Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 126 papers

MicroRNA-182 prevents vascular smooth muscle cell dedifferentiation via FGF9/PDGFRβ signaling.

  • Nana Dong‎ et al.
  • International journal of molecular medicine‎
  • 2017‎

The abnormal phenotypic transformation of vascular smooth muscle cells (SMCs) causes various proliferative vascular diseases. MicroRNAs (miRNAs or miRs) have been established to play important roles in SMC biology and phenotypic modulation. This study revealed that the expression of miR‑182 was markedly altered during rat vascular SMC phenotypic transformation in vitro. We aimed to investigate the role of miR‑182 in the vascular SMC phenotypic switch and to determine the potential molecular mechanisms involved. The expression of miR‑182 gene was significantly downregulated in cultured SMCs during dedifferentiation from a contractile to a synthetic phenotype. Conversely, the upregulation of miR‑182 increased the expression of SMC-specific contractile genes, such as α-smooth muscle actin, smooth muscle 22α and calponin. Additionally, miR‑182 overexpression potently inhibited SMC proliferation and migration under both basal conditions and under platelet-derived growth factor-BB stimulation. Furthermore, we identified fibroblast growth factor 9 (FGF9) as the target gene of miR‑182 for the phenotypic modulation of SMCs mediated through platelet-derived growth factor receptor β (PDGFRβ) signaling. These data suggest that miR‑182 may be a novel SMC phenotypic marker and a modulator that may be used to prevent SMC dedifferentiation via FGF9/PDGFRβ signaling.


TAT-Modified Gold Nanoparticles Enhance the Antitumor Activity of PAD4 Inhibitors.

  • Songlin Song‎ et al.
  • International journal of nanomedicine‎
  • 2020‎

Histone citrullination by peptidylarginine deiminases 4 (PAD4) regulates the gene expression of tumor suppressor. In our previously study, YW3-56 (356) was developed as a potent PAD4 inhibitor for cancer therapy with novel function in the autophagy pathway. To enhance the antitumor activity, the PAD4 inhibitor 356 was modified by the well-established cationic penetrating peptide RKKRRQRRR (peptide TAT) and gold nanoparticles to obtain 356-TAT-AuNPs which could enhance the permeability of chemical drug in solid tumor.


HMGB1 mediates lipopolysaccharide-induced macrophage autophagy and pyroptosis.

  • Jiawei Shang‎ et al.
  • BMC molecular and cell biology‎
  • 2023‎

Autophagy and pyroptosis of macrophages play important protective or detrimental roles in sepsis. However, the underlying mechanisms remain unclear. High mobility group box protein 1 (HMGB1) is associated with both pyroptosis and autophagy. lipopolysaccharide (LPS) is an important pathogenic factor involved in sepsis. Lentivirus-mediated HMGB1 shRNA was used to inhibit the expression of HMGB1. Macrophages were treated with acetylation inhibitor (AA) to suppress the translocation of HMGB1 from the nucleus to the cytosol. Autophagy and pyroptosis-related protein expressions were detected by Western blot. The levels of caspase-1 activity were detected and the rate of pyroptotic cells was detected by flow cytometry. LPS induced autophagy and pyroptosis of macrophages at different stages, and HMGB1 downregulation decreased LPS-induced autophagy and pyroptosis. Treatment with acetylation inhibitor (anacardic acid) significantly suppressed LPS-induced autophagy, an effect that was not reversed by exogenous HMGB1, suggesting that cytoplasmic HMGB1 mediates LPS-induced autophagy of macrophages. Anacardic acid or an anti-HMGB1 antibody inhibited LPS-induced pyroptosis of macrophages. HMGB1 alone induced pyroptosis of macrophages and this effect was inhibited by anti-HMGB1 antibody, suggesting that extracellular HMGB1 induces macrophage pyroptosis and mediates LPS-induced pyroptosis. In summary, HMGB1 plays different roles in mediating LPS-induced autophagy and triggering pyroptosis according to subcellular localization.


Triple negative breast cancer development can be selectively suppressed by sustaining an elevated level of cellular cyclic AMP through simultaneously blocking its efflux and decomposition.

  • Wei Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Triple negative breast cancer (TNBC) has the highest mortality among all breast cancer types and lack of targeted therapy is a key factor contributing to its high mortality rate. In this study, we show that 8-bromo-cAMP, a cyclic adenosine monophosphate (cAMP) analog at high concentration (> 1 mM) selectively suppresses TNBC cell growth. However, commonly-used cAMP-elevating agents such as adenylyl cyclase activator forskolin and pan phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) are ineffective. Inability of cAMP elevating agents to inhibit TNBC cell growth is due to rapid diminution of cellular cAMP through efflux and decomposition. By performing bioinformatics analyses with publically available gene expression datasets from breast cancer patients/established breast cancer cell lines and further validating using specific inhibitors/siRNAs, we reveal that multidrug resistance-associated protein 1/4 (MRP1/4) mediate rapid cAMP efflux while members PDE4 subfamily facilitate cAMP decomposition. When cAMP clearance is prevented by specific inhibitors, forskolin blocks TNBC's in vitro cell growth by arresting cell cycle at G1/S phase. Importantly, cocktail of forskolin, MRP inhibitor probenecid and PDE4 inhibitor rolipram suppresses TNBC in vivo tumor development. This study suggests that a TNBC-targeted therapeutic strategy can be developed by sustaining an elevated level of cAMP through simultaneously blocking its efflux and decomposition.


Hydroxychloroquine enhances the antitumor effects of BC001 in gastric cancer.

  • Wei Wang‎ et al.
  • International journal of oncology‎
  • 2019‎

Gastric cancer is an important cancer type worldwide, the anti‑angiogenic agent BC001 can target the vascular endothelial growth factor receptor 2 (VEGFR2), and significantly suppresses the growth of gastric cancer BGC823 cells in vitro and in vivo. However, numerous results indicated that antiangiogenic drugs could induce autophagy, and the inhibition of autophagy enhanced the anticancer effects of antiangiogenic agents. In the present study, hydroxychloroquine (HCQ), an inhibitor of autophagy, enhanced the antiproliferative and proapoptotic effects of BC001 in vitro. Furthermore, HCQ enhanced the antitumor effects of BC001 on BGC823 xenograft tumors in vivo. Of note, BC001 neither induced nor inhibited autophagy. RNA‑sequencing results revealed that HCQ regulated autophagy or lysosomal‑associated genes, such as tumor protein p53‑inducible nuclear protein 1, interleukin (IL)1B, tumor necrosis factor (TNF), Mediterranean fever, ubiquitin specific peptidase 36, IL6, neuraminidase (NEU)1, ATP‑binding cassette subfamily A member 1, proprotein convertase subtilisin/kexin type 9, myelin basic protein and NEU3. Importantly, HCQ was determined to affect multiple pathways, including 'negative regulation of endothelial cell proliferation', 'blood vessel remodeling', 'cell surface receptor signaling pathways' and 'notch receptor processing' associated with 'signal transduction', 'cancers' and 'immune system', through regulating C‑X‑C motif chemokine ligand 8, TNF, IL6, intercellular adhesion molecule 1 and FOS genes. In summary, HCQ was proposed to enhance the anticancer effects of BC001 in gastric cancer via complex mechanisms.


Neuroprotective Effects of Serpina3k in Traumatic Brain Injury.

  • Yao Jing‎ et al.
  • Frontiers in neurology‎
  • 2019‎

Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide, in part resulting from secondary apoptosis of neurons in peri-contusion areas. Serpina3k, a serine protease inhibitor, has been shown to inhibit apoptosis in injury models. In this study, we investigated the anti-apoptotic function of serpina3k in vivo using a mouse model of TBI, as well as the underlying neuroprotective mechanism in vitro using the SH-SY5Y human neuroblastoma cell line. TBI was induced in adult male C57BL/6 mice using controlled cortical impact. Serpina3k protein was intravenously administered at a concentration of 0.5 mg/kg twice daily for up to 14 days. SH-SY5Y cells were subjected to biaxial stretch injury and then treated with different concentrations of serpina3k. We found that endogenous serpina3k protein levels were elevated in peri-contusion areas of the mouse brain following TBI. Serpina3k-treated mice had fewer apoptotic neurons, lower levels of oxidative stress, and showed greater recovery of neurological deficits relative to vehicle-treated mice. Meanwhile, in the SH-SY5Y cell injury model, serpina3k at an optimal concentration (150 nM) inhibited the generation of intracellular reactive oxygen species, abrogated changes of the mitochondrial membrane potential, and reduced the phospho-extracellular regulated protein kinases (p-ERK)/ERK, phospho-P38 (p-P38)/P38, B cell lymphoma (Bcl)-2-associated X protein/Bcl-2, and cleaved caspase-3/caspase-3 ratios, thereby reducing the apoptosis rate. These results demonstrate that serpina3k exerts a neuroprotective function following TBI and thus has therapeutic potential.


AZD5153 reverses palbociclib resistance in ovarian cancer by inhibiting cell cycle-related proteins and the MAPK/PI3K-AKT pathway.

  • Chen Liu‎ et al.
  • Cancer letters‎
  • 2022‎

The CDK4/6 inhibitor, palbociclib has recently entered clinic-trial stage for breast cancer treatment. However, translating its efficacy to other solid tumors has been challenging, especially for aggressive solid tumors. We found that the effect of palbociclib as a single agent was limited due to primary and acquired resistance in multiple ovarian cancer (OC) models. Among these, patient-derived organoid and xenograft models are two most representative models of drug responsiveness in patients with OC. In preclinical models, this study demonstrated that activated MAPK/PI3K-AKT pathway and cell cycle-related proteins induced the resistance to palbociclib, which was overcome by the addition of the bromodomain protein 4 (BRD4) inhibitor AZD5153. Moreover, this study revealed that AZD5153 and palbociclib had a synergistic lethal effect on inducing the cell cycle arrest and increasing apoptosis, even in RB-deficient cell lines. Based on these results, it is anticipated that this class of drugs, including AZD5153, which inhibit the cell cycle-related protein and MAPK/PI3K-AKT pathway, will exhibit synergistic effects with palbociclib in OC.


Immunomodulatory activity of a novel, synthetic beta-glucan (β-glu6) in murine macrophages and human peripheral blood mononuclear cells.

  • Xiaofei Li‎ et al.
  • PloS one‎
  • 2013‎

Natural β-glucans extracted from plants and fungi have been used in clinical therapies since the late 20th century. However, the heterogeneity of natural β-glucans limits their clinical applicability. We have synthesized β-glu6, which is an analog of the lentinan basic unit, β-(1→6)-branched β-(1→3) glucohexaose, that contains an α-(1→3)-linked bond. We have demonstrated the stimulatory effect of this molecule on the immune response, but the mechanisms by which β-glu6 activates innate immunity have not been elucidated. In this study, murine macrophages and human PBMCs were used to evaluate the immunomodulatory effects of β-glu6. We showed that β-glu6 activated ERK and c-Raf phosphorylation but suppressed the AKT signaling pathway in murine macrophages. Additionally, β-glu6 enhanced the secretion of large levels of cytokines and chemokines, including CD54, IL-1α, IL-1β, IL-16, IL-17, IL-23, IFN-γ, CCL1, CCL3, CCL4, CCL12, CXCL10, tissue inhibitor of metalloproteinase-1 (TIMP-1) and G-CSF in murine macrophages as well as IL-6, CCL2, CCL3, CCL5, CXCL1 and macrophage migration inhibitory factor (MIF) in human PBMCs. In summary, it demonstrates the immunomodulatory activity of β-glu6 in innate immunity.


MicroRNA‑153 attenuates hypoxia‑induced excessive proliferation and migration of pulmonary arterial smooth muscle cells by targeting ROCK1 and NFATc3.

  • Minjie Zhao‎ et al.
  • Molecular medicine reports‎
  • 2021‎

The aim of the present study was to explore the effect of microRNA (miR)‑153 on the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) in a hypoxic condition by targeting ρ‑associated, coiled‑coil‑containing protein kinase 1 (ROCK1) and nuclear factor of activated T cells cytoplasmic 3 (NFATc3). The right ventricular systolic pressure, right ventricular hypertrophy index, medial wall thickness and medial wall area were studied at different time‑points after rats were exposed to hypoxia. Western blot analysis was used to detect ROCK1 and NFATc3 protein levels. In addition, reverse transcription‑quantitative (RT‑q) PCR was performed to confirm the mRNA levels of miR‑153, ROCK1 and NFATc3 in human (H)PASMCs under hypoxic conditions. Transfected cells were then used to evaluate the effect of miR‑153 on cell proliferation and migration abilities. The association between miR‑153 and ROCK1 or NFATc3 was identified through double luciferase assays. Hypoxia induced pulmonary vascular remodeling and pulmonary arterial hypertension, which resulted from the abnormal proliferation of HPASMCs. ROCK1 and NFATc3 were the target genes of miR‑153 and miR‑153 mimic inhibited the protein expressions of ROCK1 and NFATc3 in HPASMCs and further inhibited cell proliferation and migration under hypoxic conditions. By contrast, the miR‑153 inhibitor promoted the proliferation and migration of HPASMCs. miR‑153 regulated the proliferation and migration of HPASMCs under hypoxia by targeting ROCK1 and NFATc3.


Epigenetic treatment of behavioral and physiological deficits in a tauopathy mouse model.

  • Wei Wang‎ et al.
  • Aging cell‎
  • 2021‎

Epigenetic abnormality is implicated in neurodegenerative diseases associated with cognitive deficits, such as Alzheimer's disease (AD). A common feature of AD is the accumulation of neurofibrillary tangles composed of hyperphosphorylated tau. Transgenic mice expressing mutant P301S human tau protein develop AD-like progressive tau pathology and cognitive impairment. Here, we show that the euchromatic histone-lysine N-methyltransferase 2 (EHMT2) is significantly elevated in the prefrontal cortex (PFC) of P301S Tau mice (5-7 months old), leading to the increased repressive histone mark, H3K9me2, which is reversed by treatment with the selective EHMT inhibitor UNC0642. Behavioral assays show that UNC0642 treatment induces the robust rescue of spatial and recognition memory deficits in P301S Tau mice. Concomitantly, the diminished PFC neuronal excitability and glutamatergic synaptic transmission in P301S Tau mice are also normalized by UNC0642 treatment. In addition, EHMT inhibition dramatically attenuates the hyperphosphorylated tau level in PFC of P301S Tau mice. Transcriptomic analysis reveals that UNC0642 treatment of P301S Tau mice has normalized a number of dysregulated genes in PFC, which are enriched in cytoskeleton and extracellular matrix organization, ion channels and transporters, receptor signaling, and stress responses. Together, these data suggest that targeting histone methylation enzymes to adjust gene expression could be used to treat cognitive and synaptic deficits in neurodegenerative diseases linked to tauopathies.


Revealing origin of decrease in potency of darunavir and amprenavir against HIV-2 relative to HIV-1 protease by molecular dynamics simulations.

  • Jianzhong Chen‎ et al.
  • Scientific reports‎
  • 2014‎

Clinical inhibitors Darunavir (DRV) and Amprenavir (APV) are less effective on HIV-2 protease (PR2) than on HIV-1 protease (PR1). To identify molecular basis associated with the lower inhibition, molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations were performed to investigate the effectiveness of the PR1 inhibitors DRV and APV against PR1/PR2. The rank of predicted binding free energies agrees with the experimental determined one. Moreover, our results show that two inhibitors bind less strongly to PR2 than to PR1, again in agreement with the experimental findings. The decrease in binding free energies for PR2 relative to PR1 is found to arise from the reduction of the van der Waals interactions induced by the structural adjustment of the triple mutant V32I, I47V and V82I. This result is further supported by the difference between the van der Waals interactions of inhibitors with each residue in PR2 and in PR1. The results from the principle component analysis suggest that inhibitor binding tends to make the flaps of PR2 close and the one of PR1 open. We expect that this study can theoretically provide significant guidance and dynamics information for the design of potent dual inhibitors targeting PR1/PR2.


Quantitative Profiling of the Lymph Node Clearance Capacity.

  • Cristina C Clement‎ et al.
  • Scientific reports‎
  • 2018‎

Transport of tissue-derived lymphatic fluid and clearance by draining lymph nodes are pivotal for maintenance of fluid homeostasis in the body and for immune-surveillance of the self- and non-self-proteomes. Yet a quantitative analysis of nodal filtration of the tissue-derived proteome present in lymphatic fluid has not been reported. Here we quantified the efficiency of nodal clearance of the composite proteomic load using label-free and isotope-labeling proteomic analysis of pre-nodal and post-nodal samples collected by direct cannulation. These results were extended by quantitation of the filtration efficiency of fluorophore-labeled proteins, bacteria, and beads infused at physiological flow rates into pre-nodal lymphatic collectors and collected by post-nodal cannulation. We developed a linear model of nodal filtration efficiency dependent on pre-nodal protein concentrations and molecular weight, and uncovered criteria for disposing the proteome incoming from defined anatomical districts under physiological conditions. These findings are pivotal to understanding the maximal antigenic load sustainable by a draining node, and promote understanding of pathogen spreading and nodal filtration of tumor metastasis, potentially helping to improve design of vaccination protocols, immunization strategies and drug delivery.


Activation of liver x receptors prevents the spinal LTP induced by skin/muscle retraction in the thigh via SIRT1/NF-Κb pathway.

  • Xiongxiong Zhong‎ et al.
  • Neurochemistry international‎
  • 2019‎

It has been reported that skin/muscle incision and retraction (SMIR) in the thigh, produces mechanical allodynia in the hind paw, far from the site of incision/retraction. The mechanical allodynia lasts about 22 days, indicating chronic post-operative pain develops. The precise mechanisms, however, are largely unclear. In the current study, we further found that SMIR surgery induced LTP of c-fiber evoked field potentials that lasted at least 4 h. The mRNA and protein level of tumor necrosis factor-alpha (TNFα) and acetylated nuclear factor-kappaB p65 (ac-NF-κB p65) in the lumbar spinal dorsal horn was gradually increased during LTP development, while pretreatment with either TNFα neutralization antibody or NF-κB inhibitor PDTC completely prevented the induction of LTP. Moreover, the expression of Silent information regulator 1 (SIRT1) in the lumbar spinal dorsal horn was decreased and activation of SIRT1 by SRT1720 also prevented the induction of LTP. Importantly, the spinal expression of Liver X receptors (LXRs) was increased, both at mRNA and protein level following SMIR. Application of LXRs agonist T0901317 to the spinal dorsal horn prevented LTP induction following SMIR. Mechanistically, T0901317 enhanced the expression of SIRT1 and decreased the expression of ac-NF-κB p65 and TNFα. Spinal application of SIRT1 antagonist EX-527, 30 min before T0901317 administration, completely blocked the inhibiting effect of T0901317 on LTP, and on expression of ac-NF-κB p65 and TNFα. These results indicated that activation of LXRs prevented SMIR-induced LTP by inhibiting NF-κB/TNFα pathway via increasing SIRT1 expression.


Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys.

  • Tingting Bo‎ et al.
  • Nature communications‎
  • 2023‎

Integrative analyses of transcriptomic and neuroimaging data have generated a wealth of information about biological pathways underlying regional variability in imaging-derived brain phenotypes in humans, but rarely in nonhuman primates due to the lack of a comprehensive anatomically-defined atlas of brain transcriptomics. Here we generate complementary bulk RNA-sequencing dataset of 819 samples from 110 brain regions and single-nucleus RNA-sequencing dataset, and neuroimaging data from 162 cynomolgus macaques, to examine the link between brain-wide gene expression and regional variation in morphometry. We not only observe global/regional expression profiles of macaque brain comparable to human but unravel a dorsolateral-ventromedial gradient of gene assemblies within the primate frontal lobe. Furthermore, we identify a set of 971 protein-coding and 34 non-coding genes consistently associated with cortical thickness, specially enriched for neurons and oligodendrocytes. These data provide a unique resource to investigate nonhuman primate models of human diseases and probe cross-species evolutionary mechanisms.


AP-1 controls the p11-dependent antidepressant response.

  • Revathy U Chottekalapanda‎ et al.
  • Molecular psychiatry‎
  • 2020‎

Selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed drugs for mood disorders. While the mechanism of SSRI action is still unknown, SSRIs are thought to exert therapeutic effects by elevating extracellular serotonin levels in the brain, and remodel the structural and functional alterations dysregulated during depression. To determine their precise mode of action, we tested whether such neuroadaptive processes are modulated by regulation of specific gene expression programs. Here we identify a transcriptional program regulated by activator protein-1 (AP-1) complex, formed by c-Fos and c-Jun that is selectively activated prior to the onset of the chronic SSRI response. The AP-1 transcriptional program modulates the expression of key neuronal remodeling genes, including S100a10 (p11), linking neuronal plasticity to the antidepressant response. We find that AP-1 function is required for the antidepressant effect in vivo. Furthermore, we demonstrate how neurochemical pathways of BDNF and FGF2, through the MAPK, PI3K, and JNK cascades, regulate AP-1 function to mediate the beneficial effects of the antidepressant response. Here we put forth a sequential molecular network to track the antidepressant response and provide a new avenue that could be used to accelerate or potentiate antidepressant responses by triggering neuroplasticity.


Cooperative activation of PDK1 and AKT by MAPK4 enhances cancer growth and resistance to therapy.

  • Dong Han‎ et al.
  • PLoS biology‎
  • 2023‎

Phosphoinositide-dependent kinase-1 (PDK1) is a master kinase of the protein A, G, and C (AGC) family kinases that play important roles in regulating cancer cell proliferation, survival, and metabolism. Besides phosphorylating/activating AKT at the cell membrane in a PI3K-dependent manner, PDK1 also exhibits constitutive activity on many other AGC kinases for tumor-promoting activity. In the latter case, PDK1 protein levels dominate its activity. We previously reported that MAPK4, an atypical MAPK, can PI3K-independently promote AKT activation and tumor growth. Here, using triple-negative breast cancer (TNBC) cell models, we demonstrate that MAPK4 can also enhance PDK1 protein synthesis, thus phosphorylate/activate PDK1 substrates beyond AKT. This new MAPK4-PDK1 axis alone lacks vigorous tumor-promoting activity but cooperates with our previously reported MAPK4-AKT axis to promote tumor growth. Besides enhancing resistance to PI3K blockade, MAPK4 also promotes cancer cell resistance to the more stringent PI3K and PDK1 co-blockade, a recently proposed therapeutic strategy. Currently, there is no MAPK4 inhibitor to treat MAPK4-high cancers. Based on the concerted action of MAPK4-AKT and MAPK4-PDK1 axis in promoting cancer, we predict and confirm that co-targeting AKT and PDK1 effectively represses MAPK4-induced cancer cell growth, suggesting a potential therapeutic strategy to treat MAPK4-high cancers.


Circulating exosomal microRNAs as novel potential detection biomarkers in pancreatic cancer.

  • Lun Wu‎ et al.
  • Oncology letters‎
  • 2020‎

Circulating exosomal microRNAs (ex-miRNAs) are reflective of the characteristics of the tumor and are valuable biomarkers in different types of tumor. In addition, miRNAs serve important roles in tumor progression and metastasis. The present study aimed to investigate the circulating ex-miRNA-21 and miRNA-210 as novel biomarkers for patients with pancreatic cancer (PC). For this purpose, serum ex-miRNAs were extracted from the serum of patients with PC (n=30) and chronic pancreatitis (CP) (n=10) using an RNA isolation kit. For exosome identification in serum, transmission electron micrographs were used to determine crystalline structure, western blotting was used to identify exosomal markers, and NanoSight was used for nanoparticle characterization. The relative expression levels of ex-miRNAs were quantified using quantitative PCR and compared between patients with PC and CP. The expression levels of both ex-miRNA-21 and miRNA-210 were significantly higher in patients with PC compared with patients with CP (both P<0.001). However, no significant difference in the relative serum levels of free miR-21 and miR-210 was observed between the 2 groups of patients (both P>0.05). ex-miRNA-21 and miRNA-210 were associated with tumor stage, as well as other factors. The diagnostic potential of ex-miRNA-21 and miRNA-210 levels was 83 and 85%, respectively. In addition, when ex-miRNA and serum carbohydrate antigen 19-9 expression levels were combined, the accuracy increased to 90%. The present study identified that serum ex-miRNAs, miRNA-21 and miRNA-210 may be of value as potential biomarkers and therapeutic targets for the diagnosis and treatment of PC.


Specific Knockdown of α-Synuclein by Peptide-Directed Proteasome Degradation Rescued Its Associated Neurotoxicity.

  • Jing Qu‎ et al.
  • Cell chemical biology‎
  • 2020‎

α-Synuclein (α-syn) overload is strongly associated with Parkinson disease (PD), and reduction of the α-syn level by targeting the peptide-based system through the autophagy-lysosomal pathway (ALP) is a promising strategy to delay PD progression. However, if the ALP is comprised, targeting the peptide-based proteasomal degradation system would be a good alternative. In this study, we designed a fusion peptide containing an α-syn-binding domain and a short strong proteasome-targeting motif. Our results reveal that this peptide could specifically bind to α-syn, and direct it to the proteasomes for degradation in a recombinant expression system. Furthermore, by adding a membrane-penetrating motif to this fusion peptide, we demonstrated that it could penetrate into cells and consequently suppress the cellular α-syn level through proteasome degradation in a dose- and time-dependent manner. Functionally, these effects rescued the mitochondrial dysfunction and cellular defects caused by α-syn overexpression in the cultured cells and primary neurons.


Caspase-1/IL-1β represses membrane transport of GluA1 by inhibiting the interaction between Stargazin and GluA1 in Alzheimer's disease.

  • Xunhu Gu‎ et al.
  • Molecular medicine (Cambridge, Mass.)‎
  • 2021‎

Alzheimer's disease is a neurodegenerative disease. Previous study has reported that caspase-1/IL-1β is closely associated with Alzheimer's disease. However, the biological role of caspase-1/IL-1β in Alzheimer's disease has not been fully elucidated. This study aimed to explore the mechanism of action of caspase-1/IL-1β in Alzheimer's disease.


Downregulation of amplified in breast cancer 1 contributes to the anti-tumor effects of sorafenib on human hepatocellular carcinoma.

  • Ming Li‎ et al.
  • Oncotarget‎
  • 2016‎

Multi-kinase inhibitor sorafenib represents a major breakthrough in the therapy of advanced hepatocellular carcinoma (HCC). Amplified in breast cancer 1 (AIB1) is frequently overexpressed in human HCC tissues and promotes HCC progression. In this study, we investigated the effects of sorafenib on AIB1 expression and the role of AIB1 in anti-tumor effects of sorafenib. We found that sorafenib downregulated AIB1 protein expression by inhibiting AIB1 mRNA translation through simultaneously blocking eIF4E and mTOR/p70S6K/RP-S6 signaling. Knockdown of AIB1 significantly promoted sorafenib-induced cell death, whereas overexpression of AIB1 substantially diminished sorafenib-induced cell death. Downregulation of AIB1 contributed to sorafenib-induced cell death at least in part through upregulating the levels of reactive oxygen species in HCC cells. In addition, resistance to sorafenib-induced downregulation of AIB1 protein contributes to the acquired resistance of HCC cells to sorafenib-induced cell death. Collectively, our study implicates that AIB1 is a molecular target of sorafenib and downregulation of AIB1 contributes to the anti-tumor effects of sorafenib.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: