Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 188 papers

HSPB1 deficiency sensitizes melanoma cells to hyperthermia induced cell death.

  • He-Xiao Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Hyperthermia has shown clinical potency as a single agent or as adjuvant to other therapies in cancer treatment. However, thermotolerance induced by thermosensitive genes such as the heat shock proteins can limit the efficacy of hyperthermic treatment. In the present study, we identified HSPB1 (HSP27) is hyperthermically inducible or endogenously highly expressed in both murine and human melanoma cell lines. We used a siRNA strategy to reduce HSPB1 levels and showed increased intolerance to hyperthermia via reduced cell viability and/or proliferation of cells. In the investigation of underlying mechanisms, we found knock down of HSPB1 further increased the proportion of apoptotic cells in hyperthermic treated melanoma cells when compared with either single agent alone, and both agents leaded to cell cycle arrest at G0/G1 or G2/M phases. We concluded that hyperthermia combined with silencing of HSPB1 enhanced cell death and resulted in failure to thrive in melanoma cell lines, implying the potential clinical utility of hyperthermia in combination with HSPB1 inhibition in cancer treatment.


Inhibition of DUSP6 sensitizes ovarian cancer cells to chemotherapeutic agents via regulation of ERK signaling response genes.

  • Nicole E James‎ et al.
  • Oncotarget‎
  • 2019‎

Dual specificity phosphatase 6 (DUSP6) is a protein phosphatase that deactivates extracellular-signal-regulated kinase (ERK). Since the ovarian cancer biomarker human epididymis protein 4 (HE4) interacts with the ERK pathway, we sought to determine the relationship between DUSP6 and HE4 and elucidate DUSP6's role in epithelial ovarian cancer (EOC). Viability assays revealed a significant decrease in cell viability with pharmacological inhibition of DUSP6 using (E/Z)-BCI hydrochloride in ovarian cancer cells treated with carboplatin or paclitaxel, compared to treatment with either agent alone. Quantitative PCR was used to evaluate levels of ERK pathway response genes to BCI in combination with recombinant HE4 (rHE4), carboplatin, and paclitaxel. Expression of EGR1, a promoter of apoptosis, was higher in cells co-treated with BCI and paclitaxel or carboplatin than in cells treated with chemotherapeutic agents alone, while expression of the proto-oncogene c-JUN was decreased with co-treatment. The effect of BCI on the expression of these two genes opposed that of rHE4. Pathway focused quantitative PCR also revealed suppression of ERBB3 in cells co-treated with BCI plus carboplatin or paclitaxel. Finally, expression levels of DUSP6 in EOC tissue were evaluated by immunohistochemistry, revealing significantly increased levels of DUSP6 in serous EOC tissue compared to adjacent normal tissue. A positive correlation between HE4 and DUSP6 levels was determined by Spearman Rank correlation. In conclusion, DUSP6 inhibition sensitizes ovarian cancer cells to chemotherapeutic agents and alters gene expression of ERK response genes, suggesting that DUSP6 could plausibly function as a novel therapeutic target to reduce chemoresistance in EOC.


N-(2'-Hydroxyphenyl)-2-propylpentanamide (OH-VPA), a histone deacetylase inhibitor, induces the release of nuclear HMGB1 and modifies ROS levels in HeLa cells.

  • Arturo Contis-Montes de Oca‎ et al.
  • Oncotarget‎
  • 2018‎

N-(2'-Hydroxyphenyl)-2-propylpentanamide (OH-VPA) is a valproic acid (VPA) derivative with improved antiproliferative activity toward breast cancer (MCF-7, MDA-MB-231, and SKBr3) and human cervical cancer cell lines (HeLa) compared to that of VPA. However, the pharmacological mechanism of OH-VPA activity remains unknown. High-mobility group box 1 (HMGB1) is an important enzyme that is highly expressed in tumor cells and has a subcellular localization that is dependent on its acetylation or oxidative state. Therefore, in this study, we analyzed changes in HMGB1 sub-cellular localization and reactive oxygen species (ROS) as well as changes in HeLa cell viability in response to treatment with various concentrations of OH-VPA. This compound is formed by the covalent bond coupling VPA to a phenol group, which is capable of acting as a free radical scavenger due to its chemical similarities to quercetin. Our results show that OH-VPA induces nuclear to cytoplasmic translocation of HMGB1, as demonstrated by confocal microscopy observations and infrared spectra that revealed high quantities of acetylated HMGB1 in HeLa cells. Cells treated with 0.8 mM OH-VA exhibited decreased viability and increased ROS levels compared with the lower OH-VPA concentrations tested. Therefore, the antiproliferative mechanism of OH-VPA may be related to histone deacetylase (HDAC) inhibition, as is the case for VPA, which promotes high HMBG1 acetylation, which alters its subcellular localization. In addition, OH-VPA generates an imbalance in cellular ROS levels due to its biochemical activity.


microRNA-149 targets caspase-2 in glioma progression.

  • Xiaokun Shen‎ et al.
  • Oncotarget‎
  • 2016‎

Malignant gliomas are the most common form of intrinsic primary brain tumors worldwide. Alterations in microRNAs play a role in highly invasive malignant glioma, but detail mechanism still unknown. In this study, the role and mechanism of microRNA-149 (miR-149) in glioma are investigated. We show that miR-149 is expressed at substantially higher levels in glioma than in normal tissues. Stable overexpression of miR-149 augments potent prosurvival activity, as evidenced by promotion of cell viability, inhibition of apoptosis, and induced xenografted tumor growth in vivo. We further show that Caspase-2 is identified as a functional target of miR-149 and expression of caspase-2 is inversely associated with miR-149 in vitro. In addition, miR-149 promotes tumor survival in the U87-MG and A172 cell lines and it targets caspase-2 via inactivation of the p53 and p21 pathways. There results support a special role for miR-149 by targeting Caspase-2 to impact on p53 signaling pathway. We speculate that miR-149 has distinct biological functions in p53 wild type cells and p53 mutation cells, and the mechanisms involved remain to be explored in future. Our study suggests that targeting miR-149 may be a novel therapy strategy for treating p53 wild type glioma tumors in humans.


A p53-independent apoptotic mechanism of adenoviral mutant E1A was involved in its selective antitumor activity for human cancer.

  • Lin Fang‎ et al.
  • Oncotarget‎
  • 2016‎

The conserved regions (CR) of adenoviral E1A had been shown to be necessary for disruption of pRb-E2F transcription factor complexes and induction of the S phase. Here we constructed a mutant adenoviral E1A with Rb-binding ability absent (E1A 30-60aa and 120-127aa deletion, mE1A) and investigated its antitumor capacities in vitro and in vivo. The mE1A suppressed the viability of tumor cells as efficiently as the wild type E1A, and there was no cytotoxic effect on normal cells. Although the mE1A arrested tumor cell cycle with the same manner as E1A, the former played a different role on cell cycle regulation compared with E1A in normal cells, which might contribute to its selective antitumor activity. E1A and mE1A had accumulated inactive p53, decreased the expression of mdm2, Cdkn1a (also named p21), increased p21's nuclear distribution and induced tumor cell apoptosis in a p53-indenpent manner. Further, E1A or mE1A significantly suppressed tumor growth in subcutaneous hepatocellular carcinoma xenograft models. Especially, tumor-bearing mice treated with mE1A had higher survival rate than those treated with E1A. Our data demonstrated that mutant adenoviral E1A significantly induced tumor cell apoptosis in a p53-indenpednt manner and had selective tumor suppressing ability. The observations of adenoviral E1A mutant had provided a novel mechanism for E1A's complex activities during infection.


Negative regulation of Bmi-1 by AMPK and implication in cancer progression.

  • Deqiang Huang‎ et al.
  • Oncotarget‎
  • 2016‎

Bmi-1 is a transcriptional regulator that promotes tumor cell self-renewal and epithelial to mesenchymal transition and its upregulation is associated with tumor progression, AMPK is an intracellular fuel-sensing enzyme and plays important roles in tumor cell growth and progression. Thus, the present study aims to examine the regulation of Bmi-1 by AMPK. First, our data revealed that, as compared to adjacent normal tissue, Bmi-1 was highly expressed in gastric cancer, whereas phosphorylation of AMPK (p-AMPK) was reduced. Similar findings were observed in lung adenocarcinomas and appeared that the expression of Bmi-1 was correlated with pathological grades of the cancer, where opposite changes were found in p-AMPK. Second, Metformin, a pharmacological AMPK activator and anti-diabetic drug, or ectopic expression of LKB1, diminished expression of Bmi-1 in cancer cells, an event that was reversed by silencing LKB1. Third, knockdown of LITAF, previously identified as a downstream target of AMPK, upregulated Bmi-1, associated with increased cell viability, colony formation, and migration of cancer cells in vitro. Fourth, metformin increased the abundance of miR-15a, miR-128, miR-192, and miR-194, which was prevented by knockdown of LITAF. Accordingly, transfection of these individual miRNAs downregulated Bmi-1. Altogether, our data for the first time suggest a regulatory axis in cancer cells: AMPK upregulates LITAF, which in turn increases miRNAs, leading to attenuation of Bmi-1 expression.


Resveratrol induces mitochondria-mediated, caspase-independent apoptosis in murine prostate cancer cells.

  • Sanjay Kumar‎ et al.
  • Oncotarget‎
  • 2017‎

Found in the skins of red fruits, including grapes, resveratrol (RES) is a polyphenolic compound with cancer chemopreventive activity. Because of this activity, it has gained interest for scientific investigations. RES inhibits tumor growth and progression by targeting mitochondria-dependent or -independent pathways. However, further investigations are needed to explore the underlying mechanisms.The present study is focused on examining the role of RES-induced, mitochondria-mediated, caspase-independent apoptosis of prostate cancer cells, namely transgenic adenocarcinoma of mouse prostate (TRAMP) cells. These cells were exposed to RES for various times, and cell killing, cell morphology, mitochondrial membrane potential (Δψm), expression of Bax and Bcl2 proteins, the role of caspase-3, and DNA fragmentation were analyzed.TRAMP cells exposed to RES showed decreased cell viability, altered cell morphology, and disrupted Δψm, which led to aberrant expression of Bax and Bcl2 proteins. Furthermore, since the caspase-3 inhibitor, z-VAD-fmk (benzyloxycarbonyl-valine-alanine-aspartic acid-fluoromethyl ketone), had no appreciable impact on RES-induced cell killing, the killing was evidently caspase-independent. In addition, RES treatment of TRAMP-C1, TRAMP-C2, and TRAMP-C3 cells caused an appreciable breakage of genomic DNA into low-molecular-weight fragments.These findings show that, in inhibition of proliferation of TRAMP cells, RES induces mitochondria-mediated, caspase-independent apoptosis. Therefore, RES may be utilized as a therapeutic agent to control the proliferation and growth of cancer cells.


DUSP4 promotes doxorubicin resistance in gastric cancer through epithelial-mesenchymal transition.

  • Xing Kang‎ et al.
  • Oncotarget‎
  • 2017‎

Chemoresistance limits treatment efficacy in gastric cancer and doxorubicin resistance is common in gastric cancer cells. Dual specificity phosphatase 4 (DUSP4) has been associated with tumor progression. This study aimed to investigate the mechanism of DUSP4 regulating doxorubicin resistance in gastric cancer cells. Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay were used to measure cell viability and proliferation in gastric cancer cells treated with doxorubicin. The expression of DUSP4, E-cadherin and Vimentin protein was detected by Western blotting. Overexpression of DUSP4 was more resistant to doxorubicin in gastric cancer cells. Knockdown of DUSP4 increased the sensitivity of gastric cancer cells to doxorubicin. Moreover, up-regulation of DUSP4 promoted the Epithelial-Mesenchymal Transition (EMT) in gastric cancer cells, but blocking the EMT using a Twist siRNA increased the sensitivity of gastric cancer cells to doxorubicin and confirmed the EMT was involved in DUSP4-mediated doxorubicin resistance. These findings demonstrated that DUSP4 could enhance doxorubicin resistance by promoting EMT in gastric cancer cells.


Plumbagin restrains hepatocellular carcinoma angiogenesis by suppressing the migration and invasion of tumor-derived vascular endothelial cells.

  • YanFei Wei‎ et al.
  • Oncotarget‎
  • 2017‎

Tumor occurrence and development are very complicated processes. In addition to the roles of exogenous carcinogenic factors, the body's internal factors also play important roles. These factors include the host response to the tumor and the tumor effect on the host. In particular, the proliferation, migration and activation of endothelial cells are involved in tumor angiogenesis. Angiogenesis is one of the hallmarks of cancer. In this study, we investigate whether plumbagin can abrogate angiogenesis-mediated tumor growth in hepatocellular carcinoma (HCC) and, if so, through which molecular mechanisms. We observed that in co-cultures of the human endothelial cell line EA.hy926 and the human hepatoma cell line SMMC-7721 and Hep3B, the hepatoma cells induced migration, invasion, tube formation and viability of the EA.hy926 cells in vitro, and these processes were inhibited by plumbagin. Real-Time PCR, Western Blot and Immunofluorescence staining showed that plumbagin treatment suppressed expression of angiogenesis pathways (PI3K-Akt, VEGF/KDR and Angiopoietins/Tie2) and angiogenic factors (VEGF, CTGF, ET-1, bFGF),which is associated with tumor angiogenesis in cancer cells and xenograft tumor tissues. Furthermore, plumbagin was also found to significantly reduce tumor growth in an orthotopic HCC mouse model and to inhibit tumor-induced angiogenesis in HCC patient xenografts. Taken together, our findings strongly suggest that plumbagin might be a promising anti-angiogenic drug with significant antitumor activity in HCC.


Alpha-mangostin induces apoptosis through activation of reactive oxygen species and ASK1/p38 signaling pathway in cervical cancer cells.

  • Chien-Hsing Lee‎ et al.
  • Oncotarget‎
  • 2017‎

Alpha-mangostin, a natural xanthonoid, has been reported to possess the anti-cancer property in various types of human cancer. However, its effects and mechanism of α-mangostin in cervical cancer remain unclear. We found that α-mangostin effectively inhibited cell viability, resulted in loss of mitochondrial membrane potential (MMP), release of cytochrome C, increase of Bax, decrease of Bcl-2, and activation of caspase-9/caspase-3 cascade in cervical cancer cells. Alpha-mangostin elevated the contents of reactive oxygen species (ROS) to activate p38. Disrupting ASK1/p38 signaling pathway by a specific inhibitor of p38, or by the siRNAs against ASK1, MKK3/6, or p38, significantly abolished α-mangostin-induced cell death and apoptotic responses. Moreover, α-mangostin also repressed tumor growth in accordance with increased levels of p-ASK1, p-p38, cleaved-PARP and cleaved-caspase-3 in the tumor mass from the mouse xenograft model of cervical cancer. In the current study, we provided first evidence to demonstrate that dietary antioxidant α-mangostin could inhibit the tumor growth of cervical cancer cells through enhancing ROS amounts to activate ASK1/p38 signaling pathway and damage the integrity of mitochondria and thereby induction of apoptosis in cervical cancer cells.


Cytotoxic activity of the novel small molecule AKT inhibitor SC66 in hepatocellular carcinoma cells.

  • Antonella Cusimano‎ et al.
  • Oncotarget‎
  • 2015‎

Hepatocellular carcinoma (HCC) is characterized by limited response to current drug therapies. Here, we report that SC66, a novel AKT inhibitor, reduced cell viability in a dose- and time-dependent manner, inhibited colony formation and induced apoptosis in HCC cells. SC66 treatment led to a reduction in total and phospho-AKT levels. This was associated with alterations in cytoskeleton organization, a reduction in expression levels of E-cadherin, β-catenin and phospho-FAK, together with up-regulation of Snail protein levels. All these alterations were coupled with anoikis cell death induction. In addition, SC66 induced the production of reactive oxygen species (ROS) and DNA damage. Pre-treatment with the ROS scavenger N-Acetyl-cysteine (NAC) prevented SC66-induced cell growth inhibition and anoikis. SC66 significantly potentiated the effects of both conventional chemotherapeutic and targeted agents, doxorubicin and everolimus, respectively. In vivo, SC66 inhibited tumor growth of Hep3B cells in xenograft models, with a similar mechanism observed in the in vitro model. Taken together, these data indicate that the AKT inhibitor SC66 had antitumor effects on HCC cells. This was mediated by ROS production, induction of anoikis-mediated cell death and inhibition of the AKT cell survival pathway. Our results provide a rational basis for the use of SC66 in HCC treatment.


Long non-coding RNA-CRNDE: a novel regulator of tumor growth and angiogenesis in hepatoblastoma.

  • Rui Dong‎ et al.
  • Oncotarget‎
  • 2017‎

Long non-coding RNAs (lncRNAs) are involved in many biological processes, such as angiogenesis, invasion, cell proliferation, and apoptosis. They have emerged as key players in the pathology of several tumors, including hepatoblastoma. In this study, we elucidate the biological and clinical significance of CRNDE up-regulation in hepatoblastoma. CRNDE is significantly up-regulated in human hepatoblastoma specimens and metastatic hepatoblastoma cell lines. CRNDE knockdown reduces tumor growth and tumor angiogenesis in vivo, and decreases hepatoblastoma cell viability, proliferation, and angiogenic effect in vitro. Mechanistic studies show that CRNDE knockdown plays its anti-proliferation and anti-angiogenesis role via regulating mammalian target of rapamycin (mTOR) signaling. Taken together, this study reveals a crucial role of CRNDE in the pathology of hepatoblastoma. CRNDE may serve as a promising diagnostic marker and therapeutic target for hepatoblastoma.


New strategy to rescue the inhibition of osteogenesis of human bone marrow-derived mesenchymal stem cells under oxidative stress: combination of vitamin C and graphene foams.

  • Zubin Zhou‎ et al.
  • Oncotarget‎
  • 2016‎

To rescue the oxidative stress induced inhibition of osteogenesis, vitamin C (VC) was chemically modified onto three-dimensional graphene foams (3D GFs), then their regulation on osteogenesis of human bone marrow-derived mesenchymal stem cells (BM-MSCs) was studied. Combined action of VC + GF significantly decreased H2O2-induced oxidative stress, and rescued H2O2-inhibited cell viability, differentiation and osteogenesis of BM-MSCs in vitro. Further studies revealed that Wnt pathway may be involved in this protection of osteogenesis. Furthermore, an in vivo mouse model of BM-MSCs transplantation showed that VC + GF remarkably rescued oxidative stress inhibited calcium content and bone formation. The combination of VC and GF exhibited more pronounced protective effects against oxidative stress induced inhibition of osteogenesis, compared to monotherapy of VC or GF. Our study proposed a new strategy in stem cell-based therapies for treating bone diseases.


Pinin associates with prognosis of hepatocellular carcinoma through promoting cell proliferation and suppressing glucose deprivation-induced apoptosis.

  • Xuejun Yang‎ et al.
  • Oncotarget‎
  • 2016‎

The roles of Pinin have been well studied in epithelial cell-cell adhesion and RNA alternative splicing, which suggests its involvement in cancer progression. However, little is known about the association between Pinin expression and hepatocellular carcinoma (HCC) tumorigenesis. In this study we report increased expression of Pinin in HCC tissues and cells. Elevated levels of Pinin closely associates with pathological grade and overall survival of patients with hepatocellular carcinoma. Suppression of Pinin expression via lentivirus mediated shRNA knockdown inhibits HCC cell proliferation, colony formation, cell viability, but promotes glucose deprivation (GD)-induced cell apoptosis. On the contrary, overexpression of Pinin reverses these effects observed in Pinin depleted cells. Meanwhile, overexpression of Pinin attenuates GD initiated poly ADP-ribose polymerase (PARP) cleavage and ERK1/2 dephosphorylation, which can be completely blocked with MEK1/2 inhibitor U0126. Therefore, we conclude that Pinin contributes to HCC progression and resistance to GD-induced apoptosis via maintaining ERK1/2 activation and hence may be a potential therapeutic target in hepatocellular carcinoma treatment.


Toward the development of a novel non-RGD cyclic peptide drug conjugate for treatment of human metastatic melanoma.

  • Boris Redko‎ et al.
  • Oncotarget‎
  • 2017‎

The newly discovered short (9 amino acid) non-RGD S-S bridged cyclic peptide ALOS-4 (H-cycl(Cys-Ser-Ser-Ala-Gly-Ser-Leu-Phe-Cys)-OH), which binds to integrin αvβ3 is investigated as peptide carrier for targeted drug delivery against human metastatic melanoma. ALOS4 binds specifically the αvβ3 overexpressing human metastatic melanoma WM-266-4 cell line both in vitro and in ex vivo assays. Coupling ALOS4 to the topoisomerase I inhibitor Camptothecin (ALOS4-CPT) increases the cytotoxicity of CPT against human metastatic melanoma cells while reduces dramatically the cytotoxicity against non-cancerous cells as measured by the levels of γH2A.X, active caspase 3 and cell viability. Moreover, conjugating ALOS4 to CPT even increases the chemo-stability of CPT under physiological pH. Bioinformatic analysis using Rosetta platform revealed potential docking sites of ALOS4 on the αvβ3 integrin which are distinct from the RGD binding sites. We propose to use this specific non-RGD cyclic peptide as the therapeutic carrier for conjugation of drugs in order to improve efficacy and reduce toxicity of currently available treatments of human malignant melanoma.


Panobinostat mediated cell death: a novel therapeutic approach for osteosarcoma.

  • André Wirries‎ et al.
  • Oncotarget‎
  • 2018‎

Osteosarcoma is an aggressive cancer with a poor long term prognosis. Neo-adjuvant poly-chemotherapy followed by surgical resection remains the standard treatment, which is restricted by multi-drug resistance. If first-line therapy fails, disease control and patient survival rate drop dramatically. We aimed to identify alternative apoptotic mechanisms induced by the histone deacetylase inhibitor panobinostat in osteosarcoma cells. Saos-2, MG63 and U2-OS osteosarcoma cell lines, the immortalized human osteoblast line hFOB and the mouse embryo osteoblasts (MC3T3-E1) were treated with panobinostat. Real time viability and FACS confirmed the cytotoxicity of panobinostat. Cell stress/death related factors were analysed by RT-qPCR and western blot. Cell morphology was assessed by electron microscopy. 10 nM panobinostat caused cell viability arrest and death in all osteosarcoma and osteoblast cells. P21 up-regulation was observed in osteosarcoma cells, while over-expression of p73 was restricted to Saos-2 (TP53-/-). Survivin and Bcl-2 were suppressed by panobinostat. Endoplasmic reticulum (ER) stress markers BiP, CHOP, ATF4 and ATF6 were induced in osteosarcoma cells. The un-spliced Xbp was no further detectable after treatment. Autophagy players Beclin1, Map1LC3B and UVRAG transcripts over-expressed after 6 hours. Protein levels of Beclin1, Map1LC3B and p62 were up-regulated at 72 hours. DRAM1 was stable. Electron micrographs revealed the fragmentation and the disappearance of the ER and the statistically significant increase of autophagosome vesiculation after treatment. Panobinostat showed a synergistic suppression of survival and promotion of cell death in osteosarcoma cells. Panobinostat offers new perspectives for the treatment of osteosarcoma and other malignant bone tumours.


Antidepressants, sertraline and paroxetine, increase calcium influx and induce mitochondrial damage-mediated apoptosis of astrocytes.

  • Chee-Kin Then‎ et al.
  • Oncotarget‎
  • 2017‎

The impacts of antidepressants on the pathogenesis of dementia remain unclear despite depression and dementia are closely related. Antidepressants have been reported may impair serotonin-regulated adaptive processes, increase neurological side-effects and cytotoxicity. An 'astroglio-centric' perspective of neurodegenerative diseases proposes astrocyte dysfunction is involved in the impairment of proper central nervous system functioning. Thus, defining whether antidepressants are harmful to astrocytes is an intriguing issue. We used an astrocyte cell line, primary cultured astrocytes and neuron cells, to identify the effects of 11 antidepressants which included selective serotonin reuptake inhibitors, a serotonin-norepinephrine reuptake inhibitor, tricyclic antidepressants, a tetracyclic antidepressant, a monoamine oxide inhibitor, and a serotonin antagonist and reuptake inhibitor. We found that treatment with 10 μM sertraline and 20 μM paroxetine significantly reduced cell viability. We further explored the underlying mechanisms and found induction of the [Ca2+]i level in astrocytes. We also revealed that sertraline and paroxetine induced mitochondrial damage, ROS generation, and astrocyte apoptosis with elevation of cleaved-caspase 3 and cleaved-PARP levels. Ultimately, we validated these mechanisms in primary cultured astrocytes and neuron cells and obtained consistent results. These results suggest that sertraline and paroxetine cause astrocyte dysfunction, and this impairment may be involved in the pathogenesis of neurodegenerative diseases.


Microglial SMAD4 regulated by microRNA-146a promotes migration of microglia which support tumor progression in a glioma environment.

  • Aparna Karthikeyan‎ et al.
  • Oncotarget‎
  • 2018‎

Glioma tumors constitute a significant portion of microglial cells, which are known to support tumor progression. The present study demonstrates that transforming growth factor-β (TGFβ) signaling pathway in microglia in a glioma environment is involved in tumor progression and pathogenesis. It has been shown that the TGFβ level is elevated in higher grades of gliomas and its signaling pathway regulates tumor progression through phosphorylation of SMAD2 and SMAD3, which form a complex with SMAD4 to regulate target gene transcription. In an in vitro cell line-based model increased protein levels of pSMAD2/3, total SMAD2/3 and SMAD4 were observed in murine BV2 microglia cultured in glioma conditioned medium (GCM), indicative of the activated TGFβ signaling pathway in microglia associated with glioma environment. Immunofluorescence labeling further revealed the expression of SMAD4 in microglial and non-microglial cells of human glioblastomas tissue in vivo. Functional analysis through shRNA-mediated stable knockdown of SMAD4 in microglia revealed the downregulation of the expression of matrix metalloproteinase 9 (MMP9), which has been shown to be involved in tumor progression and cell migration. Further, knockdown of SMAD4 in microglia decreased the migration of microglial cells towards GCM, indicating that SMAD4 promotes microglial migration in glioma environment. In addition, SMAD4 has been shown to be post-transcriptionally regulated by microRNA-146a, which was downregulated in microglia treated with GCM. Overexpression of miR-146a resulted in decreased expression of SMAD4 together with tumor supportive gene MMP9 in microglia, and subsequently suppressed microglial migration towards GCM, possibly through regulation of SMAD4. On the other hand, the cell viability assay revealed decreased viability of glioma cells when they were treated with conditioned medium derived from SMAD4 knockdown microglia or miR-146a overexpressed microglia as compared to glioma cells treated with the medium from control microglial cells. Taken together, the present study suggests that microglial SMAD4 which is epigenetically regulated by miR-146a promotes microglial migration in gliomas and glioma cell viability.


Anti-proliferative and pro-apoptotic effects induced by simultaneous inactivation of HER1 and HER2 through endogenous polyclonal antibodies.

  • Narjara González Suárez‎ et al.
  • Oncotarget‎
  • 2017‎

The human epidermal growth factor receptor (HER1) and its partner HER2 are extensively described oncogenes and validated targets for cancer therapy. However, the effectiveness of monospecific therapies targeting these receptors is hampered by resistance emergence, which is frequently associated with the upregulation of other members of HER family. Combined therapies using monoclonal antibodies or tyrosine kinase inhibitors have been suggested as a promising strategy to circumvent this resistance mechanism. We propose an alternative approach based on simultaneous inactivation of HER1 and HER2 by multi-epitope blockade with specific polyclonal antibodies induced by vaccination. Elicited antibodies impaired both receptors activation and induced their degradation, which caused the inhibition of down-signaling cascades. This effect was translated into cell cycle arrest and apoptosis induction of human tumor cells. Elicited antibodies were able to reduce the viability of a panel of human tumor lines with differential expression levels of HER1 and HER2. The most significant effects were obtained in the tumor lines with lower expression levels of both receptors. These new insights would contribute to the rational design of HER receptors targeting multivalent vaccines, as an encouraging approach for the treatment of cancer patients.


Anetumab ravtansine inhibits tumor growth and shows additive effect in combination with targeted agents and chemotherapy in mesothelin-expressing human ovarian cancer models.

  • Maria Quanz‎ et al.
  • Oncotarget‎
  • 2018‎

Despite the recent advances in the treatment of ovarian cancer, it remains an area of high unmet medical need. Epithelial ovarian cancer is associated with high levels of mesothelin expression, and therefore, mesothelin is an attractive candidate target for the treatment of this disease. Herein, we investigated the antitumor efficacy of the mesothelin-targeting antibody-drug conjugate (ADC) anetumab ravtansine as a novel treatment option for ovarian cancer in monotherapy and in combination with the antitumor agents pegylated liposomal doxorubicin (PLD), carboplatin, copanlisib and bevacizumab. Anetumab ravtansine showed potent antitumor activity as a monotherapy in ovarian cancer models with high mesothelin expression. No activity was seen in mesothelin-negative models. The combination of anetumab ravtansine with PLD showed additive anti-proliferative activity in vitro, which translated into improved therapeutic in vivo efficacy in ovarian cancer cell line- and patient-derived xenograft (PDX) models compared to either agents as a monotherapy. The combination of anetumab ravtansine with the PI3Kα/δ inhibitor copanlisib was additive in the OVCAR-3 and OVCAR-8 cell lines in vitro, showing increased apoptosis in response to the combination treatment. In vivo, the combination of anetumab ravtansine with copanlisib resulted in more potent antitumor activity than either of the treatments alone. Likewise, the combination of anetumab ravtansine with carboplatin or bevacizumab showed improved in vivo efficacy in the ST081 and OVCAR-3 models, respectively. All combinations were well-tolerated. Taken together, these data support the development of anetumab ravtansine for ovarian cancer treatment and highlight its suitability for combination therapy with PLD, carboplatin, copanlisib, or bevacizumab.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: