Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 257 papers

Challenges of palliative care in children with inborn metabolic diseases.

  • Jessica I Hoell‎ et al.
  • Orphanet journal of rare diseases‎
  • 2018‎

Our objective was to evaluate children with metabolic diseases in paediatric palliative home care (PPC) and the process of decision-making. This study was conducted as single-centre retrospective cohort study of patients in the care of a large specialized PPC team.


Genetic diagnosis of inborn errors of immunity using clinical exome sequencing.

  • Soon Sung Kwon‎ et al.
  • Frontiers in immunology‎
  • 2023‎

Inborn errors of immunity (IEI) include a variety of heterogeneous genetic disorders in which defects in the immune system lead to an increased susceptibility to infections and other complications. Accurate, prompt diagnosis of IEI is crucial for treatment plan and prognostication. In this study, clinical utility of clinical exome sequencing (CES) for diagnosis of IEI was evaluated. For 37 Korean patients with suspected symptoms, signs, or laboratory abnormalities associated with IEI, CES that covers 4,894 genes including genes related to IEI was performed. Their clinical diagnosis, clinical characteristics, family history of infection, and laboratory results, as well as detected variants, were reviewed. With CES, genetic diagnosis of IEI was made in 15 out of 37 patients (40.5%). Seventeen pathogenic variants were detected from IEI-related genes, BTK, UNC13D, STAT3, IL2RG, IL10RA, NRAS, SH2D1A, GATA2, TET2, PRF1, and UBA1, of which four variants were previously unreported. Among them, somatic causative variants were identified from GATA2, TET2, and UBA1. In addition, we identified two patients incidentally diagnosed IEI by CES, which was performed to diagnose other diseases of patients with unrecognized IEI. Taken together, these results demonstrate the utility of CES for the diagnosis of IEI, which contributes to accurate diagnosis and proper treatments.


Approach to genetic diagnosis of inborn errors of immunity through next-generation sequencing.

  • Esmat Karimi‎ et al.
  • Molecular immunology‎
  • 2021‎

Patients with inborn errors of immunity (IEI) present with a heterogeneous clinical and immunological phenotype, therefore a correct molecular diagnosis is crucial for the classification and subsequent therapeutic management. On the other hand, IEI are a group of rare congenital diseases with highly diverse features and, in most cases, an as yet unknown genetic etiology. Next generation sequencing has facilitated genetic examinations of rare inherited disorders during the recent years, thus allowing a suitable molecular diagnosis in the IEI patients. This review aimed to investigate the current findings about these techniques in the field of IEI, suggesting an efficient stepwise approach to molecular diagnosis of inborn errors of immunity.


Classical homocystinuria: A common inborn error of metabolism? An epidemiological study based on genetic databases.

  • Giovana R Weber Hoss‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2020‎

Biallelic pathogenic variants in CBS gene cause the most common form of homocystinuria, the classical homocystinuria (HCU). The worldwide prevalence of HCU is estimated to be 0.82:100,000 [95% CI, 0.39-1.73:100,000] according to clinical records and 1.09:100,000 [95% CI, 0.34-3.55:100,000] by neonatal screening. In this study, we aimed to estimate the minimal worldwide incidence of HCU.


Rare genetic variants affecting urine metabolite levels link population variation to inborn errors of metabolism.

  • Yurong Cheng‎ et al.
  • Nature communications‎
  • 2021‎

Metabolite levels in urine may provide insights into genetic mechanisms shaping their related pathways. We therefore investigate the cumulative contribution of rare, exonic genetic variants on urine levels of 1487 metabolites and 53,714 metabolite ratios among 4864 GCKD study participants. Here we report the detection of 128 significant associations involving 30 unique genes, 16 of which are known to underlie inborn errors of metabolism. The 30 genes are strongly enriched for shared expression in liver and kidney (odds ratio = 65, p-FDR = 3e-7), with hepatocytes and proximal tubule cells as driving cell types. Use of UK Biobank whole-exome sequencing data links genes to diseases connected to the identified metabolites. In silico constraint-based modeling of gene knockouts in a virtual whole-body, organ-resolved metabolic human correctly predicts the observed direction of metabolite changes, highlighting the potential of linking population genetics to modeling. Our study implicates candidate variants and genes for inborn errors of metabolism.


Genetic and immunologic evaluation of children with inborn errors of immunity and severe or critical COVID-19.

  • Hassan Abolhassani‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2022‎

Most severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals are asymptomatic or only exhibit mild disease. In about 10% of cases, the infection leads to hypoxemic pneumonia, although it is much more rare in children.


Chinese genetic variation database of inborn errors of metabolism: a systematic review of published variants in 13 genes.

  • Yongchao Guo‎ et al.
  • Orphanet journal of rare diseases‎
  • 2023‎

Population-specific variation database of inborn errors of metabolism (IEMs) is essential for precise genetic diagnosis and disease prevention. Here we presented a systematic review of clinically relevant variants of 13 IEMs genes reported among Chinese patients.


Incidence and genetic variants of inborn errors of metabolism identified through newborn screening: A 7-year study in eastern coastal areas of China.

  • Shuai Men‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2023‎

The incidence of inborn errors of metabolism (IEM) varies across countries and areas. Currently, there are no studies on IEM using newborn screening (NBS) in eastern coastal areas of China. We aimed to estimate the incidence and genetic variants of IEM and understand the spectrum of diseases caused by IEM and variants among them in this area.


Spectrum of Genetic Diseases in Tunisia: Current Situation and Main Milestones Achieved.

  • Nessrine Mezzi‎ et al.
  • Genes‎
  • 2021‎

Genetic diseases in Tunisia are a real public health problem given their chronicity and the lack of knowledge concerning their prevalence and etiology, and the high rates of consanguinity. Hence, we performed systematic reviews of the literature in order to provide a more recent spectrum of these disorders and to expose the challenges that still exist to tackle these kinds of diseases. A manual textual data mining was conducted using MeSH and PubMed databases. Collected data were classified according to the CIM-10 classification and the transmission mode. The spectrum of these diseases is estimated to be 589 entities. This suggests remarkable progress through the development of biomedical health research activities and building capacities. Sixty percent of the reported disorders are autosomal recessive, which could be explained by the high prevalence of endogamous mating. Congenital malformations (29.54%) are the major disease group, followed by metabolic diseases (22%). Sixty percent of the genetic diseases have a known molecular etiology. We also reported additional cases of comorbidity that seem to be a common phenomenon in our population. We also noticed that epidemiological data are scarce. Newborn and carrier screening was only limited to pilot projects for a few genetic diseases. Collected data are being integrated into a database under construction that will be a valuable decision-making tool. This study provides the current situation of genetic diseases in Tunisia and highlights their particularities. Early detection of the disease is important to initiate critical intervention and to reduce morbidity and mortality.


Treatable inborn errors of metabolism causing intellectual disability: a systematic literature review.

  • Clara D M van Karnebeek‎ et al.
  • Molecular genetics and metabolism‎
  • 2012‎

Intellectual disability ('developmental delay' at age<5 years) affects 2.5% of population worldwide. Recommendations to investigate genetic causes of intellectual disability are based on frequencies of single conditions and on the yield of diagnostic methods, rather than availability of causal therapy. Inborn errors of metabolism constitute a subgroup of rare genetic conditions for which an increasing number of treatments has become available. To identify all currently treatable inborn errors of metabolism presenting with predominantly intellectual disability, we performed a systematic literature review.


Role of genomics literacy in reducing the burden of common genetic diseases in Africa.

  • Gerald Mboowa‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2019‎

In Africa, health practitioners and the current knowledge of the public on genetics and genomics is still very low and yet this has potential to reduce the burden of common genetic diseases. Many initiatives have promoted genomic research, infrastructure, and capacity building in Africa. What remains to be done is to improve genomics literacy among populations and communities while utilizing an array of strategies. Genomic literacy and awareness are key in the management of genetic diseases which includes diagnosis, prevention of complications and therapy. Africa is characterized by great cultural and language diversity thereby requiring a multidisciplinary approach to improving public and community genomics literacy and engagement. However, this is further complicated by having the fact that sub-Saharan Africa is comprised of countries with the lowest literacy rates in the world.


Inborn errors of metabolism and the human interactome: a systems medicine approach.

  • Mathias Woidy‎ et al.
  • Journal of inherited metabolic disease‎
  • 2018‎

The group of inborn errors of metabolism (IEM) displays a marked heterogeneity and IEM can affect virtually all functions and organs of the human organism; however, IEM share that their associated proteins function in metabolism. Most proteins carry out cellular functions by interacting with other proteins, and thus are organized in biological networks. Therefore, diseases are rarely the consequence of single gene mutations but of the perturbations caused in the related cellular network. Systematic approaches that integrate multi-omics and database information into biological networks have successfully expanded our knowledge of complex disorders but network-based strategies have been rarely applied to study IEM. We analyzed IEM on a proteome scale and found that IEM-associated proteins are organized as a network of linked modules within the human interactome of protein interactions, the IEM interactome. Certain IEM disease groups formed self-contained disease modules, which were highly interlinked. On the other hand, we observed disease modules consisting of proteins from many different disease groups in the IEM interactome. Moreover, we explored the overlap between IEM and non-IEM disease genes and applied network medicine approaches to investigate shared biological pathways, clinical signs and symptoms, and links to drug targets. The provided resources may help to elucidate the molecular mechanisms underlying new IEM, to uncover the significance of disease-associated mutations, to identify new biomarkers, and to develop novel therapeutic strategies.


Gene- and Disease-Based Expansion of the Knowledge on Inborn Errors of Immunity.

  • Lyubov E Salnikova‎ et al.
  • Frontiers in immunology‎
  • 2019‎

The recent report of the International Union of Immunological Societies (IUIS) has provided the categorized list of 354 inborn errors of immunity. We performed a systematic analysis of genes and diseases from the IUIS report with the use of the OMIM, ORPHANET, and HPO resources. To measure phenotypic similarity we applied the Jaccard/Tanimoto (J/T) coefficient for HPO terms and top-level categories. Low J/T coefficients for HPO terms for OMIM or ORPHANET disease pairs associated with the same genes indicated high pleiotropy of these genes. Gene ORGANizer enrichment analysis demonstrated that gene sets related to HPO top-level categories were most often enriched in immune, lymphatic, and corresponding body systems (for example, genes from the category "Cardiovascular" were enriched in cardiovascular system). We presented available data on frequent and very frequent clinical signs and symptoms in inborn errors of immunity. With the use of DisGeNET, we generated the list of 25 IUIS/OMIM diseases with two or more relatively high score gene-disease associations, found for unrelated genes and/or for clusters of genes coding for interacting proteins. Our study showed the enrichment of gene sets related to several IUIS categories with neoplastic and autoimmune diseases from the GWAS Catalog and reported individual genes with phenotypic overlap between inborn errors of immunity and GWAS diseases/traits. We concluded that genetic background may play a role in phenotypic diversity of inborn errors of immunity.


Identification of Clinical Variants beyond the Exome in Inborn Errors of Metabolism.

  • Alejandro Soriano-Sexto‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Inborn errors of metabolism (IEM) constitute a huge group of rare diseases affecting 1 in every 1000 newborns. Next-generation sequencing has transformed the diagnosis of IEM, leading to its proposed use as a second-tier technology for confirming cases detected by clinical/biochemical studies or newborn screening. The diagnosis rate is, however, still not 100%. This paper reports the use of a personalized multi-omics (metabolomic, genomic and transcriptomic) pipeline plus functional genomics to aid in the genetic diagnosis of six unsolved cases, with a clinical and/or biochemical diagnosis of galactosemia, mucopolysaccharidosis type I (MPS I), maple syrup urine disease (MSUD), hyperphenylalaninemia (HPA), citrullinemia, or urea cycle deficiency. Eight novel variants in six genes were identified: six (four of them deep intronic) located in GALE, IDUA, PTS, ASS1 and OTC, all affecting the splicing process, and two located in the promoters of IDUA and PTS, thus affecting these genes' expression. All the new variants were subjected to functional analysis to verify their pathogenic effects. This work underscores how the combination of different omics technologies and functional analysis can solve elusive cases in clinical practice.


Treatable inborn errors of metabolism presenting as cerebral palsy mimics: systematic literature review.

  • Emma L Leach‎ et al.
  • Orphanet journal of rare diseases‎
  • 2014‎

Inborn errors of metabolism (IEMs) have been anecdotally reported in the literature as presenting with features of cerebral palsy (CP) or misdiagnosed as 'atypical CP'. A significant proportion is amenable to treatment either directly targeting the underlying pathophysiology (often with improvement of symptoms) or with the potential to halt disease progression and prevent/minimize further damage.


Inborn Errors of RNA Lariat Metabolism in Humans with Brainstem Viral Infection.

  • Shen-Ying Zhang‎ et al.
  • Cell‎
  • 2018‎

Viruses that are typically benign sometimes invade the brainstem in otherwise healthy children. We report bi-allelic DBR1 mutations in unrelated patients from different ethnicities, each of whom had brainstem infection due to herpes simplex virus 1 (HSV1), influenza virus, or norovirus. DBR1 encodes the only known RNA lariat debranching enzyme. We show that DBR1 expression is ubiquitous, but strongest in the spinal cord and brainstem. We also show that all DBR1 mutant alleles are severely hypomorphic, in terms of expression and function. The fibroblasts of DBR1-mutated patients contain higher RNA lariat levels than control cells, this difference becoming even more marked during HSV1 infection. Finally, we show that the patients' fibroblasts are highly susceptible to HSV1. RNA lariat accumulation and viral susceptibility are rescued by wild-type DBR1. Autosomal recessive, partial DBR1 deficiency underlies viral infection of the brainstem in humans through the disruption of tissue-specific and cell-intrinsic immunity to viruses.


Tandem Mass Spectrometry Screening for Inborn Errors of Metabolism in Newborns and High-Risk Infants in Southern China: Disease Spectrum and Genetic Characteristics in a Chinese Population.

  • Jianqiang Tan‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Inborn errors of metabolism (IEMs) often causing progressive and irreversible neurological damage, physical and intellectual development lag or even death, and serious harm to the family and society. The screening of neonatal IEMs by tandem mass spectrometry (MS/MS) is an effective method for early diagnosis and presymptomatic treatment to prevent severe permanent sequelae and death. A total of 111,986 healthy newborns and 7,461 hospitalized high-risk infants were screened for IEMs using MS/MS to understand the characteristics of IEMs and related gene mutations in newborns and high-risk infants in Liuzhou. Positive samples were analyzed by Sanger sequencing or next-generation sequencing. The results showed that the incidence of IEMs in newborns in the Liuzhou area was 1/3,733, and the incidence of IEMs in high-risk infants was 1/393. Primary carnitine deficiency (1/9,332), phenylketonuria (1/18,664), and isovaleric acidemia (1/37,329) ranked the highest in neonates, while citrullinemia type II ranked the highest in high-risk infants (1/1,865). Further, 56 mutations of 17 IEMs-related genes were found in 49 diagnosed children. Among these, HPD c.941T > C, CBS c.1465C > T, ACADS c.337G > A, c.1195C > T, ETFA c.737G > T, MMACHC 1076bp deletion, PCCB c.132-134delGACinsAT, IVD c.548C > T, c.757A > G, GCDH c.1060G > T, and HMGCL c.501C > G were all unreported variants. Some related hotspot mutations were found, including SLC22A5 c.51C > G, PAH c.1223G > A, IVD c.1208A > G, ACADS c.625G > A, and GCDH c.532G > A. These results show that the overall incidence of IEMs in the Liuzhou area is high. Hence, the scope of IEMs screening and publicity and education should be expanded for a clear diagnosis in the early stage of the disease.


Inborn errors of type I IFN immunity in patients with life-threatening COVID-19.

  • Qian Zhang‎ et al.
  • Science (New York, N.Y.)‎
  • 2020‎

Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.


Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia.

  • Qian Zhang‎ et al.
  • The Journal of experimental medicine‎
  • 2022‎

Recessive or dominant inborn errors of type I interferon (IFN) immunity can underlie critical COVID-19 pneumonia in unvaccinated adults. The risk of COVID-19 pneumonia in unvaccinated children, which is much lower than in unvaccinated adults, remains unexplained. In an international cohort of 112 children (<16 yr old) hospitalized for COVID-19 pneumonia, we report 12 children (10.7%) aged 1.5-13 yr with critical (7 children), severe (3), and moderate (2) pneumonia and 4 of the 15 known clinically recessive and biochemically complete inborn errors of type I IFN immunity: X-linked recessive TLR7 deficiency (7 children) and autosomal recessive IFNAR1 (1), STAT2 (1), or TYK2 (3) deficiencies. Fibroblasts deficient for IFNAR1, STAT2, or TYK2 are highly vulnerable to SARS-CoV-2. These 15 deficiencies were not found in 1,224 children and adults with benign SARS-CoV-2 infection without pneumonia (P = 1.2 × 10-11) and with overlapping age, sex, consanguinity, and ethnicity characteristics. Recessive complete deficiencies of type I IFN immunity may underlie ∼10% of hospitalizations for COVID-19 pneumonia in children.


Knowledge base and mini-expert platform for the diagnosis of inborn errors of metabolism.

  • Jessica J Y Lee‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2018‎

PurposeRecognizing individuals with inherited diseases can be difficult because signs and symptoms often overlap those of common medical conditions. Focusing on inborn errors of metabolism (IEMs), we present a method that brings the knowledge of highly specialized experts to professionals involved in early diagnoses. We introduce IEMbase, an online expert-curated IEM knowledge base combined with a prototype diagnosis support (mini-expert) system.MethodsDisease-characterizing profiles of specific biochemical markers and clinical symptoms were extracted from an expert-compiled IEM database. A mini-expert system algorithm was developed using cosine similarity and semantic similarity. The system was evaluated using 190 retrospective cases with established diagnoses, collected from 15 different metabolic centers.ResultsIEMbase provides 530 well-defined IEM profiles and matches a user-provided phenotypic profile to a list of candidate diagnoses/genes. The mini-expert system matched 62% of the retrospective cases to the exact diagnosis and 86% of the cases to a correct diagnosis within the top five candidates. The use of biochemical features in IEM annotations resulted in 41% more exact phenotype matches than clinical features alone.ConclusionIEMbase offers a central IEM knowledge repository for many genetic diagnostic centers and clinical communities seeking support in the diagnosis of IEMs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: