Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 31,169 papers

DNA Repair Gene ZmRAD51A Improves Rice and Arabidopsis Resistance to Disease.

  • Fang Liu‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

RAD51 (DNA repair gene) family genes play ubiquitous roles in immune response among species from plants to mammals. In this study, we cloned the ZmRAD51A gene (a member of RAD51) in maize and generated ZmRAD51A overexpression (ZmRAD51A-OE) in rice, tobacco, and Arabidopsis. The expression level of ZmRAD51A was remarkably induced by salicylic acid (SA) application in maize, and the transient overexpression of ZmRAD51A in tobacco induced a hypersensitive response. The disease resistance was significantly enhanced in ZmRAD51A- OE (overexpressing) plants, triggering an increased expression of defense-related genes. High-performance liquid chromatography (HPLC) analysis showed that, compared to control lines, ZmRAD51A-OE in rice plants resulted in higher SA levels, and conferred rice plants resistance to Magnaporthe oryzae. Moreover, the ZmRAD51A-OE Arabidopsis plants displayed increased resistance to Pseudomonas syringae pv. tomato DC3000 when compared to wild types. Together, our results provide the evidence that, for the first time, the maize DNA repair gene ZmRAD51A plays an important role in in disease resistance.


A Hitchhiker's guide to the potato wart disease resistance galaxy.

  • Charlotte Prodhomme‎ et al.
  • TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik‎
  • 2020‎

Two novel major effect loci (Sen4 and Sen5) and several minor effect QTLs for potato wart disease resistance have been mapped. The importance of minor effect loci to bring full resistance to wart disease was investigated. Using the newly identified and known wart disease resistances, a panel of potato breeding germplasm and Solanum wild species was screened. This provided a state-of-the-art "hitch-hikers-guide" of complementary wart disease resistance sources. Potato wart disease, caused by the obligate biotrophic soil-born fungus Synchytrium endobioticum, is the most important quarantine disease of potato. Because of its huge impact on yield, the lack of chemical control and the formation of resting spores with long viability, breeding for resistant varieties combined with strict quarantine measures are the only way to efficiently and durably manage the disease. In this study, we set out to make an inventory of the different resistance sources. Using a Genome-Wide Association Study (GWAS) in the potato breeding genepool, we identified Sen4, associated with pathotypes 2, 6 and 18 resistance. Associated SNPs mapped to the south arm of chromosome 12 and were validated to be linked to resistance in one full-sib population. Also, a bulked segregant analysis combined with a Comparative Subsequence Sets Analysis (CoSSA) resulted in the identification of Sen5, associated with pathotypes 2, 6 and 18 resistance, on the south arm of chromosome 5. In addition to these two major effect loci, the GWAS and CoSSA allowed the identification of several quantitative trait loci necessary to bring full resistance to certain pathotypes. Panels of varieties and Solanum accessions were screened for the presence of Sen1, Sen2, Sen3, Sen4 and Sen5. Combined with pedigree analysis, we could trace back some of these genes to the ancestral resistance donors. This analysis revealed complementary resistance sources and allows elimination of redundancy in wart resistance breeding programs.


Bacillus circulans GN03 Alters the Microbiota, Promotes Cotton Seedling Growth and Disease Resistance, and Increases the Expression of Phytohormone Synthesis and Disease Resistance-Related Genes.

  • Lijun Qin‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Plant growth-promoting bacteria (PGPB) are components of the plant rhizosphere that promote plant growth and/or inhibit pathogen activity. To explore the cotton seedlings response to Bacillus circulans GN03 with high efficiency of plant growth promotion and disease resistance, a pot experiment was carried out, in which inoculations levels of GN03 were set at 104 and 108 cfu⋅mL-1. The results showed that GN03 inoculation remarkably enhanced growth promotion as well as disease resistance of cotton seedlings. GN03 inoculation altered the microbiota in and around the plant roots, led to a significant accumulation of growth-related hormones (indole acetic acid, gibberellic acid, and brassinosteroid) and disease resistance-related hormones (salicylic acid and jasmonic acid) in cotton seedlings, as determined with ELISA, up-regulated the expression of phytohormone synthesis-related genes (EDS1, AOC1, BES1, and GA20ox), auxin transporter gene (Aux1), and disease-resistance genes (NPR1 and PR1). Comparative genomic analyses was performed between GN03 and four similar species, with regards to phenotype, biochemical characteristics, and gene function. This study provides valuable information for applying the PGPB alternative, GN03, as a plant growth and disease-resistance promoting fertilizer.


Identification of candidate genome regions controlling disease resistance in Arachis.

  • Soraya C M Leal-Bertioli‎ et al.
  • BMC plant biology‎
  • 2009‎

Worldwide, diseases are important reducers of peanut (Arachis hypogaea) yield. Sources of resistance against many diseases are available in cultivated peanut genotypes, although often not in farmer preferred varieties. Wild species generally harbor greater levels of resistance and even apparent immunity, although the linkage of agronomically un-adapted wild alleles with wild disease resistance genes is inevitable. Marker-assisted selection has the potential to facilitate the combination of both cultivated and wild resistance loci with agronomically adapted alleles. However, in peanut there is an almost complete lack of knowledge of the regions of the Arachis genome that control disease resistance.


A mutagenesis-derived broad-spectrum disease resistance locus in wheat.

  • Jackie Campbell‎ et al.
  • TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik‎
  • 2012‎

Wheat leaf rust, stem rust, stripe rust, and powdery mildew caused by the fungal pathogens Puccinia triticina, P. graminis f. sp. tritici, P. striiformis f. sp. tritici, and Blumeria graminis f. sp. tritici, respectively, are destructive diseases of wheat worldwide. Breeding durable disease resistance cultivars rely largely on continually introgressing new resistance genes, especially the genes with different defense mechanisms, into adapted varieties. Here, we describe a new resistance gene obtained by mutagenesis. The mutant, MNR220 (mutagenesis-derived new resistance), enhances resistance to three rusts and powdery mildew, with the characteristics of delayed disease development at the seedling stage and completed resistance at the adult plant stage. Genetic analysis demonstrated that the resistance in MNR220 is conferred by a single semidominant gene mapped on the short arm of chromosome 2B. Gene expression profiling of several pathogenesis-related genes indicated that MNR220 has an elevated and rapid pathogen-induced response. In addition to its potential use in breeding for resistance to multiple diseases, high-resolution mapping and cloning of the disease resistance locus in MNR220 may lead to a better understanding of the regulation of defense responses in wheat.


Tracking disease resistance deployment in potato breeding by enrichment sequencing.

  • Miles R Armstrong‎ et al.
  • Plant biotechnology journal‎
  • 2019‎

Following the molecular characterisation of functional disease resistance genes in recent years, methods to track and verify the integrity of multiple genes in varieties are needed for crop improvement through resistance stacking. Diagnostic resistance gene enrichment sequencing (dRenSeq) enables the high-confidence identification and complete sequence validation of known functional resistance genes in crops. As demonstrated for tetraploid potato varieties, the methodology is more robust and cost-effective in monitoring resistances than whole-genome sequencing and can be used to appraise (trans) gene integrity efficiently. All currently known NB-LRRs effective against viruses, nematodes and the late blight pathogen Phytophthora infestans can be tracked with dRenSeq in potato and hitherto unknown polymorphisms have been identified. The methodology provides a means to improve the speed and efficiency of future disease resistance breeding in crops by directing parental and progeny selection towards effective combinations of resistance genes.


MUC1 deficiency mediates corticosteroid resistance in chronic obstructive pulmonary disease.

  • Javier Milara‎ et al.
  • Respiratory research‎
  • 2018‎

Lung inflammation in COPD is poorly controlled by inhaled corticosteroids (ICS). Strategies to improve ICS efficacy or the search of biomarkers who may select those patients candidates to receive ICS in COPD are needed. Recent data indicate that MUC1 cytoplasmic tail (CT) membrane mucin can mediate corticosteroid efficacy in chronic rhinosinusitis. The objective of this work was to analyze the previously unexplored role of MUC1 on corticosteroid efficacy in COPD in vitro and in vivo models.


Macrophages promote anti-androgen resistance in prostate cancer bone disease.

  • Xue-Feng Li‎ et al.
  • The Journal of experimental medicine‎
  • 2023‎

Metastatic castration-resistant prostate cancer (PC) is the final stage of PC that acquires resistance to androgen deprivation therapies (ADT). Despite progresses in understanding of disease mechanisms, the specific contribution of the metastatic microenvironment to ADT resistance remains largely unknown. The current study identified that the macrophage is the major microenvironmental component of bone-metastatic PC in patients. Using a novel in vivo model, we demonstrated that macrophages were critical for enzalutamide resistance through induction of a wound-healing-like response of ECM-receptor gene expression. Mechanistically, macrophages drove resistance through cytokine activin A that induced fibronectin (FN1)-integrin alpha 5 (ITGA5)-tyrosine kinase Src (SRC) signaling cascade in PC cells. This novel mechanism was strongly supported by bioinformatics analysis of patient transcriptomics datasets. Furthermore, macrophage depletion or SRC inhibition using a novel specific inhibitor significantly inhibited resistant growth. Together, our findings elucidated a novel mechanism of macrophage-induced anti-androgen resistance of metastatic PC and a promising therapeutic approach to treat this deadly disease.


miR396-OsGRFs Module Balances Growth and Rice Blast Disease-Resistance.

  • Viswanathan Chandran‎ et al.
  • Frontiers in plant science‎
  • 2018‎

Fitness cost is a common phenomenon in rice blast disease-resistance breeding. MiR396 is a highly conserved microRNA (miRNA) family targeting Growth Regulating Factor (OsGRF) genes. Mutation at the target site of miR396 in certain OsGRF gene or blocking miR396 expression leads to increased grain yield. Here we demonstrated that fitness cost can be trade-off in miR396-OsGRFs module via balancing growth and immunity against the blast fungus. The accumulation of miR396 isoforms was significantly increased in a susceptible accession, but fluctuated in a resistant accession upon infection of Magnaporthe oryzae. The transgenic lines over-expressing different miR396 isoforms were highly susceptible to M. oryzae. In contrast, overexpressing target mimicry of miR396 to block its function led to enhanced resistance to M. oryzae in addition to improved yield traits. Moreover, transgenic plants overexpressing OsGRF6, OsGRF7, OsGRF8, and OsGRF9 exhibited enhanced resistance to M. oryzae, but showed different alteration of growth. While overexpression of OsGRF7 led to defects in growth, overexpression of OsGRF6, OsGRF8, and OsGRF9 resulted in better or no significant change of yield traits. Collectively, our results indicate that miR396 negatively regulates rice blast disease- resistance via suppressing multiple OsGRFs, which in turn differentially control growth and yield. Therefore, miR396-OsGRFs could be a potential module to demolish fitness cost in rice blast disease-resistance breeding.


Chestnut resistance to the blight disease: insights from transcriptome analysis.

  • Abdelali Barakat‎ et al.
  • BMC plant biology‎
  • 2012‎

A century ago, Chestnut Blight Disease (CBD) devastated the American chestnut. Backcross breeding has been underway to introgress resistance from Chinese chestnut into surviving American chestnut genotypes. Development of genomic resources for the family Fagaceae, has focused in this project on Castanea mollissima Blume (Chinese chestnut) and Castanea dentata (Marsh.) Borkh (American chestnut) to aid in the backcross breeding effort and in the eventual identification of blight resistance genes through genomic sequencing and map based cloning. A previous study reported partial characterization of the transcriptomes from these two species. Here, further analyses of a larger dataset and assemblies including both 454 and capillary sequences were performed and defense related genes with differential transcript abundance (GDTA) in canker versus healthy stem tissues were identified.


Allopurinol Resistance in Leishmania infantum from Dogs with Disease Relapse.

  • Daniel Yasur-Landau‎ et al.
  • PLoS neglected tropical diseases‎
  • 2016‎

Visceral leishmaniasis caused by the protozoan Leishmania infantum is a zoonotic, life threatening parasitic disease. Domestic dogs are the main peridomestic reservoir, and allopurinol is the most frequently used drug for the control of infection, alone or in combination with other drugs. Resistance of Leishmania strains from dogs to allopurinol has not been described before in clinical studies.


Remdesivir Resistance in Transplant Recipients With Persistent Coronavirus Disease 2019.

  • John I Hogan‎ et al.
  • Clinical infectious diseases : an official publication of the Infectious Diseases Society of America‎
  • 2023‎

New mutations conferring resistance to SARS-CoV-2 therapeutics have important clinical implications. We describe the first cases of an independently acquired V792I RNA-dependent RNA polymerase mutation developing in renal transplant recipients after remdesivir exposure. Our work underscores the need for augmented efforts to identify concerning mutations and address their clinical implications.


Single nucleotide polymorphism associated with disease resistance in Penaeus vannamei.

  • Iasmim Santos Mangabeira-Silva‎ et al.
  • Journal of invertebrate pathology‎
  • 2020‎

Despite the considerable number of genetic markers published for Penaeus vannamei, the classification of these markers and their standardization in specific databases is still insufficient. As a consequence, access to these markers is difficult, hampering their application in genetic association studies. In this study, all previously described single nucleotide polymorphisms (SNPs) related to resistance for P. vannamei were revised, and 512 SNPs were identified and classified in detail. We observed that most of the SNPs occurred in the proteins including Toll like receptors 1 and 3, hemocyanin large and small subunits, and anti-lipopolysaccharide factors 1 and 2, allowing to propose to use them as targets in association studies involving resistance in P. vannamei. Additionally, the potential effects of the most frequent non-synonymous coding SNPs in the secondary structure of the main target proteins were evaluated using an in silico approach. These data can serve as the starting point for the development of new genetic and computational tools as well as for the design of new association studies that involve resistance in P. vannamei.


CNL Disease Resistance Genes in Soybean and Their Evolutionary Divergence.

  • Madhav P Nepal‎ et al.
  • Evolutionary bioinformatics online‎
  • 2015‎

Disease resistance genes (R-genes) encode proteins involved in detecting pathogen attack and activating downstream defense molecules. Recent availability of soybean genome sequences makes it possible to examine the diversity of gene families including disease-resistant genes. The objectives of this study were to identify coiled-coil NBS-LRR (= CNL) R-genes in soybean, infer their evolutionary relationships, and assess structural as well as functional divergence of the R-genes. Profile hidden Markov models were used for sequence identification and model-based maximum likelihood was used for phylogenetic analysis, and variation in chromosomal positioning, gene clustering, and functional divergence were assessed. We identified 188 soybean CNL genes nested into four clades consistent to their orthologs in Arabidopsis. Gene clustering analysis revealed the presence of 41 gene clusters located on 13 different chromosomes. Analyses of the K s-values and chromosomal positioning suggest duplication events occurring at varying timescales, and an extrapericentromeric positioning may have facilitated their rapid evolution. Each of the four CNL clades exhibited distinct patterns of gene expression. Phylogenetic analysis further supported the extrapericentromeric positioning effect on the divergence and retention of the CNL genes. The results are important for understanding the diversity and divergence of CNL genes in soybean, which would have implication in soybean crop improvement in future.


Oxathiapiprolin, a Novel Chemical Inducer Activates the Plant Disease Resistance.

  • Qin Peng‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Oxathiapiprolin was developed as a specific plant pathogenic oomycete inhibitor, previously shown to have highly curative and protective activities against the pepper Phytophthora blight disease under field and greenhouse tests. Therefore, it was hypothesized that oxathiapiprolin might potentially activate the plant disease resistance against pathogen infections. This study investigated the potential and related mechanism of oxathiapiprolin to activate the plant disease resistance using the bacterium Pseudomonas syringae pv tomato (Pst) and plant Arabidopsis interaction as the targeted system. Our results showed that oxathiapiprolin could activate the plant disease resistance against Pst DC3000, a non-target pathogen of oxathiapiprolin, in Arabidopsis, tobacco, and tomato plants. Our results also showed the enhanced callose deposition and H2O2 accumulation in the oxathiapiprolin-treated Arabidopsis under the induction of flg22 as the pathogen-associated molecular pattern (PAMP) treatment. Furthermore, increased levels of free salicylic acid (SA) and jasmonic acid (JA) were detected in the oxathiapiprolin-treated Arabidopsis plants compared to the mock-treated ones under the challenge of Pst DC3000. Besides, the gene expression results confirmed that at 24 h after the infiltration with Pst DC3000, the oxathiapiprolin-treated Arabidopsis plants had upregulated expression levels of the respiratory burst oxidase homolog D (RBOHD), JA-responsive gene (PDF1.2), and SA-responsive genes (PR1, PR2, and PR5) compared to the control. Taken together, oxathiapiprolin is identified as a novel chemical inducer which activates the plant disease resistance against Pst DC3000 by enhancing the callose deposition, H2O2 accumulation, and hormone SA and JA production.


Relationship between disease resistance and rice oxalate oxidases in transgenic rice.

  • Xian Yong Zhang‎ et al.
  • PloS one‎
  • 2013‎

Differential expression of rice oxalate oxidase genes (OsOxO1-4) in rice leaves (Oryza sativa L.) in response to biotic stress was assayed using RT-PCR. OsOxO4 was induced transiently at 12 h in plants inoculated with the pathogens of bacterial blight and that of the wounding control. Inoculation with the rice blast pathogen induced OsOxO2 expression compared to the mock spray control. Overexpressing OsOxO1 or OsOxO4 in rice resulted in elevated transcript levels of the respective transgene as well as OsOxO3 in leaves compared to that in untransformed wild type (WT). In a line of RNA-i transgenic rice plants (i-12), expression of all four OsOxO genes except that of OsOxO2 was severely inhibited. Oxalate oxidase (OxO, EC 1.2.3.4) activity in plants overexpressing OsOxO1 or OsOxO4 was substantially higher than that in WT and the RNA-i lines. It was found that transgenic rice plants with substantially higher OxO activity were not more resistant to rice blast and bacterial blight than WT. In contrast, some RNA-i lines with less OxO activity seemed to be more resistant to rice blast while some overexpressing lines were more susceptible to rice blast than WT. Therefore, OxO might not be a disease resistance factor in rice.


Diet-microbiome-disease: Investigating diet's influence on infectious disease resistance through alteration of the gut microbiome.

  • Erica V Harris‎ et al.
  • PLoS pathogens‎
  • 2019‎

Abiotic and biotic factors can affect host resistance to parasites. Host diet and host gut microbiomes are two increasingly recognized factors influencing disease resistance. In particular, recent studies demonstrate that (1) particular diets can reduce parasitism; (2) diets can alter the gut microbiome; and (3) the gut microbiome can decrease parasitism. These three separate relationships suggest the existence of indirect links through which diets reduce parasitism through an alteration of the gut microbiome. However, such links are rarely considered and even more rarely experimentally validated. This is surprising because there is increasing discussion of the therapeutic potential of diets and gut microbiomes to control infectious disease. To elucidate these potential indirect links, we review and examine studies on a wide range of animal systems commonly used in diet, microbiome, and disease research. We also examine the relative benefits and disadvantages of particular systems for the study of these indirect links and conclude that mice and insects are currently the best animal systems to test for the effect of diet-altered protective gut microbiomes on infectious disease. Focusing on these systems, we provide experimental guidelines and highlight challenges that must be overcome. Although previous studies have recommended these systems for microbiome research, here we specifically recommend these systems because of their proven relationships between diet and parasitism, between diet and the microbiome, and between the microbiome and parasite resistance. Thus, they provide a sound foundation to explore the three-way interaction between diet, the microbiome, and infectious disease.


Molecular monitoring of insecticide resistance in major disease vectors in Armenia.

  • Lusine Paronyan‎ et al.
  • Parasites & vectors‎
  • 2024‎

Armenia is considered particularly vulnerable to life-threatening vector-borne diseases (VBDs) including malaria, West Nile virus disease and leishmaniasis. However, information relevant for the control of the vectors of these diseases, such as their insecticide resistance profile, is scarce. The present study was conducted to provide the first evidence on insecticide resistance mechanisms circulating in major mosquito and sand fly populations in Armenia.


Prediction of resistance to standard intravenous immunoglobulin therapy in kawasaki disease.

  • Sang Min Lee‎ et al.
  • Korean circulation journal‎
  • 2014‎

Ten to twenty percent of children with Kawasaki disease (KD) do not respond to initial intravenous immunoglobulin (IVIG) treatment. If untreated, approximately 15% to 25% of KD patients have complications. The aim of this study was to find useful predictors of responsiveness to initial IVIG treatment in KD.


Prediction of repeated intravenous immunoglobulin resistance in children with Kawasaki disease.

  • Yaheng Lu‎ et al.
  • BMC pediatrics‎
  • 2021‎

Repeated intravenous immunoglobulin (IVIG) resistance prediction is one of the pivotal topics in Kawasaki disease (KD). Those non-responders of repeated IVIG treatment might be improved by an early-intensified therapy to reduce coronary artery lesion and medical costs. This study investigated predictors of resistance to repeated IVIG treatment in KD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: