Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 188 papers

Translational study reveals a two-faced role of RBM3 in pancreatic cancer and suggests its potential value as a biomarker for improved patient stratification.

  • Emelie Karnevi‎ et al.
  • Oncotarget‎
  • 2018‎

Periampullary adenocarcinoma, including pancreatic cancer, is a heterogeneous group of tumors with dismal prognosis, partially due to lack of reliable targetable and predictive biomarkers. RNA-binding motif protein 3 (RBM3) has previously been shown to be an independent prognostic and predictive biomarker in several types of cancer. Herein, we examined the prognostic value of RBM3 in periampullary adenocarcinoma, as well as the effects following RBM3 suppression in pancreatic cancer cells in vitro. RBM3 mRNA levels were examined in 176 pancreatic cancer patients from The Cancer Genome Atlas. Immunohistochemical expression of RBM3 was analyzed in tissue microarrays with primary tumors and paired lymph node metastases from 175 consecutive patients with resected periampullary adenocarcinoma. Pancreatic cancer cells were transfected with anti-RBM3 siRNA in vitro and the influence on cell viability following chemotherapy, transwell migration and invasion was assessed. The results demonstrated that high mRNA-levels of RBM3 were significantly associated with a reduced overall survival (p = 0.026). RBM3 protein expression was significantly higher in lymph node metastases than in primary tumors (p = 0.005). High RBM3 protein expression was an independent predictive factor for the effect of adjuvant chemotherapy and an independent negative prognostic factor in untreated patients (p for interaction = 0.003). After siRNA suppression of RBM3 in vitro, pancreatic cancer cells displayed reduced migration and invasion compared to control, as well as a significantly increased resistance to chemotherapy. In conclusion, the strong indication of a positive response predictive effect of RBM3 expression in pancreatic cancer may be highly relevant in the clinical setting and merits further validation.


Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis.

  • Shan Guan‎ et al.
  • Oncotarget‎
  • 2016‎

Neuroblastoma (NB), which accounts for about 15% of cancer-related mortality in children, is the most common extracranial malignant neoplasm in children. Elevated level of proteasome activity promotes cancer development and the inhibition of proteasome activity is a promising strategy for cancer treatment. Therefore, targeting proteasome by small molecule inhibitors may be a viable option for NB therapy. Here in this study, we show that a novel proteasome inhibitor Carfilzomib (CFZ) exerts anti-tumor effect on NB. CFZ caused decreased cell viability and attenuated colony formation ability of a subset of NB cell lines. CFZ induced cell apoptosis in NB cells. Moreover, CFZ enhanced the cytotoxic effect of doxorubicin (Dox) on NB cells and Dox-induced p38 and JNK phosphorylation. In addition, CFZ inhibited Dox-induced NF-κB activation by stabilizing the protein level of IκBα. Furthermore, CFZ induced apoptosis and augmented Dox-induced apoptosis in NB tumor cells in orthotopic xenograft mouse models. In summary, our study suggests that proteasome is a therapeutic target in NB and proteasome inhibition by CFZ is a potential therapeutic strategy for treating NB patients.


Oncogenic KIT-induced aggressive systemic mastocytosis requires SHP2/PTPN11 phosphatase for disease progression in mice.

  • Namit Sharma‎ et al.
  • Oncotarget‎
  • 2014‎

Acquired mutations in KIT are driver mutations in systemic mastocytosis (SM). Here, we tested the role of SHP2/PTPN11 phosphatase in oncogenic KIT signaling using an aggressive SM mouse model. Stable knock-down (KD) of SHP2 led to impaired growth, colony formation, and increased rates of apoptosis in P815 cells. This correlated with defects in signaling to ERK/Bim, Btk, Lyn, and Stat5 pathways in P815-KD cells compared to non-targeting (NT). Retro-orbital injections of P815 NT cells in syngeneic DBA/2 mice resulted in rapid development of aggressive SM within 13-16 days characterized by splenomegaly, extramedullary hematopoiesis, and multifocal liver tumors. In contrast, mice injected with P815 SHP2 KD cells showed less disease burden, including normal spleen weight and cellularity, and significant reductions in mastocytoma cells in spleen, bone marrow, peripheral blood and liver compared to NT controls. Treatment of human mast cell leukemia HMC-1 cells or P815 cells with SHP2 inhibitor II-B08, resulted in reduced colony formation and cell viability. Combining II-B08 with multi-kinase inhibitor Dasatinib showed enhanced efficacy than either inhibitor alone in blocking cell growth pathways and cell viability. Taken together, these results identify SHP2 as a key effector of oncogenic KIT and a therapeutic target in aggressive SM.


Novel celastrol derivatives inhibit the growth of hepatocellular carcinoma patient-derived xenografts.

  • Wei Wei‎ et al.
  • Oncotarget‎
  • 2014‎

The molecular co-chaperone CDC37 is over-expressed in hepatocellular carcinoma (HCC) cells, where it functions with HSP90 to regulate the activity of protein kinases in multiple oncogenic signaling pathways that contribute towards hepatocarcinogenesis. Disruption of these signaling pathways via inhibition of HSP90/CDC37 interaction is therefore a rational therapeutic approach. We evaluated the anti-tumor effects of celastrol, pristimerin, and two novel derivatives (cel-D2, and cel-D7) on HCC cell lines in vitro and on orthotopic HCC patient-derived xenografts in vivo. All four compounds preferentially inhibited viability of HCC cells in vitro,and significantly inhibited the growth of three orthotopic HCC patient-derived xenografts in vivo; with the novel derivatives cel-D2 and cel-D7 exhibiting lower toxicity. All four compounds also induced cell apoptosis; and promoted degradation and inhibited phosphorylation of protein kinases in the Raf/MEK/ERK and PI3K/AKT/mTOR signaling pathways. We demonstrated that HSP90/CDC37 antagonists are potentially broad spectrum agents that might be beneficial for treating the heterogeneous subtypes of HCC, either as monotherapy, or in combination with other chemotherapeutic agents.


3'-hydroxy-4'-methoxy-β-methyl-β-nitrostyrene inhibits tumorigenesis in colorectal cancer cells through ROS-mediated DNA damage and mitochondrial dysfunction.

  • Chun-Hao Tsai‎ et al.
  • Oncotarget‎
  • 2017‎

The β-nitrostyrene family has been shown to suppress cell proliferation and induce apoptosis in types of various cancers. However, the mechanisms underlying the anticancer effects of β-nitrostyrenes in colorectal cancer remain poorly understood. In this study, we synthesized a β-nitrostyrene derivative, CYT-Rx20 (3'-hydroxy-4'-methoxy-β-methyl-β-nitrostyrene), and investigated its anticancer activities in human colorectal cancer cells both in vitro and in vivo. Our findings showed that treatment with CYT-Rx20 reduced cell viability and induced DNA damage in colorectal cancer cells. In addition, CYT-Rx20 induced cell cycle arrest of colorectal cancer cells at the G2/M phase and upregulated the protein expression of phospho-ERK, cyclin B1, phospho-cdc2 (Tyr15), aurora A, and aurora B, while it downregulated the expression of cdc25A and cdc25C. Furthermore, we found that CYT-Rx20 caused accumulation of intracellular reactive oxygen species (ROS) and reduction of mitochondrial membrane potential. The effects of CYT-Rx20 on cell viability, DNA damage, and mitochondrial membrane potential were reversed by pretreatment with the thiol antioxidant N-acetyl-L-cysteine (NAC), suggesting that ROS-mediated DNA damage and mitochondrial dysregulation play a critical role in these events. Finally, the nude mice xenograft study showed that CYT-Rx20 significantly reduced tumor growth of implanted colorectal cancer cells accompanied by elevated protein expression of aurora A, aurora B, γH2AX, phosphor-ERK, and MDA in the tumor tissues. Taken together, these results suggest that CYT-Rx20 may potentially be developed as a novel β-nitrostyrene-based anticancer agent for colorectal cancer.


LncRNA HSP90AA1-IT1 promotes gliomas by targeting miR-885-5p-CDK2 pathway.

  • Taihong Gao‎ et al.
  • Oncotarget‎
  • 2017‎

It is well established that ncRNAs are emerging as important regulators in various types of cancers, however, their functions and contributions in cancers remain insufficiently defined. In this study, we reported the expression levels of a long noncoding RNA (lncRNA), named HSP90AA1-IT1 (HSP90AA1 intronic transcript 1), appeared to correlate with the pathological grades of gliomas and high level of HSP90AA1-IT1 indicated poor prognosis. Downregulation of HSP90AA1-IT1 in the glioma cell lines significantly suppressed cell viability, proliferation, EMT, invasion and migration in addition to an increase in apoptosis and aberrant cell cycle progression. The tumorigenic capacity of these cells in vivo were also inhibited. We further demonstrated that the oncogenic effects of HSP90AA1-IT1 could be mediated by a direct binding to miR-885-5p. Sharing the same binding sites with CDK2, a key regulator in gliomagenesis, HSP90AA1-IT1 competitively bound to miR-885-5p, thereby prevented CDK2 from miR-885-5p mediated post-transcriptional repression. Taken together, it is concluded that HSP90AA1-IT1, performs its function via regulating the development of gliomas through miR-885-5p-CDK2 signaling axis, and this has added new perspective to its role in tumorigenesis, thus providing potential therapeutic targets for glioma treatment.


Dragon (RGMb) induces oxaliplatin resistance in colon cancer cells.

  • Ying Shi‎ et al.
  • Oncotarget‎
  • 2016‎

Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer mortality. Chemotherapy resistance remains a major challenge for treating advanced CRC. Therefore, the identification of targets that induce drug resistance is a priority for the development of novel agents to overcome resistance. Dragon (also known as RGMb) is a member of the repulsive guidance molecule (RGM) family. We previously showed that Dragon expression increases with CRC progression in human patients. In the present study, we found that Dragon inhibited apoptosis and increased viability of CMT93 and HCT116 cells in the presence of oxaliplatin. Dragon induced resistance of xenograft tumor to oxaliplatinin treatment in mice. Mechanistically, Dragon inhibited oxaliplatin-induced JNK and p38 MAPK activation, and caspase-3 and PARP cleavages. Our results indicate that Dragon may be a novel target that induces drug resistance in CRC.


Aurora A inhibition limits centrosome clustering and promotes mitotic catastrophe in cells with supernumerary centrosomes.

  • Bernat Navarro-Serer‎ et al.
  • Oncotarget‎
  • 2019‎

The presence of supernumerary centrosomes is prevalent in cancer, where they promote the formation of transient multipolar mitotic spindles. Active clustering of supernumerary centrosomes enables the formation of a functional bipolar spindle that is competent to complete a bipolar division. Disruption of spindle pole clustering in cancer cells promotes multipolar division and generation of non-proliferative daughter cells with compromised viability. Hence molecular pathways required for spindle pole clustering in cells with supernumerary centrosomes, but dispensable in normal cells, are promising therapeutic targets. Here we demonstrate that Aurora A kinase activity is required for spindle pole clustering in cells with extra centrosomes. While cells with two centrosomes are ultimately able to build a bipolar spindle and proceed through a normal cell division in the presence of Aurora A inhibition, cells with supernumerary centrosomes form multipolar and disorganized spindles that are not competent for chromosome segregation. Instead, following a prolonged mitosis, these cells experience catastrophic divisions that result in grossly aneuploid, and non-proliferative daughter cells. Aurora A inhibition in a panel of Acute Myeloid Leukemia cancer cells has a similarly disparate impact on cells with supernumerary centrosomes, suggesting that centrosome number and spindle polarity may serve as predictive biomarkers for response to therapeutic approaches that target Aurora A kinase function.


Novel tumor suppressor microRNA at frequently deleted chromosomal region 8p21 regulates epidermal growth factor receptor in prostate cancer.

  • Nathan Bucay‎ et al.
  • Oncotarget‎
  • 2016‎

Genomic loss of chromosome (chr) 8p21 region, containing prostate-specific NKX3.1 gene, is a frequent alteration of the prostate cancer (PCa) oncogenome. We propose a novel, paradigm shifting hypothesis that this frequently deleted locus is also associated with a cluster of microRNA genes- miR-3622a/b- that are lost in PCa and play an important mechanistic role in progression and metastasis. In this study, we demonstrate the role of miR-3622b in prostate cancer. Expression analyses in a cohort of PCa clinical specimens and cell lines show that miR-3622b expression is frequently lost in prostate cancer. Low miR-3622b expression was found to be associated with tumor progression and poor biochemical recurrence-free survival. Further, our analyses suggest that miR-3622b expression is a promising prostate cancer diagnostic biomarker that exhibits 100% specificity and 66% sensitivity. Restoration of miR-3622b expression in PCa cell lines led to reduced cellular viability, proliferation, invasiveness, migration and increased apoptosis. miR-3622b overexpression in vivo induced regression of established prostate tumor xenografts pointing to its therapeutic potential. Further, we found that miR-3622b directly represses Epidermal Growth Factor Receptor (EGFR). In conclusion, our study suggests that miR-3622b plays a tumor suppressive role and is frequently downregulated in prostate cancer, leading to EGFR upregulation. Importantly, miR-3622b has associated diagnostic, prognostic and therapeutic potential. Considering the association of chr8p21 loss with poor prognosis, our findings are highly significant and support a novel concept that associates a long standing observation of frequent loss of a chromosomal region with a novel miRNA in prostate cancer.


Acyl protein thioesterase 1 and 2 (APT-1, APT-2) inhibitors palmostatin B, ML348 and ML349 have different effects on NRAS mutant melanoma cells.

  • Igor Vujic‎ et al.
  • Oncotarget‎
  • 2016‎

Oncogenic NRAS mutations are frequent in melanoma and lead to increased downstream signaling and uncontrolled cell proliferation. Since the direct inhibition of NRAS is not possible yet, modulators of NRAS posttranslational modifications have become an area of interest. Specifically, interfering with NRAS posttranslational palmitoylation/depalmitoylation cycle could disturb proper NRAS localization, and therefore decrease cell proliferation and downstream signaling. Here, we investigate the expression and function of NRAS depalmitoylating acyl protein thioesterases 1 and 2 (APT-1, APT-2) in a panel of NRAS mutant melanoma cells. First, we show that all melanoma cell lines examined express APT-1 and APT-2. Next, we show that siRNA mediated APT-1 and APT-2 knock down and that the specific APT-1 and -2 inhibitors ML348 and ML349 have no biologically significant effects in NRAS mutant melanoma cells. Finally, we test the dual APT-1 and APT-2 inhibitor palmostatin B and conclude that palmostatin B has effects on NRAS downstream signaling and cell viability in NRAS mutant melanoma cells, offering an interesting starting point for future studies.


PHOX2B is a suppressor of neuroblastoma metastasis.

  • Osnat Naftali‎ et al.
  • Oncotarget‎
  • 2016‎

Paired like homeobox 2B (PHOX2B) is a minimal residual disease (MRD) marker of neuroblastoma. The presence of MRD, also referred to as micro-metastases, is a powerful marker of poor prognosis in neuroblastoma. Lung metastasis is considered a terminal event in neuroblastoma. Lung micro-metastatic neuroblastoma (MicroNB) cells show high expression levels of PHOX2B and possess a less malignant and metastatic phenotype than lung macro metastatic neuroblastoma (MacroNB) cells, which hardly express PHOX2B. In vitro assays showed that PHOX2B knockdown in MicroNB cells did not affect cell viability; however it decreased the migratory capacity of the MicroNB-shPHOX2B cells. An orthotopic inoculation of MicroNB-shPHOX2B cells into the adrenal gland of nude mice resulted in significantly larger primary tumors and a heavier micro-metastatic load in the lungs and bone-marrow, than when control cells were inoculated. PHOX2B expression was found to be regulated by methylation. The PHOX2B promoter in MacroNB cells is significantly more methylated than in MicroNB cells. Demethylation assays using 5-azacytidine demonstrated that methylation can indeed inhibit PHOX2B transcription in MacroNB cells. These pre-clinical data strongly suggest that PHOX2B functions as a suppressor of neuroblastoma progression.


Targeting miR-381-NEFL axis sensitizes glioblastoma cells to temozolomide by regulating stemness factors and multidrug resistance factors.

  • Zeyou Wang‎ et al.
  • Oncotarget‎
  • 2015‎

MicroRNA-381 (miR-381) is a highly expressed onco-miRNA that is involved in malignant progression and has been suggested to be a good target for glioblastoma multiforme (GBM) therapy. In this study, we employed two-dimensional fluorescence differential gel electrophoresis (2-D DIGE) and MALDI-TOF/TOF-MS/MS to identify 27 differentially expressed proteins, including the significantly upregulated neurofilament light polypeptide (NEFL), in glioblastoma cells in which miR-381 expression was inhibited. We identified NEFL as a novel target molecule of miR-381 and a tumor suppressor gene. In human astrocytoma clinical specimens, NEFL was downregulated with increased levels of miR-381 expression. Either suppressing miR-381 or enforcing NEFL expression dramatically sensitized glioblastoma cells to temozolomide (TMZ), a promising chemotherapeutic agent for treating GBMs. The mechanism by which these cells were sensitized to TMZ was investigated by inhibiting various multidrug resistance factors (ABCG2, ABCC3, and ABCC5) and stemness factors (ALDH1, CD44, CKIT, KLF4, Nanog, Nestin, and SOX2). Our results further demonstrated that miR-381 overexpression reversed the viability of U251 cells exhibiting NEFL-mediated TMZ sensitivity. In addition, NEFL-siRNA also reversed the proliferation rate of U251 cells exhibiting locked nucleic acid (LNA)-anti-miR-381-mediated TMZ sensitivity. Overall, the miR-381-NEFL axis is important for TMZ resistance in GBM and may potentially serve as a novel therapeutic target for glioma.


NCTD promotes Birinapant-mediated anticancer activity in breast cancer cells by downregulation of c-FLIP.

  • Li Zhao‎ et al.
  • Oncotarget‎
  • 2017‎

Second mitochondria-derived activator of caspases (SMAC) mimetics is a class of new anticancer agents. However, most cancers exhibit de novo or acquired resistance to SMAC mimetics, posting a problem for broad applications in clinic, and highlighting the necessity of exploring combinational strategies to circumvent SMAC mimetic-resistance. We here showed that Norcantharidin, a drug that is currently being used in cancer treatment, significantly enhanced SMAC mimetic Birinapant-mediated cell viability inhibition and robustly promoted apoptosis in established breast carcinoma cell lines, as well as in primary breast carcinoma cells. Mechanistically, we revealed that Norcantharidin effectively reduced the levels of two major protein isoforms of cellular FLICE-like inhibitor protein(c-FLIP), namely c-FLIP long (c-FLIPL) and c-FLIP short (c-FLIPS). Moreover, Norcantharidin markedly enhanced Birinapant-triggered caspase-8/caspase-3 cascade. Inhibition of caspase-8 activity by a synthetic peptide Z-IETD-FMK significantly attenuated cell death induction by the combination, suggesting that caspase-8 plays a critical role in the anticancer action. In conclusion, our study suggests that the combination of SMAC mimetics with Norcantharidin represents a novel strategy in breast cancer therapy and warrants further studies.


SRC family kinase (SFK) inhibition reduces rhabdomyosarcoma cell growth in vitro and in vivo and triggers p38 MAP kinase-mediated differentiation.

  • Nadia Casini‎ et al.
  • Oncotarget‎
  • 2015‎

Recent data suggest that SRC family kinases (SFKs) could represent potential therapeutic targets for rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children. Here, we assessed the effect of a recently developed selective SFK inhibitor (a pyrazolo[3,4-d]pyrimidine derivative, called SI221) on RMS cell lines. SI221, which showed to be mainly effective against the SFK member YES, significantly reduced cell viability and induced apoptosis, without affecting non-tumor cells, such as primary human skin fibroblasts and differentiated C2C12 cells. Moreover, SI221 decreased in vitro cell migration and invasion and reduced tumor growth in a RMS xenograft model. SFK inhibition also induced muscle differentiation in RMS cells by affecting the NOTCH3 receptor-p38 mitogen-activated protein kinase (MAPK) axis, which regulates the balance between proliferation and differentiation. Overall, our findings suggest that SFK inhibition, besides reducing RMS cell growth and invasive potential, could also represent a differentiation therapeutic strategy for RMS.


Type 5 phosphodiesterase regulates glioblastoma multiforme aggressiveness and clinical outcome.

  • Valeriana Cesarini‎ et al.
  • Oncotarget‎
  • 2017‎

Expression of type 5 phosphodiesterase (PDE5), a cGMP-specific hydrolytic enzyme, is frequently altered in human cancer, but its specific role in tumorigenesis remains controversial. Herein, by analyzing a cohort of 69 patients affected by glioblastoma multiforme (GBM) who underwent chemo- and radiotherapy after surgical resection of the tumor, we found that PDE5 was strongly expressed in cancer cells in about 50% of the patients. Retrospective analysis indicated that high PDE5 expression in GBM cells significantly correlated with longer overall survival of patients. Furthermore, silencing of endogenous PDE5 by short hairpin lentiviral transduction (sh-PDE5) in the T98G GBM cell line induced activation of an invasive phenotype. Similarly, pharmacological inhibition of PDE5 activity strongly enhanced cell motility and invasiveness in T98G cells. This invasive phenotype was accompanied by increased secretion of metallo-proteinase 2 (MMP-2) and activation of protein kinase G (PKG). Moreover, PDE5 silencing markedly enhanced DNA damage repair and cell survival following irradiation. The enhanced radio-resistance of sh-PDE5 GBM cells was mediated by an increase of poly(ADP-ribosyl)ation (PARylation) of cellular proteins and could be counteracted by poly(ADP-ribose) polymerase (PARP) inhibitors. Conversely, PDE5 overexpression in PDE5-negative U87G cells significantly reduced MMP-2 secretion, inhibited their invasive potential and interfered with DNA damage repair and cell survival following irradiation. These studies identify PDE5 as a favorable prognostic marker for GBM, which negatively affects cell invasiveness and survival to ionizing radiation. Moreover, our work highlights the therapeutic potential of targeting PKG and/or PARP activity in this currently incurable subset of brain cancers.


STK33 participates to HSP90-supported angiogenic program in hypoxic tumors by regulating HIF-1α/VEGF signaling pathway.

  • Yang Liu‎ et al.
  • Oncotarget‎
  • 2017‎

Lately, the HSP90 client serine/threonine kinase STK33 emerged to be required by cancer cells for their viability and proliferation. However, its mechanistic contribution to carcinogenesis is not clearly understood. Here we report that elevated STK33 expression correlates with advanced stages of human pancreatic and colorectal carcinomas. Impaired proliferation and augmented apoptosis associated with genetic abrogation of STK33 were paralleled by decreased vascularization in tumor xenografts. In line with this, ectopic STK33 not only promoted tumor growth after pharmacologic inhibition of HSP90 using structurally divergent small molecules currently in clinical development, but also restored blood vessel formation in vivo. Mechanistic studies demonstrated that HSP90-stabilized STK33 interacts with and regulates hypoxia-driven accumulation and activation of HIF-1α as well as secretion of VEGF-A in hypoxic cancer cells. In addition, our study reveals a putative cooperation between STK33 and other HSP90 client protein kinases involved in molecular and cellular events through which cancer cells ensure their survival by securing the oxygen and nutrient supply. Altogether, our findings indicate that STK33 interferes with signals from hypoxia and HSP90 to promote tumor angiogenesis and tumor growth.


MiR-324-3p promotes tumor growth through targeting DACT1 and activation of Wnt/β-catenin pathway in hepatocellular carcinoma.

  • Hang Tuo‎ et al.
  • Oncotarget‎
  • 2017‎

Recently, it has been reported that miR-324-3p participates in regulation of the carcinogenesis and tumor progression in various cancers. However, the expression and function of miR-324-3p in hepatocellular carcinoma (HCC) remain unclear. In the current study, miR-324-3p expression was significantly up-regulated in HCC tissues and cell lines. HCC patients with high miR-324-3p level showed poor prognostic features and shorter overall survival and disease-free survival. And in vitro and in vivo experiments revealed that miR-324-3p promoted cell viability, colony formation, proliferation and cell cycle progression of HCC cells. Further studies demonstrated that miR-324-3p could directly target DACT1 (dishevelled binding antagonist of beta catenin 1) and negatively regulated its expression in HCC cells. And rescue experiments revealed that DACT1 could reverse the effects of miR-324-3p on HCC cells. Furthermore, the accumulation of both cytoplasmic and nuclear β-catenin as well as its downstream targets including c-Myc and cyclin D1 could be positively regulated by miR-324-3p. The regulatory effects of miR-324-3p on β-catenin, c-Myc and cyclin D1 levels could be reversed by DACT1. Overall, we concluded that miR-324-3p could promote tumor growth through targeting DACT1 and activation of Wnt/β-catenin pathway in HCC. MiR-324-3p may be a ponderable and promising therapeutic target for HCC.


IRE1α inhibition by natural compound genipin on tumour associated macrophages reduces growth of hepatocellular carcinoma.

  • Hor-Yue Tan‎ et al.
  • Oncotarget‎
  • 2016‎

Accumulating evidences postulated the influential roles of macrophages in mediating hepatocellular carcinoma (HCC) initiation and progression. In this study, we demonstrate that a small molecule, genipin reduced HCC growth through suppressing IRE1α-mediated infiltration and priming of tumour associated macrophages (TAMs). Oral administration of genipin (30mg/kg/2days) suppressed orthotopic HCC tumour growth without challenging the viability and proliferation of HCC cells. Genipin reduced infiltration of inflammatory monocytes into liver and tumour thereby suppressed TAMs presence in HCC microenvironment. Suppression of HCC growth was diminished in HCC-implanted mice with depletion of TAMs by liposome clodronate. Genipin inhibited the TAMs migration, and reduced expression of TAMs-derived inflammatory cytokines that favors HCC proliferation. This is revealed by the in vivo deletion of IRE1α on TAMs in genipin-treated HCC-implanted mice. Diminishing IRE1α neutralised the inhibitory effect of genipin on TAMs. Silencing the expression of IRE1α greatly reduced TAMs migration and expression of inflammatory cytokines that prime HCC proliferation. Suppression of IRE1α led to reduced XBP-1 splicing and NF-κB activation. The reduced association of IRE1α with TRAF2 and IKK complex may be responsible for the genipin-mediated inactivation of NF-κB. The findings show the important role of TAMs in inhibitory effect of genipin on HCC, and TAMs-expressing IRE1α as a promising target for disrupting the tumour environment that favor of HCC development.


The dual PI3K/mTOR inhibitor dactolisib elicits anti-tumor activity in vitro and in vivo.

  • Fei Shi‎ et al.
  • Oncotarget‎
  • 2018‎

Glioblastomas (GBMs) are among the most malignant of all human tumors and have poor prognosis. The current standard of care (SOC) includes maximal surgical tumor resection followed by adjuvant temozolomide (TMZ) and concomitant radiotherapy (RT). However, even with this treatment, the 5-year survival rate is less than 10%, and thus, follow-up treatment is required to improve efficacy. In GBMs as well as many other solid cancers, PI3K/mTOR signaling is overactivated. Therefore, multiple tumor-based PI3K inhibitors have been studied in various cancers. In the current study, we investigated the effect of the dual PI3K/mTOR inhibitor dactolisib on TMZ+RT treatment in three human GBM cell lines and a orthotopic xenograft model. Dactolisib alone induced cytotoxicity and pro-apoptotic effects, which act as antitumor factors. Combined with SOC treatment, dactolisib inhibited cell viability, induced enhanced pro-apoptotic effect, and attenuated migration/invasion in all three cell lines, thereby enhancing the SOC therapeutic effect. Protein microarray analysis showed that A172 cells treated with TMZ+RT+dactolisib had higher p27 and lower Bcl-2 expression than other groups. Moreover, in the xenograft model, oral dactolisib combined with TMZ+RT inhibited tumor growth and prolonged survival. Thus, SOC combined with dactolisib shows potent anti-tumor activity and has promising potential for solid tumor treatment.


DNA intercalator BMH-21 inhibits RNA polymerase I independent of DNA damage response.

  • Laureen Colis‎ et al.
  • Oncotarget‎
  • 2014‎

DNA intercalation is a major therapeutic modality for cancer therapeutic drugs. The therapeutic activity comes at a cost of normal tissue toxicity and genotoxicity. We have recently described a planar heterocyclic small molecule DNA intercalator, BMH-21, that binds ribosomal DNA and inhibits RNA polymerase I (Pol I) transcription. Despite DNA intercalation, BMH-21 does not cause phosphorylation of H2AX, a key biomarker activated in DNA damage stress. Here we assessed whether BMH-21 activity towards expression and localization of Pol I marker proteins depends on DNA damage signaling and repair pathways. We show that BMH-21 effects on the nucleolar stress response were independent of major DNA damage associated PI3-kinase pathways, ATM, ATR and DNA-PKcs. However, testing a series of BMH-21 derivatives with alterations in its N,N-dimethylaminocarboxamide arm showed that several derivatives had acquired the property to activate ATM- and DNA-PKcs -dependent damage sensing and repair pathways while their ability to cause nucleolar stress and affect cell viability was greatly reduced. The data show that BMH-21 is a chemically unique DNA intercalator that has high bioactivity towards Pol I inhibition without activation or dependence of DNA damage stress. The findings also show that interference with DNA and DNA metabolic processes can be exploited therapeutically without causing DNA damage.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: