characteristics of 195 Polish patients diagnosed with galactosemia I, intending to expand the current knowledge of this rare disease's molecular etiology. To the best of our knowledge, the described cohort of galactosemia patients is the largest single-center cohort presented so far.


Single-Center Overview of Pediatric Monogenic Autoinflammatory Diseases in the Past Decade: A Summary and Beyond.

  • Wei Wang‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Objective: Monogenic autoinflammatory diseases (AIDs) are inborn disorders caused by innate immunity dysregulation and characterized by robust autoinflammation. We aimed to present the phenotypes and genotypes of Chinese pediatric monogenic AID patients. Methods: A total of 288 pediatric patients clinically suspected to have monogenic AIDs at the Department of Pediatrics of Peking Union Medical College Hospital between November 2008 and May 2019 were genotyped by Sanger sequencing, and/or gene panel sequencing and/or whole exome sequencing. Final definite diagnoses were made when the phenotypes and genotypes were mutually verified. Results: Of the 288 patients, 79 (27.4%) were diagnosed with 18 kinds of monogenic AIDs, including 33 patients with inflammasomopathies, 38 patients with non-inflammasome related conditions, and eight patients with type 1 interferonopathies. Main clinical features were skin disorders (76%), musculoskeletal problems (66%), fever (62%), growth retardation (33%), gastrointestinal tract abnormalities (25%), central nervous system abnormalities (15%), eye disorders (16%), ear problems (9%), and cardiopulmonary disorders (8%). The causative genes were ACP5, ADA2, ADAR1, IFIH1, LPIN2, MEFV, MVK, NLRC4, NLRP3, NLRP12, NOD2, PLCG2, PSMB8, PSTPIP1, TMEM173, TNFAIP3, TNFRSF1A, and TREX1. Conclusions: The present study summarized both clinical and genetic characteristics of 18 kinds of monogenic AIDs found in the largest pediatric AID center over the past decade, with fever, skin problems, and musculoskeletal system disorders being the most prevalent clinical features. Many of the mutations were newly discovered. This is by far the first and largest monogenic AID report in Chinese pediatric population and also a catalog of the phenotypic and genotypic features among these patients.


The Genetic Landscape and Epidemiology of Phenylketonuria.

  • Alicia Hillert‎ et al.
  • American journal of human genetics‎
  • 2020‎

Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.


Clinical and genetic characteristics of Chinese patients with cerebrotendinous xanthomatosis.

  • Qing-Qing Tao‎ et al.
  • Orphanet journal of rare diseases‎
  • 2019‎

Cerebrotendinous xanthomatosis (CTX) is a rare inborn lipid-storage disease caused by mutations in the sterol 27-hydroxylase (CYP27A1) gene with an autosomal recessive pattern of inheritance. To date, only 19 CTX patients from 16 families have been reported in the Chinese population.


An atlas of genetic influences on human blood metabolites.

  • So-Youn Shin‎ et al.
  • Nature genetics‎
  • 2014‎

Genome-wide association scans with high-throughput metabolic profiling provide unprecedented insights into how genetic variation influences metabolism and complex disease. Here we report the most comprehensive exploration of genetic loci influencing human metabolism thus far, comprising 7,824 adult individuals from 2 European population studies. We report genome-wide significant associations at 145 metabolic loci and their biochemical connectivity with more than 400 metabolites in human blood. We extensively characterize the resulting in vivo blueprint of metabolism in human blood by integrating it with information on gene expression, heritability and overlap with known loci for complex disorders, inborn errors of metabolism and pharmacological targets. We further developed a database and web-based resources for data mining and results visualization. Our findings provide new insights into the role of inherited variation in blood metabolic diversity and identify potential new opportunities for drug development and for understanding disease.


Immunologic and Genetic Contributors to CD46-Dependent Immune Dysregulation.

  • Benedikt J Meyer‎ et al.
  • Journal of clinical immunology‎
  • 2023‎

Mutations in CD46 predispose to atypical hemolytic uremic syndrome (aHUS) with low penetrance. Factors driving immune-dysregulatory disease in individual mutation carriers have remained ill-understood. In addition to its role as a negative regulator of the complement system, CD46 modifies T cell-intrinsic metabolic adaptation and cytokine production. Comparative immunologic analysis of diseased vs. healthy CD46 mutation carriers has not been performed in detail yet. In this study, we comprehensively analyzed clinical, molecular, immune-phenotypic, cytokine secretion, immune-metabolic, and genetic profiles in healthy vs. diseased individuals carrying a rare, heterozygous CD46 mutation identified within a large single family. Five out of six studied individuals carried a CD46 gene splice-site mutation causing an in-frame deletion of 21 base pairs. One child suffered from aHUS and his paternal uncle manifested with adult-onset systemic lupus erythematosus (SLE). Three mutation carriers had no clinical evidence of CD46-related disease to date. CD4+ T cell-intrinsic CD46 expression was uniformly 50%-reduced but was comparable in diseased vs. healthy mutation carriers. Reconstitution experiments defined the 21-base pair-deleted CD46 variant as intracellularly-but not surface-expressed and haploinsufficient. Both healthy and diseased mutation carriers displayed reduced CD46-dependent T cell mitochondrial adaptation. Diseased mutation carriers had lower peripheral regulatory T cell (Treg) frequencies and carried potentially epistatic, private rare variants in other inborn errors of immunity (IEI)-associated proinflammatory genes, not found in healthy mutation carriers. In conclusion, low Treg and rare non-CD46 immune-gene variants may contribute to clinically manifest CD46 haploinsufficiency-associated immune-dysregulation.


Recommendations for patient screening in ultra-rare inherited metabolic diseases: what have we learned from Niemann-Pick disease type C?

  • María-Jesús Sobrido‎ et al.
  • Orphanet journal of rare diseases‎
  • 2019‎

Rare and ultra-rare diseases (URDs) are often chronic and life-threatening conditions that have a profound impact on sufferers and their families, but many are notoriously difficult to detect. Niemann-Pick disease type C (NP-C) serves to illustrate the challenges, benefits and pitfalls associated with screening for ultra-rare inborn errors of metabolism (IEMs). A comprehensive, non-systematic review of published information from NP-C screening studies was conducted, focusing on diagnostic methods and study designs that have been employed to date. As a key part of this analysis, data from both successful studies (where cases were positively identified) and unsuccessful studies (where the chosen approach failed to identify any cases) were included alongside information from our own experiences gained from the planning and execution of screening for NP-C. On this basis, best-practice recommendations for ultra-rare IEM screening are provided. Twenty-six published screening studies were identified and categorised according to study design into four groups: 1) prospective patient cohort and family-based secondary screenings (18 studies); 2) analyses of archived 'biobank' materials (one study); 3) medical chart review and bioinformatics data mining (five studies); and 4) newborn screening (two studies). NPC1/NPC2 sequencing was the most common primary screening method (Sanger sequencing in eight studies and next-generation sequencing [gene panel or exome sequencing] in five studies), followed by biomarker analyses (usually oxysterols) and clinical surveillance.


Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies.

  • Jean-Laurent Casanova‎ et al.
  • The Journal of experimental medicine‎
  • 2014‎

Can genetic and clinical findings made in a single patient be considered sufficient to establish a causal relationship between genotype and phenotype? We report that up to 49 of the 232 monogenic etiologies (21%) of human primary immunodeficiencies (PIDs) were initially reported in single patients. The ability to incriminate single-gene inborn errors in immunodeficient patients results from the relative ease in validating the disease-causing role of the genotype by in-depth mechanistic studies demonstrating the structural and functional consequences of the mutations using blood samples. The candidate genotype can be causally connected to a clinical phenotype using cellular (leukocytes) or molecular (plasma) substrates. The recent advent of next generation sequencing (NGS), with whole exome and whole genome sequencing, induced pluripotent stem cell (iPSC) technology, and gene editing technologies-including in particular the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology-offer new and exciting possibilities for the genetic exploration of single patients not only in hematology and immunology but also in other fields. We propose three criteria for deciding if the clinical and experimental data suffice to establish a causal relationship based on only one case. The patient's candidate genotype must not occur in individuals without the clinical phenotype. Experimental studies must indicate that the genetic variant impairs, destroys, or alters the expression or function of the gene product (or two genetic variants for compound heterozygosity). The causal relationship between the candidate genotype and the clinical phenotype must be confirmed via a relevant cellular phenotype, or by default via a relevant animal phenotype. When supported by satisfaction of rigorous criteria, the report of single patient-based discovery of Mendelian disorders should be encouraged, as it can provide the first step in the understanding of a group of human diseases, thereby revealing crucial pathways underlying physiological and pathological processes.


Human genetic determinants of COVID-19 in Brazil: challenges and future plans.

  • Bibiana S de Oliveira Fam‎ et al.
  • Genetics and molecular biology‎
  • 2024‎

COVID-19 pandemic represented a worldwide major challenge in different areas, and efforts undertaken by the scientific community led to the understanding of some of the genetic determinants that influence the different COVID-19 outcomes. In this paper, we review the studies about the role of human genetics in COVID-19 severity and how Brazilian studies also contributed to those findings. Rare variants in genes related to Inborn Errors of Immunity (IEI) in the type I interferons pathway, and its phenocopies, have been described as being causative of severe outcomes. IEI and its phenocopies are present in Brazil, not only in COVID-19 patients, but also in autoimmune conditions and severe reactions to yellow fever vaccine. In addition, studies focusing on common variants and GWAS studies encompassing worldwide patients have found several loci associated with COVID-19 severity. A GWAS study including only Brazilian COVID-19 patients identified a new locus 1q32.1 associated with COVID-19 severity. Thus, more comprehensive studies considering the Brazilian genomic diversity should be performed, since they can help to reveal not only what are the genetic determinants that contribute to the different outcomes for COVID-19 in the Brazilian population, but in the understanding of human genetics in different health conditions.


Whole-exome sequencing reveals insights into genetic susceptibility to Congenital Zika Syndrome.

  • Victor Borda‎ et al.
  • PLoS neglected tropical diseases‎
  • 2021‎

Congenital Zika Syndrome (CZS) is a critical illness with a wide range of severity caused by Zika virus (ZIKV) infection during pregnancy. Life-threatening neurodevelopmental dysfunctions are among the most common phenotypes observed in affected newborns. Risk factors that contribute to susceptibility and response to ZIKV infection may be related to the virus itself, the environment, and maternal genetic background. Nevertheless, the newborn's genetic contribution to the critical illness is still not elucidated. Here, we aimed to identify possible genetic variants as well as relevant biological pathways that might be associated with CZS phenotypes. For this purpose, we performed a whole-exome sequencing in 40 children born to women with confirmed exposure to ZIKV during pregnancy. We investigated the occurrence of rare harmful single-nucleotide variants (SNVs) possibly associated with inborn errors in genes ontologically related to CZS phenotypes. Moreover, an exome-wide association analysis was also performed using a case-control design (29 CZS cases and 11 controls), for both common and rare variants. Five out of the 29 CZS patients harbored known pathogenic variants likely to contribute to mild to severe manifestations observed. Approximately, 30% of affected individuals carried at least one pathogenic or likely pathogenic SNV in genes candidates to play a role in CZS. Our common variant association analysis detected a suggestive protective effect of the rs2076469 in DISP3 gene (p-value: 1.39 x 10-5). The IL12RB2 gene (p-value: 2.18x10-11) also showed an unusual distribution of nonsynonymous rare SNVs in control samples. Finally, genes harboring harmful variants are involved in processes related to CZS phenotypes such as neurological development and immunity. Therefore, both rare and common variations may be likely to contribute as the underlying genetic cause of CZS susceptibility. The variations and pathways identified in this study may also have implications for the development of therapeutic strategies in the future.


Rare and common genetic determinants of metabolic individuality and their effects on human health.

  • Praveen Surendran‎ et al.
  • Nature medicine‎
  • 2022‎

Garrod's concept of 'chemical individuality' has contributed to comprehension of the molecular origins of human diseases. Untargeted high-throughput metabolomic technologies provide an in-depth snapshot of human metabolism at scale. We studied the genetic architecture of the human plasma metabolome using 913 metabolites assayed in 19,994 individuals and identified 2,599 variant-metabolite associations (P < 1.25 × 10-11) within 330 genomic regions, with rare variants (minor allele frequency ≤ 1%) explaining 9.4% of associations. Jointly modeling metabolites in each region, we identified 423 regional, co-regulated, variant-metabolite clusters called genetically influenced metabotypes. We assigned causal genes for 62.4% of these genetically influenced metabotypes, providing new insights into fundamental metabolite physiology and clinical relevance, including metabolite-guided discovery of potential adverse drug effects (DPYD and SRD5A2). We show strong enrichment of inborn errors of metabolism-causing genes, with examples of metabolite associations and clinical phenotypes of non-pathogenic variant carriers matching characteristics of the inborn errors of metabolism. Systematic, phenotypic follow-up of metabolite-specific genetic scores revealed multiple potential etiological relationships.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: