2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 59 papers out of 59 papers

Sacubitril/Valsartan Reduces Fibrosis and Alleviates High-Salt Diet-Induced HFpEF in Rats.

  • Wenchao Zhang‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Previous studies have confirmed the clinical efficacy of sacubitril/valsartan (Sac/Val) for the treatment of heart failure with reduced ejection fraction (HFrEF). However, the role of Sac/Val in heart failure with preserved ejection fraction (HFpEF) remains unclear. Sac/Val is a combination therapeutic medicine comprising sacubitril and valsartan that acts as a first angiotensin receptor blocker and neprilysin inhibitor (angiotensin-receptor neprilysin inhibitor (ARNI)). Here, we investigated the role of Sac/Val in high-salt diet-induced HFpEF coupled with vascular injury as well as the underlying mechanism. Rats were fed with high-salt feed, followed by intragastric administration of Sac/Val (68 mg/kg; i.g.). The results of functional tests revealed that a high-salt diet caused pathological injuries in the heart and vascular endothelium, which were significantly reversed by treatment with Sac/Val. Moreover, Sac/Val significantly decreased the levels of fibrotic factors, including type I collagen and type Ⅲ collagen, thus, reducing the ratio of MMP2/TIMP2 while increasing Smad7 levels. Further investigation suggested that Sac/Val probably reversed the effects of high-salt diet-induced HFpEF by inhibiting the activation of the TGF-β1/Smad3 signaling pathway. Thus, treatment with Sac/Val effectively alleviated the symptoms of high-salt diet-induced HFpEF, probably by inhibiting fibrosis via the TGF-β1/Smad3 signaling pathway, supporting the therapeutic potential of Sac/Val for the treatment of HFpEF.


Indirect comparison of the diagnostic performance of 18F-FDG PET/CT and MRI in differentiating benign and malignant ovarian or adnexal tumors: a systematic review and meta-analysis.

  • Xianwen Hu‎ et al.
  • BMC cancer‎
  • 2021‎

To compare the value of fluorodeoxyglucose positron emission tomography (FDG-PET)/computed tomography (CT) and magnetic resonance imaging (MRI) in differentiating benign and malignant ovarian or adnexal tumors.


Silencing SHMT2 inhibits the progression of tongue squamous cell carcinoma through cell cycle regulation.

  • Yan Liao‎ et al.
  • Cancer cell international‎
  • 2021‎

Serine hydroxymethyltransferase 2 (SHMT2) is a vital metabolic enzyme in one carbon metabolism catalyzing the conversion of serine to glycine, which has been reported to play a crucial role in the progression of tumors. However, its function in tongue squamous cell carcinoma (TSCC) remains unclear.


Ceramide metabolism-related prognostic signature and immunosuppressive function of ST3GAL1 in osteosarcoma.

  • Yutong Zou‎ et al.
  • Translational oncology‎
  • 2024‎

Osteosarcoma is the most common primary malignant bone tumor with elevated disability and mortality rates in children and adolescents and the therapeutic effect for osteosarcoma has remained stagnant in the past 30 years. Emerging evidence has shown ceramide metabolism plays a vital role in tumor progression, but its mechanisms in osteosarcoma progression remain unknown. Through consensus clustering and LASSO regression analysis based on the osteosarcoma cohorts from TARGET database, we constructed a ceramide metabolism-related prognostic signature including ten genes for osteosarcoma, with ST3GAL1 exhibiting the highest hazard ratio. Biological signatures analysis demonstrated that ceramide metabolism was associated with immune-related pathways, immune cell infiltration and the expression of immune checkpoint genes. Single-cell profiling revealed that ceramide metabolism was enriched in myeloid, osteoblast and mesenchymal cells. The interaction between TAMs and CD8+ T cells played an essential role in osteosarcoma. ST3GAL1 regulated the SPP1-CD44 interaction between TAMs and CD8+ T cells and IL-10 secretion in TAMs through α2,3 sialic acid receptors, which inhibited CD8+ T cell function. IHC analysis showed that ST3GAL1 expression correlated with the prognosis of osteosarcoma patients. Co-culture assay revealed that upregulation of ST3GAL1 in tumor cells regulated the differentiation of TAMs and cytokine secretion. Collectively, our findings demonstrated that ceramide metabolism was associated with clinical outcome in osteosarcoma. ST3GAL1 facilitated tumor progression through regulating tumor immune microenvironment, providing a feasible therapeutic approach for patients with osteosarcoma.


Metabolomic Study to Determine the Mechanism Underlying the Effects of Sagittaria sagittifolia Polysaccharide on Isoniazid- and Rifampicin-Induced Hepatotoxicity in Mice.

  • Xiu-Hui Ke‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

In this study, a non-targeted metabolic profiling method based on ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) was used to characterize the plasma metabolic profile associated with the protective effects of the Sagittaria sagittifolia polysaccharide (SSP) on isoniazid (INH)-and rifampicin (RFP)-induced hepatotoxicity in mice. Fourteen potential biomarkers were identified from the plasma of SSP-treated mice. The protective effects of SSP on hepatotoxicity caused by the combination of INH and RFP (INH/RFP) were further elucidated by investigating the related metabolic pathways. INH/RFP was found to disrupt fatty acid metabolism, the tricarboxylic acid cycle, amino acid metabolism, taurine metabolism, and the ornithine cycle. The results of the metabolomics study showed that SSP provided protective effects against INH/RFP-induced liver injury by partially regulating perturbed metabolic pathways.


lncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR-33a-5p inhibition.

  • Nian Jiang‎ et al.
  • Cancer letters‎
  • 2017‎

lncRNAs regulate the initiation and progression of osteosarcoma, although the mechanism by which this occurs remains unknown. The present study shows that over-expression of the lncRNA DANCR increased osteosarcoma cell proliferation, migration, and invasion in vitro, as well as promoted xenograft tumor growth and lung metastasis in vivo. Mechanistically, DANCR promoted osteosarcoma progression by mediating cancer stem cells (CSCs) features. Moreover, pull-down assays and luciferase reporter assays indicated that DANCR upregulated expression of the receptor tyrosine kinase AXL by competitively binding to miR-33a-5p. Furthermore, DANCR enhanced the expression of proteins downstream of the AXL-Akt pathway. DANCR was consistently significantly increased in osteosarcoma tissues, and its expression was positively correlated with tumor size and metastasis as an independent poor prognostic factor. Furthermore, both in patient tumors and xenograft tumors, DANCR expression was positively related to AXL and negatively related to miR-33a-5p. Taken together, our results suggest that DANCR is a crucial upregulator of osteosarcoma and an independent predictor of prognosis. DANCR increases CSCs function by upregulating AXL via competitively binding to miR-33a-5p, and this function is sequentially performed through the PI3K-Akt signaling pathway.


Preoperative Aspartate Aminotransferase to White Blood Cell Count Ratio Predicting Postoperative Outcomes of Hepatocellular Carcinoma.

  • Weijia Liao‎ et al.
  • Medicine‎
  • 2016‎

Effective biomarkers for predicting prognosis of hepatocellular carcinoma (HCC) patients after hepatectomy is urgently needed. The purpose of this study is to evaluate the value of the preoperative peripheral aspartate aminotransferase to white blood cell count ratio (AWR) for the prognostication of patients with HCC.Clinical data of 396 HCC patients who underwent radical hepatectomy were retrospectively analyzed. The patients were divided into the low-AWR group (AWR ≤5.2) and the high-AWR group (AWR >5.2); univariate analysis, Kaplan-Meier method analysis, and the multivariate analysis by Cox regression were conducted, respectively.The results showed that AWR was associated with alpha-fetoprotein (AFP), tumor size, Barcelona clinic liver cancer (BCLC) stage, portal vein tumor thrombus (PVTT), and alanine aminotransferase (ALT) in HCC. AWR > 5.2, AFP > 100 ng/mL, size of tumor >6 cm, number of multiple tumors, B-C of BCLC stage, PVTT, and distant metastasis were predictors of poorer disease-free survival (DFS) and overall survival (OS). Except for recurrence, which was an independent predictor for OS only, AWR >5.2, size of tumor >6 cm, and PVTT were independent predictors of both DFS and OS.We concluded that preoperative AWR > 5.2 was an adverse predictor of DFS and OS in HCC after hepatectomy, AWR might be a novel prognostic biomarker in HCC after curative resection.


Sagittaria sagittifolia polysaccharide protects against isoniazid- and rifampicin-induced hepatic injury via activation of nuclear factor E2-related factor 2 signaling in mice.

  • Jing Wang‎ et al.
  • Journal of ethnopharmacology‎
  • 2018‎

The Sagittaria sagittifolia L. polysaccharide (SSP) is a purified form of a homogeneous polysaccharide isolated from the root tubers of S. sagittifolia, which has been used as a protectant against hepatotoxicity induced by coadministration of isoniazid and rifampicin. However, the protective effect of SSP against isoniazid- and rifampicin-induced liver injury has never been studied.


The preoperative alkaline phosphatase-to-platelet ratio index is an independent prognostic factor for hepatocellular carcinoma after hepatic resection.

  • Ya-Qun Yu‎ et al.
  • Medicine‎
  • 2016‎

A simple, inexpensive, and readily available prognostic index is highly needed to accurately predict the prognosis of hepatocellular carcinoma (HCC). This study aimed to develop a simple prognostic index using routine laboratory tests, alkaline phosphatase-to-platelet count ratio index (APPRI), to predict the likelihood of postoperative survival in HCC patients.A total of 246 patients with HCC undergoing curative resection were retrospectively analyzed. Cutoff point for APPRI was calculated using receiver operating characteristic curve analysis, and then the patients were divided into the low-APPRI group (APPRI ≤ 4.0) and the high-APPRI group (APPRI > 4.0). The influences of APPRI on disease-free survival (DFS) and overall survival (OS) were tested by the Kaplan-Meier method, and multivariate analysis using Cox regression. Elevated APPRI was associated with age, cirrhosis, and aspartate aminotransferase (AST) in HCC. Univariate analysis showed that APPRI > 4.0, tumor size >6 cm, multiple tumors, Barcelona-clinic liver cancer stages B to C, and AST > 40 U/L were significant predictors of worse DFS and OS. A multivariate analysis suggested that APPRI > 4.0 was an independent factor for DFS (hazard ratio [HR] = 1.689; 95% confidence interval [CI], 1.139-2.505; P = 0.009) and OS (HR = 1.664; 95% CI, 1.123-2.466; P = 0.011). Preoperative APPRI > 4.0 was a powerful prognostic predictor of adverse DFS and OS in HCC after surgery. The APPRI may be a promising prognostic marker for HCC after surgical resection.


The role of kinesin KIF18A in the invasion and metastasis of hepatocellular carcinoma.

  • Weiwei Luo‎ et al.
  • World journal of surgical oncology‎
  • 2018‎

KIF18A is associated with a variety of tumours; however, the specific mechanism of action of KIF18A in hepatocellular carcinoma (HCC) remains unclear. In this study, in vitro and in vivo experiments were performed with the aim of exploring the potential function and molecular mechanism of kinesin KIF18A in the occurrence and development of HCC.


Cardiac Nestin+ Mesenchymal Stromal Cells Enhance Healing of Ischemic Heart through Periostin-Mediated M2 Macrophage Polarization.

  • Yan Liao‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2020‎

Mesenchymal stromal cells (MSCs) show potential for treating cardiovascular diseases, but their therapeutic efficacy exhibits significant heterogeneity depending on the tissue of origin. This study sought to identify an optimal source of MSCs for cardiovascular disease therapy. We demonstrated that Nestin was a suitable marker for cardiac MSCs (Nes+cMSCs), which were identified by their self-renewal ability, tri-lineage differentiation potential, and expression of MSC markers. Furthermore, compared with bone marrow-derived MSCs (Nes+bmMSCs) or saline-treated myocardial infarction (MI) controls, intramyocardial injection of Nes+cMSCs significantly improved cardiac function and decreased infarct size after acute MI (AMI) through paracrine actions, rather than transdifferentiation into cardiac cells in infarcted heart. We further revealed that Nes+cMSC treatment notably reduced pan-macrophage infiltration while inducing macrophages toward an anti-inflammatory M2 phenotype in ischemic myocardium. Interestingly, Periostin, which was highly expressed in Nes+cMSCs, could promote the polarization of M2-subtype macrophages, and knockdown or neutralization of Periostin remarkably reduced the therapeutic effects of Nes+cMSCs by decreasing M2 macrophages at lesion sites. Thus, the present work systemically shows that Nes+cMSCs have greater efficacy than do Nes+bmMSCs for cardiac healing after AMI, and that this occurs at least partly through Periostin-mediated M2 macrophage polarization.


Simultaneously Quantitative Analysis of Naringin and Its Major Human Gut Microbial Metabolites Naringenin and 3-(4'-Hydroxyphenyl) Propanoic Acid via Stable Isotope Deuterium-Labeling Coupled with RRLC-MS/MS Method.

  • Taobin Chen‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Widespread in citrus fruits, naringin, a natural 2,3-dihydroflavonoid, is of particular interest to scientists and has a broad range of beneficial bioactivities to health. Orally administered naringin remains in the gut tract for a relatively long time because of its low bioavailability. Under the metabolism mediated by human gut microbiota, naringin could be an active precursor for derived metabolites to play important physiological roles. However, naringin and its metabolites are hard to accurately quantify due to severe endogenic interference. In this study, an analytical rapid resolution liquid chromatography tandem mass spectrometry (RRLC-MS/MS) method coupled with stable isotope deuterium-labeling is developed and validated to simultaneously quantify naringin as well as its major human gut microbial metabolites naringenin and 3-(4'-hydroxyphenyl) propanoic acid. By eliminating the matrix interferences, this strategy not only confirms naringenin and 3-(4'-hydroxyphenyl) propanoic acid as the predominant metabolites which contribute to the pharmacological effects of naringin but also provides a suitable choice for other flavonoid pharmacokinetics study.


Recovery and maintenance of NESTIN expression in umbilical cord-MSC using a novel culture medium.

  • Yuncheng Liu‎ et al.
  • AMB Express‎
  • 2020‎

Mesenchymal stem cells (MSC) are a popular candidate in cellular therapy for many diseases. MSCs are well known by their feature of self-renewal and their differentiation potential. NESTIN is a cytoskeletal protein expressed in MSC that functions directly in cell proliferation and differentiation. Here, we demonstrated that adding UltraGRO, a medium supplement, could maintain and partially recover the expression of NESTIN in human umbilical cord derived MSCs (UC-MSCs). Furthermore, the UC-MSCs cultured with UltraGRO showed a better immunomodulation ability in a colitis mouse model compared with those cultured in other types of media. This indicates that the use of novel culture medium benefits the maintenance of NESTIN expression and NESTIN may be one of the vital factors that regulates the performance of MSCs.


Oroxyloside ameliorates acetaminophen-induced hepatotoxicity by inhibiting JNK related apoptosis and necroptosis.

  • Yan Liao‎ et al.
  • Journal of ethnopharmacology‎
  • 2020‎

Oroxyloside is a natural flavonoid isolated from Scutellaria baicalensis Georgi (Lamiaceae) which is a Chinese herb widely used for liver diseases. However, its mechanisms on protecting against drug induced liver injury has not been investigated yet.


Advanced oxidation protein products impair autophagic flux in macrophage by inducing lysosomal dysfunction via activation of PI3K-Akt-mTOR pathway in Crohn's disease.

  • Yan Liao‎ et al.
  • Free radical biology & medicine‎
  • 2021‎

Dysfunction in macrophages is involved in the pathogenesis of various diseases, including Crohn's disease (CD). Previously, we found that advanced oxidation protein products (AOPPs) were predominantly deposited in macrophages in the intestinal lamina propria of CD patients. However, whether AOPPs contributes to macrophage dysfunction in CD and the underlying mechanism remains unknown. This study aimed to investigate the effects of AOPPs on macrophages functions in CD. In the present study, we discovered increased AOPPs levels were positively correlated with impaired autophagy in macrophages of CD patients. AOPPs could impair autophagic flux by inducing lysosomal dysfunction in RAW264.7 cell line and macrophages in AOPPs-treated mice, evidenced by increased number of autophagosomes, blocked degradation of autophagy-related proteins (LC3B-II and SQSTM1/p62), and decreased activity of lysosomal proteolytic enzymes after AOPPs challenge. Besides, AOPPs could also promote M1 polarization in RAW264.7 cells and bone marrow derived macrophages (BMDMs) in AOPPs-treated mice. In addition, our study revealed that PI3K-AKT-mTOR-TFEB pathway was activated by AOPPs in macrophages. Inhibition of the PI3K pathway effectively alleviated AOPPs-induced autophagy impairment and M1 polarization both in vitro and in vivo, thus reducing intestinal inflammation in AOPPs-challenged mice. Together, this study demonstrates that AOPPs-induced autophagy impairment in macrophages is crucial for CD progression.


A missing piece of the puzzle in pulmonary fibrosis: anoikis resistance promotes fibroblast activation.

  • Juan Yin‎ et al.
  • Cell & bioscience‎
  • 2022‎

Pulmonary fibrosis initiates a pneumonic cascade that leads to fibroblast dysfunction characterized by excess proliferation. Anoikis is a physiological process that ensures tissue development and homeostasis. Researchers have not clearly determined whether disruption of anoikis is involved in pulmonary fibrosis.


The Comparison between Cemented and Uncemented Hemiarthroplasty in Patients with Femoral Neck Fractures: A Systematic Review and Meta-analysis of Randomized Controlled Trials.

  • Yue He‎ et al.
  • Orthopaedic surgery‎
  • 2023‎

Hemiarthroplasty is the standard treatment for patients with femoral neck fractures (FNFs). Controversy exists over the use of bone cement in hip fractures treated with hemiarthroplasty.


CircMAST1 inhibits cervical cancer progression by hindering the N4-acetylcytidine modification of YAP mRNA.

  • Chunyu Zhang‎ et al.
  • Cellular & molecular biology letters‎
  • 2024‎

Cervical cancer (CCa) is the fourth most common cancer among females, with high incidence and mortality rates. Circular RNAs (circRNAs) are key regulators of various biological processes in cancer. However, the biological role of circRNAs in cervical cancer (CCa) remains largely unknown. This study aimed to elucidate the role of circMAST1 in CCa.


Construction of an ER stress-related prognostic signature for predicting prognosis and screening the effective anti-tumor drug in osteosarcoma.

  • Weidong Chen‎ et al.
  • Journal of translational medicine‎
  • 2024‎

Osteosarcoma is the most common malignant primary bone tumor in infants and adolescents. The lack of understanding of the molecular mechanisms underlying osteosarcoma progression and metastasis has contributed to a plateau in the development of current therapies. Endoplasmic reticulum (ER) stress has emerged as a significant contributor to the malignant progression of tumors, but its potential regulatory mechanisms in osteosarcoma progression remain unknown.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: