Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 31,169 papers

Intravenous immunoglobulin resistance in Kawasaki disease patients: prediction using clinical data.

  • Jonathan Y Lam‎ et al.
  • Pediatric research‎
  • 2023‎

About 10-20% of Kawasaki disease (KD) patients are resistant to the initial infusion of intravenous immunoglobin (IVIG). The aim of this study was to assess whether IVIG resistance in KD patients could be predicted using standard clinical and laboratory features.


Chronic obstructive pulmonary disease does not impair responses to resistance training.

  • Knut Sindre Mølmen‎ et al.
  • Journal of translational medicine‎
  • 2021‎

Subjects with chronic obstructive pulmonary disease (COPD) are prone to accelerated decay of muscle strength and mass with advancing age. This is believed to be driven by disease-inherent systemic pathophysiologies, which are also assumed to drive muscle cells into a state of anabolic resistance, leading to impaired abilities to adapt to resistance exercise training. Currently, this phenomenon remains largely unstudied. In this study, we aimed to investigate the assumed negative effects of COPD for health- and muscle-related responsiveness to resistance training using a healthy control-based translational approach.


Comparative analysis of zinc finger proteins involved in plant disease resistance.

  • Santosh Kumar Gupta‎ et al.
  • PloS one‎
  • 2012‎

A meta-analysis was performed to understand the role of zinc finger domains in proteins of resistance (R) genes cloned from different crops. We analyzed protein sequences of seventy R genes of various crops in which twenty six proteins were found to have zinc finger domains along with nucleotide binding sites - leucine rice repeats (NBS-LRR) domains. We identified thirty four zinc finger domains in the R proteins of nine crops and were grouped into 19 types of zinc fingers. The size of individual zinc finger domain within the R genes varied from 11 to 84 amino acids, whereas the size of proteins containing these domains varied from 263 to 1305 amino acids. The biophysical analysis revealed that molecular weight of Pi54 zinc finger was lowest whereas the highest one was found in rice Pib zinc finger named as Transposes Transcription Factor (TTF). The instability (R(2) =0.95) and the aliphatic (R(2) =0.94) indices profile of zinc finger domains follows the polynomial distribution pattern. The pairwise identity analysis showed that the Lin11, Isl-1 & Mec-3 (LIM) zinc finger domain of rice blast resistance protein pi21 have 12.3% similarity with the nuclear transcription factor, X-box binding-like 1 (NFX) type zinc finger domain of Pi54 protein. For the first time, we reported that Pi54 (Pi-k(h)-Tetep), a rice blast resistance (R) protein have a small zinc finger domain of NFX type located on the C-terminal in between NBS and LRR domains of the R-protein. Compositional analysis depicted by the helical wheel diagram revealed the presence of a hydrophobic region within this domain which might help in exposing the LRR region for a possible R-Avr interaction. This domain is unique among all other cloned plant disease resistance genes and might play an important role in broad-spectrum nature of rice blast resistance gene Pi54.


Correction to: Breeding for disease resistance in soybean: a global perspective.

  • Feng Lin‎ et al.
  • TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik‎
  • 2022‎

No abstract available


Unveiling the Roles of LncRNA MOIRAs in Rice Blast Disease Resistance.

  • Qing Liu‎ et al.
  • Genes‎
  • 2024‎

Rice blast disease, caused by the fungal pathogen Magnaporthe oryzae, is a major threat to rice production worldwide. This study investigates the role of long non-coding RNAs (lncRNAs) in rice's response to this destructive disease, with a focus on their impacts on disease resistance and yield traits. Three specific lncRNAs coded by M. oryzae infection-responsive lncRNAs (MOIRAs), MOIRA1, MOIRA2, and MOIRA3, were identified as key regulators of rice's response to M. oryzae infection. Strikingly, when MOIRA1 and MOIRA2 were overexpressed, they exhibited a dual function: they increased rice's susceptibility to blast fungus, indicating a negative role in disease resistance, while simultaneously enhancing tiller numbers and single-plant yield, with no adverse effects on other yield-related traits. This unexpected improvement in productivity suggests the possibility of overcoming the traditional trade-off between disease resistance and crop yield. These findings provide a novel perspective on crop enhancement, offering a promising solution to global food security challenges by developing rice varieties that effectively balance disease resistance and increased productivity.


Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis.

  • Hua Lu‎ et al.
  • Frontiers in plant science‎
  • 2013‎

Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach relies on a thorough understanding of defense mechanisms of citrus. Studies of Arabidopsis and other plants have provided a framework for us to better understand defense mechanisms of citrus. Salicylic acid (SA) is a key signaling molecule involved in basal defense and resistance (R) gene-mediated defense against broad-spectrum pathogens. The Arabidopsis gene NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE 1) is a positive regulator of SA accumulation and is specifically required for signaling mediated by a subset of R genes upon recognition of their cognate pathogen effectors. Our bioinformatic analysis identified an ortholog of NDR1 from citrus, CsNDR1. Overexpression of CsNDR1 complemented susceptibility conferred by the Arabidopsis ndr1-1 mutant to Pseudomonas syringae strains and also led to enhanced resistance to an oomycete pathogen Hyaloperonospora arabidopsidis. Such heightened resistance is associated with increased SA production and expression of the defense marker gene PATHOGENESIS RELATED 1 (PR1). In addition, we found that expression of PR1 and accumulation of SA were induced to modest levels in citrus infected with Candidatus Liberibacter asiaticus, the bacterial pathogen associated with HLB disease. Thus, our data suggest that CsNDR1 is a functional ortholog of Arabidopsis NDR1. Since Ca. L. asiaticus infection only activates modest levels of defense responses in citrus, we propose that genetically increasing SA/NDR1-mediated pathways could potentially lead to enhanced resistance against HLB, citrus canker, and other destructive diseases challenging global citrus production.


Disease resistance is related to inherent swimming performance in Atlantic salmon.

  • Vicente Castro‎ et al.
  • BMC physiology‎
  • 2013‎

Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon.Atlantic salmon were first classified as either poor or good according to their swimming performance in a screening test and then exercise trained for 10 weeks using one of two constant-velocity or two interval-velocity training regimes for comparison against control trained fish (low speed continuously). Disease resistance was assessed by a viral disease challenge test (infectious pancreatic necrosis) and gene expression analyses of the host response in selected organs.


Perception of soft mechanical stress in Arabidopsis leaves activates disease resistance.

  • Lehcen Benikhlef‎ et al.
  • BMC plant biology‎
  • 2013‎

In a previous study we have shown that wounding of Arabidopsis thaliana leaves induces a strong and transient immunity to Botrytis cinerea, the causal agent of grey mould. Reactive oxygen species (ROS) are formed within minutes after wounding and are required for wound-induced resistance to B. cinerea.


OsACL-A2 negatively regulates cell death and disease resistance in rice.

  • Banpu Ruan‎ et al.
  • Plant biotechnology journal‎
  • 2019‎

ATP-citrate lyases (ACL) play critical roles in tumour cell propagation, foetal development and growth, and histone acetylation in human and animals. Here, we report a novel function of ACL in cell death-mediated pathogen defence responses in rice. Using ethyl methanesulphonate (EMS) mutagenesis and map-based cloning, we identified an Oryza sativa ACL-A2 mutant allele, termed spotted leaf 30-1 (spl30-1), in which an A-to-T transversion converts an Asn at position 343 to a Tyr (N343Y), causing a recessive mutation that led to a lesion mimic phenotype. Compared to wild-type plants, spl30-1 significantly reduces ACL enzymatic activity, accumulates high reactive oxygen species and increases degradation rate of nuclear deoxyribonucleic acids. CRISPR/Cas9-mediated insertion/deletion mutation analysis and complementation assay confirmed that the phenotype of spl30-1 resulted from the defective function of OsACL-A2 protein. We further biochemically identified that the N343Y mutation caused a significant degradation of SPL30N343Y in a ubiquitin-26S proteasome system (UPS)-dependent manner without alteration in transcripts of OsACL-A2 in spl30-1. Transcriptome analysis identified a number of up-regulated genes associated with pathogen defence responses in recessive mutants of OsACL-A2, implying its role in innate immunity. Suppressor mutant screen suggested that OsSL, which encodes a P450 monooxygenase protein, acted as a downstream key regulator in spl30-1-mediated pathogen defence responses. Taken together, our study discovered a novel role of OsACL-A2 in negatively regulating innate immune responses in rice.


Foliar microbiome transplants confer disease resistance in a critically-endangered plant.

  • Geoffrey Zahn‎ et al.
  • PeerJ‎
  • 2017‎

There has been very little effort to incorporate foliar microbiomes into plant conservation efforts even though foliar endophytes are critically important to the fitness and function of hosts. Many critically endangered plants that have been extirpated from the wild are dependent on regular fungicidal applications in greenhouses that cannot be maintained for remote out-planted populations, which quickly perish. These fungicides negatively impact potentially beneficial fungal symbionts, which may reduce plant defenses to pathogens once fungicide treatments are stopped. Using the host/parasite system of Phyllostegia kaalaensis and Neoerysiphe galeopsidis, we conducted experiments to test total foliar microbiome transplants from healthy wild relatives onto fungicide-dependent endangered plants in an attempt to mitigate disease and reduce dependency on fungicides. Plants were treated with total microbiome transplants or cultured subsets of this community and monitored for disease severity. High-throughput DNA screening of fungal ITS1 rDNA was used to track the leaf-associated fungal communities and evaluate the effectiveness of transplantation methods. Individuals receiving traditionally isolated fungal treatments showed no improvement, but those receiving applications of a simple leaf slurry containing an uncultured fungal community showed significant disease reduction, to which we partially attribute an increase in the mycoparasitic Pseudozyma aphidis. These results were replicated in two independent experimental rounds. Treated plants have since been moved to a native habitat and, as of this writing, remain disease-free. Our results demonstrate the effectiveness of a simple low-tech method for transferring beneficial microbes from healthy wild plants to greenhouse-raised plants with reduced symbiotic microbiota. This technique was effective at reducing disease, and in conferring increased survival to an out-planted population of critically endangered plants. It was not effective in a closely related plant. Plant conservation efforts should strive to include foliar microbes as part of comprehensive management plans.


uORF-mediated translation allows engineered plant disease resistance without fitness costs.

  • Guoyong Xu‎ et al.
  • Nature‎
  • 2017‎

Controlling plant disease has been a struggle for humankind since the advent of agriculture. Studies of plant immune mechanisms have led to strategies of engineering resistant crops through ectopic transcription of plants' own defence genes, such as the master immune regulatory gene NPR1 (ref. 1). However, enhanced resistance obtained through such strategies is often associated with substantial penalties to fitness, making the resulting products undesirable for agricultural applications. To remedy this problem, we sought more stringent mechanisms of expressing defence proteins. On the basis of our latest finding that translation of key immune regulators, such as TBF1 (ref. 3), is rapidly and transiently induced upon pathogen challenge (see accompanying paper), we developed a 'TBF1-cassette' consisting of not only the immune-inducible promoter but also two pathogen-responsive upstream open reading frames (uORFsTBF1) of the TBF1 gene. Here we demonstrate that inclusion of uORFsTBF1-mediated translational control over the production of snc1-1 (an autoactivated immune receptor) in Arabidopsis thaliana and AtNPR1 in rice enables us to engineer broad-spectrum disease resistance without compromising plant fitness in the laboratory or in the field. This broadly applicable strategy may lead to decreased pesticide use and reduce the selective pressure for resistant pathogens.


Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates disease resistance in Camellia sinensis.

  • Yunqing Hu‎ et al.
  • Plant physiology‎
  • 2022‎

Plant immune response following pathogenic infection is regulated by plant hormones, and salicylic acid (SA) and its sugar conjugates play important roles in establishing basal resistance. Here, the important pathogen Pseudopestalotiopsis camelliae-sinensis (Pcs) was isolated from tea gray blight, one of the most destructive diseases in tea plantations. Transcriptomic analysis led to the discovery of the putative Camellia sinensis UDP-glucosyltransferase CsUGT87E7 whose expression was significantly induced by SA application and Pcs infection. Recombinant CsUGT87E7 glucosylates SA with a Km value of 12 µM to form SA glucose ester (SGE). Downregulation reduced the accumulation of SGE, and CsUGT87E7-silenced tea plants exhibited greater susceptibility to pathogen infection than control plants. Similarly, CsUGT87E7-silenced tea leaves accumulated significantly less SA after infection and showed reduced expression of pathogenesis-related genes. These results suggest that CsUGT87E7 is an SA carboxyl glucosyltransferase that plays a positive role in plant disease resistance by modulating SA homeostasis through a mechanism distinct from that described in Arabidopsis (Arabidopsis thaliana). This study provides insight into the mechanisms of SA metabolism and highlights the role of SGE in the modulation of plant disease resistance.


Novel disease resistance gene paralogs created by CRISPR/Cas9 in soy.

  • Ervin D Nagy‎ et al.
  • Plant cell reports‎
  • 2021‎

Novel disease resistance gene paralogues are generated by targeted chromosome cleavage of tandem duplicated NBS-LRR gene complexes and subsequent DNA repair in soybean. This study demonstrates accelerated diversification of innate immunity of plants using CRISPR. Nucleotide-binding-site-leucine-rich-repeat (NBS-LRR) gene families are key components of effector-triggered immunity. They are often arranged in tandem duplicated arrays in the genome, a configuration that is conducive to recombinations that will lead to new, chimeric genes. These rearrangements have been recognized as major sources of novel disease resistance phenotypes. Targeted chromosome cleavage by CRISPR/Cas9 can conceivably induce rearrangements and thus emergence of new resistance gene paralogues. Two NBS-LRR families of soy have been selected to demonstrate this concept: a four-copy family in the Rpp1 region (Rpp1L) and a large, complex locus, Rps1 with 22 copies. Copy-number variations suggesting large-scale, CRISPR/Cas9-mediated chromosome rearrangements in the Rpp1L and Rps1 complexes were detected in up to 58.8% of progenies of primary transformants using droplet-digital PCR. Sequencing confirmed development of novel, chimeric paralogs with intact open reading frames. These novel paralogs may confer new disease resistance specificities. This method to diversify innate immunity of plants by genome editing is readily applicable to other disease resistance genes or other repetitive loci.


Improving crop disease resistance: lessons from research on Arabidopsis and tomato.

  • Sophie J M Piquerez‎ et al.
  • Frontiers in plant science‎
  • 2014‎

One of the great challenges for food security in the 21st century is to improve yield stability through the development of disease-resistant crops. Crop research is often hindered by the lack of molecular tools, growth logistics, generation time and detailed genetic annotations, hence the power of model plant species. Our knowledge of plant immunity today has been largely shaped by the use of models, specifically through the use of mutants. We examine the importance of Arabidopsis and tomato as models in the study of plant immunity and how they help us in revealing a detailed and deep understanding of the various layers contributing to the immune system. Here we describe examples of how knowledge from models can be transferred to economically important crops resulting in new tools to enable and accelerate classical plant breeding. We will also discuss how models, and specifically transcriptomics and effectoromics approaches, have contributed to the identification of core components of the defense response which will be key to future engineering of durable and sustainable disease resistance in plants.


Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea.

  • Xiaohui Li‎ et al.
  • BMC plant biology‎
  • 2014‎

Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules that mediate the transduction of extracellular stimuli via receptors/sensors into intracellular responses and play key roles in plant immunity against pathogen attack. However, the function of tomato MAPK kinases, SlMKKs, in resistance against Botrytis cinerea remains unclear yet.


The energy sensor OsSnRK1a confers broad-spectrum disease resistance in rice.

  • Osvaldo Filipe‎ et al.
  • Scientific reports‎
  • 2018‎

Sucrose non-fermenting-1-related protein kinase-1 (SnRK1) belongs to a family of evolutionary conserved kinases with orthologs in all eukaryotes, ranging from yeasts (SnF1) to mammals (AMP-Activated kinase). These kinases sense energy deficits caused by nutrient limitation or stress and coordinate the required adaptations to maintain energy homeostasis and survival. In plants, SnRK1 is a global regulator of plant metabolism and is also involved in abiotic stress responses. Its role in the response to biotic stress, however, is only starting to be uncovered. Here we studied the effect of altered SnRK1a expression on growth and plant defense in rice. OsSnRK1a overexpression interfered with normal growth and development and increased resistance against both (hemi)biotrophic and necrotrophic pathogens, while OsSnRK1a silencing in RNAi lines increased susceptibility. OsSnRK1a overexpression positively affected the salicylic acid pathway and boosted the jasmonate-mediated defense response after inoculation with the blast fungus Pyricularia oryzae. Together these findings strongly suggest OsSnRK1a to be involved in plant basal immunity and favor a model whereby OsSnRK1a acts as a master switch that regulates growth-immunity trade-offs.


Wheat Disease Resistance Genes and Their Diversification Through Integrated Domain Fusions.

  • Ethan J Andersen‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Plants are in a constant evolutionary arms race with their pathogens. At the molecular level, the plant nucleotide-binding leucine-rich repeat receptors (NLRs) family has coevolved with rapidly evolving pathogen effectors. While many NLRs utilize variable leucine-rich repeats (LRRs) to detect effectors, some have gained integrated domains (IDs) that may be involved in receptor activation or downstream signaling. The major objectives of this project were to identify NLR genes in wheat (Triticum aestivum L.) and assess IDs associated with immune signaling (e.g., kinase and transcription factor domains). We identified 2,151 NLR-like genes in wheat, of which 1,298 formed 547 gene clusters. Among the non-toll/interleukin-1 receptor NLR (non-TNL)-like genes, 1,552 encode LRRs, 802 are coiled-coil (CC) domain-encoding (CC-NBS-LRR or CNL) genes, and three encode resistance to powdery mildew 8 (RPW8) domains (RPW8-NBS-LRR or RNL). The expansion of the NLR gene family in wheat is attributable to its origin by recent polyploidy events. Gene clusters were likely formed by tandem duplications, and wheat NLR phylogenetic relationships were similar to those in barley and Aegilops. We also identified wheat NLR-ID fusion proteins as candidates for NLR functional diversification, often as kinase and transcription factor domains. Comparative analyses of the IDs revealed evolutionary conservation of more than 80% amino acid sequence similarity. Homology assessment indicates that these domains originated as functional non-NLR-encoding genes that were incorporated into NLR-encoding genes through duplication events. We also found that many of the NLR-ID genes encode alternative transcripts that include or exclude IDs, a phenomenon that seems to be conserved among species. To verify this, we have analyzed the alternative transcripts that include or exclude an ID of an NLR-ID from another monocotyledon species, rice (Oryza sativa). This indicates that plants employ alternative splicing to regulate IDs, possibly using them as baits, decoys, and functional signaling components. Genomic and expression data support the hypothesis that wheat uses alternative splicing to include and exclude IDs from NLR proteins.


Hyper non-CG methylation of expanded plant disease resistance NLR genes.

  • Qianqian Cao‎ et al.
  • Plant cell reports‎
  • 2023‎

We explored the phylogenomics and methylomics of NLR genes in 41 plant species and found that highly duplicated plant NLR genes are hyper methylated in non-CG context.


Integration of early disease-resistance phenotyping, histological characterization, and transcriptome sequencing reveals insights into downy mildew resistance in impatiens.

  • Ze Peng‎ et al.
  • Horticulture research‎
  • 2021‎

Downy mildew (DM), caused by obligate parasitic oomycetes, is a destructive disease for a wide range of crops worldwide. Recent outbreaks of impatiens downy mildew (IDM) in many countries have caused huge economic losses. A system to reveal plant-pathogen interactions in the early stage of infection and quickly assess resistance/susceptibility of plants to DM is desired. In this study, we established an early and rapid system to achieve these goals using impatiens as a model. Thirty-two cultivars of Impatiens walleriana and I. hawkeri were evaluated for their responses to IDM at cotyledon, first/second pair of true leaf, and mature plant stages. All I. walleriana cultivars were highly susceptible to IDM. While all I. hawkeri cultivars were resistant to IDM starting at the first true leaf stage, many (14/16) were susceptible to IDM at the cotyledon stage. Two cultivars showed resistance even at the cotyledon stage. Histological characterization showed that the resistance mechanism of the I. hawkeri cultivars resembles that in grapevine and type II resistance in sunflower. By integrating full-length transcriptome sequencing (Iso-Seq) and RNA-Seq, we constructed the first reference transcriptome for Impatiens comprised of 48,758 sequences with an N50 length of 2060 bp. Comparative transcriptome and qRT-PCR analyses revealed strong candidate genes for IDM resistance, including three resistance genes orthologous to the sunflower gene RGC203, a potential candidate associated with DM resistance. Our approach of integrating early disease-resistance phenotyping, histological characterization, and transcriptome analysis lay a solid foundation to improve DM resistance in impatiens and may provide a model for other crops.


Engineering Cercospora disease resistance via expression of Cercospora nicotianae cercosporin-resistance genes and silencing of cercosporin production in tobacco.

  • Elizabeth Thomas‎ et al.
  • PloS one‎
  • 2020‎

Fungi in the genus Cercospora cause crop losses world-wide on many crop species. The wide host range and success of these pathogens has been attributed to the production of a photoactivated toxin, cercosporin. We engineered tobacco for resistance to Cercospora nicotianae utilizing two strategies: 1) transformation with cercosporin autoresistance genes isolated from the fungus, and 2) transformation with constructs to silence the production of cercosporin during disease development. Three C. nicotianae cercosporin autoresistance genes were tested: ATR1 and CFP, encoding an ABC and an MFS transporter, respectively, and 71cR, which encodes a hypothetical protein. Resistance to the pathogen was identified in transgenic lines expressing ATR1 and 71cR, but not in lines transformed with CFP. Silencing of the CTB1 polyketide synthase and to a lesser extent the CTB8 pathway regulator in the cercosporin biosynthetic pathway also led to the recovery of resistant lines. All lines tested expressed the transgenes, and a direct correlation between the level of transgene expression and disease resistance was not identified in any line. Resistance was also not correlated with the degree of silencing in the CTB1 and CTB8 silenced lines. We conclude that expression of fungal cercosporin autoresistance genes as well as silencing of the cercosporin pathway are both effective strategies for engineering resistance to Cercospora diseases where cercosporin plays a critical role.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: